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1 - Introduction

The derangement number dn is the number of permutations of an n-set
with no fixed points, [61, p. 65] (sequence A000166 in [65]), and (by a simple
application of the principle of inclusion-exclusion) it can be expressed as

(1) dn =

n
∑

k=0

n!

k!
(−1)k =

n
∑

k=0

(

n

k

)

(−1)k(n− k)! .

Similarly, the rencontres number

(2) Dn,k =

(

n

k

)

dn−k

is the number of permutations of an n-set with exactly k fixed points [61,
pp. 57, 58, 65] (sequence A008290 in [65]). The rencontres polynomials

(3) Dn(x) =

n
∑

k=0

Dn,kx
k =

n
∑

k=0

(

n

k

)

dn−kx
k

are the polynomials associated with the rencontres numbers (first expression)
or, equivalently, the Appell polynomials associated with the derangement num-
bers (second expression) [54,61].

The numbers dn and the polynomials Dn(x) go back to the problème des
rencontres (problem of coincidences) [29,30,52,69]. They are very well known
and widely studied in combinatorics and in probability theory, as witnessed by
the large number of papers on this topic [23, p. 182] [12, Section 7.2, p. 202] [38,
p. 194] [47, p. 102] [61, p. 65] [63, p. 23] [1,2,4,5,6,13,17,24,36,37,39,40,
41,48,57,60,64,68,70,73,74]. Moreover, as often happens, they have been
generalized in several ways [3,9,10,16,18,19,20,25,26,31,34,35,42,44,45,46,
50,51,53,56,71,72,75,76,77]. Here, we are interested in the generalizations

d
(m)
n and D

(m)
n (x) considered in [7,14,15,33,55] (see also [21,27,28,32,58,59]
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where the numbers dkn = d
(k)
n−k are the entries of Euler’s difference table [65,

A068106]). In what follows, we briefly recall the combinatorial settings for these
generalizations.

For any m ∈ N, an m-widened permutation [15] is a bijection f : X ∪ U →
X ∪ V where X is any n-set and U and V are two m-sets such that X, U and
V are pairwise disjoint. For m = 0, we have the ordinary permutations on X,
while, for m = 1, we have the case introduced and studied in [7].

If U = {u1, . . . , um} and V = {v1, . . . , vm}, then f is equivalent to an (m+
1)-tuple (λ1, . . . , λm, σ), where each λi is a linear order and σ is a permutation,
defined as follows: λi = [ui, f(ui), f

2(ui), . . . , f
h(ui), vj ] where h + 1 is the

minimum positive integer for which there exists an index j ∈ {1, 2, . . . ,m} such
that fh+1(ui) = vj , and σ is the remaining permutation onX\(Xλ1∪· · ·∪Xλm),
where Xλi

= {f(ui), f2(ui), . . . , f
h(ui)} ⊆ X. For instance, the 5-widened

permutation defined by

(4) f =

(

1 2 3 4 5 6 7 8 9 u1 u2 u3 u4 u5
7 1 9 v5 8 v4 2 6 3 v3 v1 5 v2 4

)

is equivalent to the sestuple (λ1, λ2, λ3, λ4, λ5, σ), where λ1 = [u1, v3], λ2 =
[u2, v1], λ3 = [u3, 5, 8, 6, v4], λ4 = [u4, v2], λ5 = [u5, 4, v5], and σ = (172)(39).

An m-widened derangement is an m-widened permutation f : X ∪ U →
X ∪ V with no fixed points, that is, with no points x ∈ X such that f(x) = x.
Notice that f is an m-widened derangement if and only if in the decomposition
(λ1, . . . , λm, σ) of f the permutation σ is a derangement. In the above example,
f is a 5-widened derangement.

The m-widened permutations are equivalent to the generalized m-permuta-
tions [15] defined as the permutations of the symbols 1, 2, . . . , n, v1, v2, . . . ,
vm, where vi �∈ {1, 2, . . . , n} for every i = 1, 2, . . . ,m. In the above example,
considering only the second line in the two-line representation (4) of f , we have
the generalized 5-permutation τ = 71 9 v5 8 v4 2 6 3 v3 v1 5 v2 4.

A fixed point of a generalized m-permutation is an integer k ∈ {1, 2, . . . , n}
appearing in position k. A generalized m-derangement [15] is a generalized
m-permutation with no fixed points (in the first n positions). The generalized
5-permutation τ of the above example is a generalized 5-derangement.

In this context [15], we have the generalized derangement numbers

(5) d(m)
n =

n
∑

k=0

(

n

k

)

(−1)k(m+ n− k)! ,

counting the generalized m-derangements (m-widened derangements), the gen-
eralized rencontres numbers

(6) D
(m)
n,k =

(

n

k

)

d
(m)
n−k
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counting the generalized m-permutations (m-widened permutations) with ex-
actly k fixed points, and the generalized rencontres polynomials

(7) D(m)
n (x) =

n
∑

k=0

D
(m)
n,k x

k =
n
∑

k=0

(

n

k

)

d
(m)
n−kx

k =
n
∑

k=0

(

n

k

)

(m+ k)!(x− 1)n−k

with exponential generating series

(8) D(m)(x; t) =
∑

n≥0

D(m)
n (x)

tn

n!
=

m! e(x−1)t

(1− t)m+1
.

Clearly, formulas (5), (6) and (7) reduce to formulas (1), (2) and (3) when
m = 0. On the other hand, the properties valid in the ordinary case (m = 0)
can usually be extended to the general case. Many of these extensions have been
obtained in a purely formal way [14,15,33]. In this paper, on the contrary,
we use a more combinatorial approach, based on the theory of species. To do
that, we simply observe that an m-widened permutation f : X ∪ U → X ∪ V is
equivalent, in a natural way, to an ordinary permutation σ : X ∪M → X ∪M ,
where M is any m-set (such that X ∩ M = ∅), and an m-widened derange-
ment is equivalent to a permutation σ : X ∪M → X ∪M with no fixed
points in X. We call these permutations, just for simplicity, m-permutations
and m-derangements1, respectively. So, if X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and
M = {m1,m2,m3,m4,m5}, the 5-widened derangement (4) becomes the 5-
derangement σ = (172)(39)(4m5)(586m4m2m1m3).

The paper is organized as follows. In Section 2, we recall the main defini-
tions and properties of the theory of species and weighted species [8,43], and,
in particular, we introduce the species of m-permutations, the species of m-
derangements, the species of m-arrangements and the species of m-rencontres.
In Section 3, by a bijective combinatorial approach, we derive several decom-
position properties for these species, from which we deduce the corresponding
properties for the generalized derangement numbers, the generalized arrange-
ment numbers and the generalized rencontres polynomials. Finally, in Section
4, we obtain some formulas relating the generalized derangement numbers with
the r-Bell numbers. In particular, we give an extension of the Clarke-Sved iden-
tity [22]. In the original identity the derangement numbers are related to the
Bell numbers, while in our extension the generalized derangement numbers are
related to the Stirling numbers of the second kind.

1Not to be confused with the r-derangements studied in [72].
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2 - Combinatorial species

A (combinatorial) species is a functor F : B → S, where B is the category of
finite sets and bijections and S is the category of finite sets and functions [8,43].
Given a finite set S, we denote by F[S] the set of all structures of species F
(also called F-structures) on the set S. Two species F and G are isomorphic
when there exists a natural isomorphism between them. In this case, we simply
write F = G. Given two species F and G, we have the following operations,
defined, on a finite set S, by

sum (F+G)[S] = F[S] +G[S]

product (F ·G)[S] =
∑

I⊆S

F[I]×G[S \ I]

Hadamard product (F�G)[S] = F[S]×G[S]

composition (F ◦G)[S] =
∑

π∈Π[S]

F[π]×
∏

B∈π
G[B] (G[∅] = ∅)

where Π[S] denotes the set of partitions of S. The derivative of a species F is the
species F′ defined, for every finite set S, by F′[S] = F[S+{∗}], where ∗ denotes
an arbitrary element (not in S). More generally, the m-derivative of a species
F is the species F(m) defined, for every finite set S, by F(m)[S] = F[S + M ],
where M is any m-set (disjoint from S).

The cardinality of a species F is the exponential formal series

Card(F; t) =
∑

n≥0

fn
tn

n!
,

where fn = |F[S]| is the number of all F-structures on any n-set S (this number
does not depend on the choice of the n-set S). All the operations recalled above
are preserved by cardinality.

More generally, we have the weighted species [43, p. 54] [8, p. 75]. Here,
however, we will consider only the weighted species with weights in the algebra
R[x] of the real polynomials in an indeterminate x.

A weighted set is a pair (S,w), where S is a finite set and w : S → R[x]
is a map, called weight function, which associates a weight w(s) ∈ R[x] to
each element s ∈ S. The total weight of S is the sum of the weights of all
elements of S, i.e. |S|w = w(S) =

∑

s∈S w(s). A morphism of weighted sets
f : (S,w) → (T, v) is a function f : S → T preserving the weights, i.e., w = v◦f .

We can define some operations on weighted sets. The sum of two weighted
sets (S,w) and (T, v) is the weighted set (S+T,w+v) where (w+v)(x) = w(x)
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if x ∈ S and (w+ v)(x) = v(x) if x ∈ T . The product of (S,w) and (T, v) is the
weighted set (S × T,w× v), where (w× v)(x, y) = w(x)v(y). These operations
are preserved by the total weight.

A weighted species is a functor Fx : B → Sx, where Sx is the category
of finite weighted sets and weight-preserving maps (as defined above). For
every finite set S, we have the weighted set Fx[S] = (F[S], w), where F[S] is
the set of structures of species F on the set S and w : F[S] → R[x] is a weight
function. An ordinary species is a weighted species where every weight function
w is the constant function 1. The cardinality of the weighted species Fx is the
exponential formal series

Card(Fx; t) =
∑

n≥0

fw
n

tn

n!
,

where fw
n is the total weight of the set F[S], for any n-set S, that is, fw

n =
w(F[S]) =

∑

ϕ∈F[S]w(ϕ). The operations defined for ordinary species can
be extended to weighted species and, also in this case, they are preserved by
cardinality.

We now recall the definition of the species and weighted species used in the
rest of the paper. Fixed k ∈ N, let Xk

k! be the species of k-sets, defined, for

every finite set S, by Xk

k! [S] = {S} whenever |S| = k and Xk

k! [S] = ∅ whenever

|S| �= k, and let Xk
x

k! be the weighted species of k-sets defined, for every finite set

S, by Xk
x

k! [S] = (X
k

k! [S], w), where w(S) = x|S| when |S| = k. The cardinalities
of these species are

Card
(Xk

k!
; t
)

=
tk

k!
and Card

(Xk
x

k!
; t
)

= xk
tk

k!
.

Let Exp be the exponential species, or the uniform species, defined by
Exp[S] = {S} for every finite set S, and having cardinality

(9) Card(Exp; t) = et .

Notice that Exp′ = Exp and that, more generally,

(Expn)′ = nExpn−1 ·Exp′ = nExpn ,

for every n ∈ N, where nF = F+ · · ·+ F (n times).
Similarly, let Expx be the weighted exponential species defined, for every

finite set S, by Expx[S] = (Exp[S], w) = ({S}, w), where w(S) = x|S|. To
give a structure of species Expx on a finite set S simply means to give the



[7] generalized derangement numbers 223

weight x to each element of S. Equivalently, we can give a structure of species
Expx on a set S by assigning a partition π of S in singletons and the weight
x to each block of π. Hence, we have the relation Expx = Exp ◦Xx. In both
interpretations, we obtain the generating series

(10) Card(Expx; t) = ext .

Let Perm be the species of permutations and let Perm(m) be the species
of m-permutations, i.e., the species defined by Perm(m)[S] = Perm[S + M ],
for every finite sets S and M , with |M | = m. Hence, by definition, Perm(m)

is the m-derivative of the species Perm, and then

(11) Card(Perm(m); t) =
dm

dtm
Card(Perm; t) =

dm

dtm
1

1− t
=

m!

(1− t)m+1
.

Clearly, we also have directly |Perm(m)[S]| = (m+ n)!, for every n-set S.
Let Der be the species of derangements and let Der(m) be the species of

m-derangements, i.e., the species defined, for every finite set S, by

Der(m)[S] = {σ ∈ Perm(m)[S] : Fix(σ) ∩ S = ∅}

where Fix(σ) is the set of fixed points of σ. Notice that an ordinary derangement
of S +M is an m-derangement on S, but that the viceversa is not necessarily
true. Indeed, an m-derangement on S is a permutation on S+M with no fixed
points in S and no restriction on M ; so it can have fixed points in M . For
instance, if S = {1, 2, 3, 4, 5} and M = {6, 7, 8, 9}, then σ = (139)(26)(458)(7)
is a 4-derangement on S.

Let Ren
(m)
x be the species of m-rencontres defined, for every finite set S,

by Ren
(m)
x [S] = (Perm(m)[S], w), where w : Perm(m)[S] → R[x] is the weight

function defined by w(σ) = x|S∩Fix(σ)|, for every σ ∈ Perm(m)[S]. In other

words, a structure of species Ren
(m)
x on a finite set S is a permutation σ of

S+M where each fixed point in S has weight x (while the possible fixed points
in M have weight 1, as any other point). If S is an n-set, the total weight of
Perm(m)[S] is

w(Perm(m)[S]) =

n
∑

k=0

(

n

k

)

d
(m)
n−kx

k = D(m)
n (x) .

Clearly, when every weight function w is the constant function 1 (i.e. for x = 1),

then the weighted species Ren
(m)
x reduces to the ordinary species Perm(m).

Let Arr be the species of arrangements defined, for every finite set S, by

Arr[S] = {(I, σ) : I ⊆ S , σ ∈ Perm[I]} .
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The number of all arrangements of an n-set [61, p. 16] [65, A000522] is

an =
n
∑

k=0

(

n

k

)

k! .

More generally, let Arr(m) be the species of m-arrangements defined, for
every finite set S, by

Arr(m)[S] = {(I, σ) : I ⊆ S , σ ∈ Perm(m)[I]} .

Let Lin be the species of linear orders (totally ordered sets) and let Lin−1
be the species of non-empty linear orders.

Let Part be the species of partitions, i.e., the species defined by Part[S] =
Π[S] for any finite set S. Let F be a species with F[∅] = ∅ and |F[{∗}]| = 1,
and let f(t) = Card(F; t). An F-enriched partition of a finite set S is a pair
(π,Φ) where π = {B1, . . . , Bk} is a partition of S and Φ = {ϕ1, . . . , ϕk} is a
family of F-structures, so that each block Bi of π is endowed with a structure
ϕi of species F. Let PartF be the species of F-enriched partitions, i.e., the
species PartF = Exp ◦ F. If pFn = |PartF[S]|, with |S| = n, then we have the
exponential generating series

pF(t) =
∑

n≥0

pFn
tn

n!
= Card(PartF; t) = Card(Exp ◦ F; t) = ef(t) .

Similarly, let ˜PartF be the species of the F-enriched partitions without singleton
blocks (i.e., without blocks of size 1). Then ˜PartF = Exp◦ (F−X), where, for
simplicity, F−X denotes the species which is ∅ on any singleton {∗} and which
is equal to F[S] on any other set S �= {∗}. Furthermore, if p̃Fn = |˜PartF[S]|,
with |S| = n, then we have the exponential generating series

(12) p̃F(t) =
∑

n≥0

p̃Fn
tn

n!
= Card(˜PartF; t) = Card(Exp◦(F−X); t) = ef(t)−t .

Let PartFx be the weighted species of F-enriched partitions, where each
singleton block has weight x. Let pFn (x) be the polynomial giving the total
weight of PartF[S], when |S| = n. Then, we have the following result.

L emma 1. If F is a species with F[∅] = ∅ and |F[{∗}]| = 1, then we have
the relation

(13) PartFx = Expx · ˜PartF
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and the exponential generating series

(14) pF(x; t) =
∑

n≥0

pFn (x)
tn

n!
= ef(t)−t ext = ef(t) e(x−1)t .

P r o o f. To give a structure of species PartFx on a finite set S means to
give a partition π ∈ Part[S] where each block is endowed with a structure of
species F and where each singleton block has weight x. Since, by hypothesis,
there is only one F-structure on a singleton block, this is equivalent to consider
a subset I of S, where each element has weight x, and an F-enriched partition
without singleton blocks on S \ I. This remark implies at once relation (13).
By this relation, we have

Card(PartFx ; t) = Card(Expx · ˜PartF; t) = Card(Expx; t) ·Card(˜PartF; t) .

Since pF(x; t) = Card(PartFx ; t), by identities (10) and (12), we have series
(14). �

By identity (14), the polynomials pFn (x) always form an Appell sequence
[54,62] and are given by

pFn (x) =

n
∑

k=0

(

n

k

)

p̃Fn−k x
k .

3 - Basic combinatorial properties

3.1 - Decomposition properties

In this section, we derive some basic combinatorial properties of the species
of m-permutations, m-derangements, m-rencontres and m-arrangements, and,
consequently, of the generalized derangement and arrangement numbers and
generalized rencontres polynomials. We start with the following simple result.

T h e o r em 2. We have the relations

Perm(m) = Exp ·Der(m)(15)

Ren(m)
x = Expx ·Der(m)(16)

and the cardinalities

Card(Der(m); t) =
m! e−t

(1− t)m+1
(17)
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Card(Ren(m)
x ; t) =

m! e(x−1)t

(1− t)m+1
.(18)

P r o o f. To give a structure of species Perm(m) on a finite set S means,
by definition, to give a permutation σ of S + M . This is equivalent to give a
subset I ⊆ S (I = S∩Fix(σ)) and an m-derangement δ on S \I (the restriction
of σ to (S \ I) +M). Then, we have the identity

Perm(m)[S] =
∑

I⊆S

Exp[I]×Der(m)[S \ I]

which yields relation (15).

Similarly, to give a structure of species Ren
(m)
x on a finite set S means to

give an m-permutation σ on S and to assign the weight x to each fixed point
of σ in S. This is equivalent to give a subset I ⊆ S (I = S ∩ Fix(σ)), where
each element has weight x, and an m-derangement δ on S \ I (the restriction
of σ to (S \ I) +M). This implies relation (16).

By relation (15), we have

Card(Perm(m); t) = Card(Exp·Der(m); t) = Card(Exp; t)·Card(Der(m); t).

Then, by identities (11) and (9), we have

m!

(1− t)m+1
= et Card(Der(m); t)

from which we have at once identity (17). Then, by relation (16) and identity
(17), we have

Card(Ren(m)
x ; t) = Card(Expx ·Der(m); t)

= Card(Expx; t) ·Card(Der(m); t) = ext
m! e−t

(1− t)m+1

which simplifies in series (18). �

Furthermore, we have the following “exchange property”.

T h e o r em 3. We have the relation

(19) Exp ·Ren(m)
x = Expx ·Perm(m)

and the identity

(20)

n
∑

k=0

(

n

k

)

D
(m)
k (x) =

n
∑

k=0

(

n

k

)

(m+ k)!xn−k .
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I

S \ I

S

Exp Ren(m)
x

(a) Exp ·Ren(m)
x .

I
J

(S \ I) \ J

S

Exp

Expx

Der(m)

(b) Exp · (Expx ·Der(m)).

J

S \ J

S

Expx

Perm(m)

(c) Expx ·Perm(m).

Fig. 1. Decompositions in the proof of Theorem 3.

P r o o f. To give a structure of species Exp ·Ren
(m)
x on a finite set S means

to assign a subset I ⊆ S, an m-permutation σ on S \ I and a weight x to each
fixed point of σ in S (see Figure 1a). This is equivalent to assign a first subset
I ⊆ S, a second subset J ⊆ S \ I (J = Fix(σ)), a weight x to each point of J
and an m-derangement σ′ on (S \ I) \ J (see Figure 1b). Exchanging the roles
of I and J (i.e. considering the points in I as fixed points and the points in J
as simple points with weight x), this is equivalent to assign a subset J ⊆ S, a
weight x to each point of J and an m-permutation σ′′ on S \ J (see Figure 1c).
These bijections imply relation (19), and this relation implies identity (20). �

Theorem 3 immediately implies the following general result.

T h e o r em 4. If F is a species with F[∅] = ∅ and |F[{∗}]| = 1, then we
have the relation

(21) ˜PartF ·Ren(m)
x = PartFx ·Der(m)

and the identity

(22)

n
∑

k=0

(

n

k

)

p̃Fn−k D
(m)
k (x) =

n
∑

k=0

(

n

k

)

d
(m)
n−k p

F
k (x) .

In particular, for x = 1, we have the identity

(23)
n
∑

k=0

(

n

k

)

(m+ k)! p̃Fn−k =
n
∑

k=0

(

n

k

)

d
(m)
n−k p

F
k .

P r o o f. By relations (16) and (13), we have

˜PartF ·Ren(m)
x = ˜PartF · (Expx ·Der(m))

= (Expx · ˜PartF) ·Der(m) = PartFx ·Der(m) .
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This is relation (21), which, in turn, immediately implies identity (22). �

Ex amp l e s.

1. If F = Exp − 1, then PartF = Exp ◦ (Exp − 1) = Part is the species
of partitions. So, we have the Bell numbers pFn = bn [65, A000110], the
numbers p̃Fn = b∗n of partitions without singleton blocks [65, A000296]
and the polynomials pFn (x) = Bn(x) =

∑n
k=0

(

n
k

)

b∗n−kx
k. Then, identities

(22) and (23) become

n
∑

k=0

(

n

k

)

b∗n−k D
(m)
k (x) =

n
∑

k=0

(

n

k

)

d
(m)
n−k Bk(x)(24)

n
∑

k=0

(

n

k

)

(m+ k)! b∗n−k =

n
∑

k=0

(

n

k

)

d
(m)
n−k bk .(25)

2. If F = Cyc is the species of cycles, then PartF = Exp ◦Cyc = Perm
is the species of permutations, and we have the factorial numbers pFn =
n!, the derangement numbers p̃Fn = dn and the rencontres polynomials
pFn (x) = Dn(x) =

∑n
k=0

(

n
k

)

dn−kx
k. Identities (22) and (23) become

n
∑

k=0

(

n

k

)

dn−kD
(m)
k (x) =

n
∑

k=0

(

n

k

)

d
(m)
n−kDk(x)(26)

n
∑

k=0

(

n

k

)

(m+ k)! dn−k =

n
∑

k=0

(

n

k

)

k! d
(m)
n−k .(27)

3. If F = Lin − 1 is the species of non-empty linear orders, then PartF =
Exp ◦ (Lin − 1) is the species of Lah partitions. So, we have the cumu-
lative Lah numbers pFn = �n [65, A000262]) the numbers p̃Fn = �∗n of Lah
partitions without singleton blocks [65, A052845] and the polynomials
pFn (x) = Ln(x) =

∑n
k=0

(

n
k

)

�∗n−kx
k. Identities (22) and (23) become

n
∑

k=0

(

n

k

)

�∗n−kD
(m)
k (x) =

n
∑

k=0

(

n

k

)

d
(m)
n−kLk(x)(28)

n
∑

k=0

(

n

k

)

(m+ k)! �∗n−k =
n
∑

k=0

(

n

k

)

d
(m)
n−k�k .(29)

4. If F = X + X2/2, then PartF = Exp ◦ (X + X2/2) = Inv is the
species of involutions. So, we have the involution numbers pFn = in [65,
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A000085], the numbers of involutions without singletons p̃F2n =
(

2n
n

)

n!
2n or

p̃F2n+1 = 0 [65, A123023] and the involution polynomials pFn (x) = In(x) =
∑�n/2�

k=0

(

n
k

)(

n−k
k

)

k!
2k
xn−2k. After some simplifications, identities (22) and

(23) become

�n/2�
∑

k=0

(

n

k

)(

n− k

k

)

k!

2k
D

(m)
n−2k(x) =

n
∑

k=0

(

n

k

)

d
(m)
n−kIk(x)(30)

�n/2�
∑

k=0

(

n

k

)(

n− k

k

)

k!

2k
(m+ n− 2k)! =

n
∑

k=0

(

n

k

)

d
(m)
n−kik .(31)

For the generalized derangement numbers, we also have the following result.

T h e o r em 5. The generalized derangement numbers can be expressed in
terms of the ordinary derangement numbers, by means of the formula

(32) d(m)
n =

m
∑

k=0

(

m

k

)

dn+k .

P r o o f. To give an m-derangement δ on an n-set S is equivalent to assign
a subset I ⊆ M (I = Fix(δ) ⊆ M) and an ordinary derangement on S+(M \I).
This remark implies at once the claimed identity. �

For the generalized rencontres polynomials the situation is more compli-
cated. Indeed, to express these polynomials in terms of the ordinary rencontres
polynomials, we need to consider the species H(m) defined as follows: for any
m-set M and for any finite set S, H(m)[S] is the set of all permutations on
S + M with no cycles entirely contained in S. Clearly, all permutations in
H(m)[S] are particular m-derangements on S. For instance, if S = {1, 2, 3, 4, 5}
andM = {6, 7, 8, 9}, the permutation σ = (162)(37)(459)(8) belongs toH(4)[S].

The multiset coefficients [66, pp. 25, 26] are defined by
((

x
k

))

= (x)k
k! , where

(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1) is the Pochhammer symbol.

T h e o r em 6. We have the relations

Perm(m) = Perm ·H(m)(33)

Ren(m)
x = Renx ·H(m)(34)

and the identity

(35) D(m)
n (x) = m!

n
∑

k=0

(

n

k

)

(m)k Dn−k(x) .
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In particular, for x = 0, we have the identity

(36) d(m)
n = m!

n
∑

k=0

(

n

k

)

(m)k dn−k .

P r o o f. To give a structure of species Ren
(m)
x on a finite set S means to

give an m-permutation σ on S and to assign the weight x to each fixed point
of σ in S. This is equivalent to give a subset I ⊆ S, a permutation σ′ on I
(formed by the cycles of σ entirely contained in S) where each fixed point has
weight x, and an m-permutation σ′′ on S \ I with no cycles entirely contained
in S \ I. This implies relation (34). In particular, in the ordinary case (when
each weight function w is the constant function 1, i.e., when x = 1), we have
relation (33). Then, from relation (34) (or from relation (33)), we have

Card(Ren(m)
x ; t) = Card(Renx ·H(m); t) = Card(Renx; t) ·Card(H(m); t)

that is D(m)(x; t) = D(x; t) Card(H(m); t) or Card(H(m); t) = D(m)(x;t)
D(x;t) . So,

by identity (8), we have

Card(H(m); t) =
m!

(1− t)m
= m!

∑

n≥0

((m

n

))

tn =
∑

n≥0

m!(m)n
tn

n!
.

Now, by this result and by relation (34), we obtain identity (35). �

Rema r k 7. From the proof of the previous theorem we have that the
number of permutations in H(m)[S], when |S| = n, is

H(m)
n = m!n!

((m

n

))

= m! (m)n = m (n+m− 1)! .

For instance, for m = n = 2, we have H
(2)
2 = 12. Indeed, we have the permuta-

tions (13)(24), (14)(23), (123)(4), (132)(4), (124)(3), (142)(3), (1234), (1243),
(1324), (1342), (1423), (1432).

3.2 - Recursive properties

The generalized recontres polynomials have the following property.

T h e o r em 8. The polynomials D
(m)
n (x) are Appell polynomials, that is

(37)
d

dx
D(m)

n (x) = nD
(m)
n−1(x) .
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P r o o f. The derivative

d

dx
D(m)

n (x) =
n
∑

k=0

(

n

k

)

kd
(m)
n−kx

k−1

is the weight of the set of all m-permutations on an n-set S where every fixed
point in S, except one, has weight x. To give a permutation of this kind is
equivalent to give a point p of S and an m-permutation on S \ {p} where each
fixed point (in S \ {p}) has weight x. This yields at once identity (37). �

For the derivative of the species of derangements, we have the following
result.

T h e o r em 9. We have the relation

(38) Der′ = (Lin− 1) ·Der

and the identity

(39) dn+1 =
n
∑

k=1

(

n

k

)

k! dn−k .

Moreover, we have the recurrence

(40) dn+1 = ndn + ndn−1 .

P r o o f. A structure of species Der′ on a finite set S is a derangement δ
of S + {∗} (where ∗ is any point not belonging to S). If we remove ∗, then
the cycle containing such a point breaks in a non-empty linear order and δ
turns out to be equivalent to a non-empty linear order λ on a subset I ⊆ S
and a derangement δ′ on S \ I (see Figure 2a). This yields relation (38) and
consequently identity (39).

This approach can be slightly modified in order to obtain recurrence (40).
Indeed, if we remove ∗, without breaking the cycle containing ∗, we obtain a
new cycle γ of length at least 1. So, δ becomes a derangement δ′ on S (if γ has
length at least 2) or a permutation σ on S with exactly one fixed point v (if γ
has length 1). By removing v, then σ becomes a derangement δ′′ on S \ {v}.

Viceversa, to recover δ from δ′, we have to insert ∗ in one cycle of δ′ and
this can be done in n different ways. Moreover, to recover δ from δ′′, we have
only to choose one point of S, and this can be done in n different ways. All
this implies recurrence (40). �

These results can be easily extended to the species Der(m) of m-derange-
ments.
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S

∗
I

(a) The derivative Der′.

S M

∗
IJ

(b) The derivative (Der(m))′.

Fig. 2. Decompositions in the proof of Theorems 9 and 10.

T h e o r em 10. We have the relation

(41)
(

Der(m)
)′
=

m
∑

i=0

(

m

i

)

(Lin− 1)(i) ·Der(m−i)

where (Lin− 1)(i) is the i-derivative of the species Lin− 1, and the identity

(42) d
(m)
n+1 =

m
∑

i=0

n
∑

j=0

(

m

i

)(

n

j

)

(i+ j)! d
(m−i)
n−j − d(m)

n .

Moreover, we have the recurrence

(43) d
(m)
n+1 = (m+ n) d(m)

n + nd
(m)
n−1 .

P r o o f. Given a finite set S, we have
(

Der(m)
)′
[S] = Der(m)[S + {∗}].

So, a structure of species
(

Der(m)
)′

on S is a permutation δ of (S + {∗}) +M
without fixed points in S + {∗}. If we remove ∗, then the cycle containing this
point breaks in a non-empty linear order. So δ is equivalent to a non-empty
linear order λ on a subset I+J , where I ⊆ M and J ⊆ S, and to a permutation
δ′ on (S \ J) + (M \ I) without fixed points in S \ J (see Figure 2b). Hence

(

Der(m)
)′
[S] =

∑

I⊆M

∑

J⊆S

(Lin− 1)[I + J ]×Der(|M\I|)[S \ J ]

=
∑

I⊆M

∑

J⊆S

(Lin− 1)(|I|)[J ]×Der(m−|I|)[S \ J ]
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=
∑

I⊆M

((Lin− 1)(|I|) ·Der(m−|I|))[S]

=





∑

I⊆M

(Lin− 1)(|I|) ·Der(m−|I|)



 [S]

that is
(

Der(m)
)′
=

∑

I⊆M

(Lin− 1)(|I|) ·Der(m−|I|) .

This is relation (41) and such a relation immediately implies identity (42) (just
notice that i+ j �= 0, being λ a non-empty linear order).

This approach can be slightly modified to obtain recurrence (43). Indeed, if
we just remove ∗, then we have a new cycle γ of length at least 1. So, δ reduces
to an m-derangement δ′ on S (if γ is not a 1-cycle in S) or to a permutation σ
on S +M with exactly one fixed point in S (if γ is a 1-cycle in S). Removing
this fixed point, say v, σ becomes an m-derangement δ′′ on S \ {v}.

Viceversa, to recover δ from δ′, we have to insert ∗ in one cycle of δ′ and
this can be done in m + n different ways. Moreover, to recover δ from δ′′, we
have to choose one point of S, and this can be done in n different ways. All
this implies recurrence (43). �

The results of Theorems 9 and 10 can be extended to the generalized ren-
contres polynomials. Here, we only prove the next theorem, where recurrence
(45) corresponds to recurrence (10) obtained in [15] by a formal argument.

T h e o r em 11. We have the identity

(44) D
(m)
n+1(x) = (x− 1)D(m)

n (x) +

m
∑

i=0

n
∑

j=0

(

m

i

)(

n

j

)

(i+ j)!D
(m−i)
n−j (x)

and the recurrence

(45) D
(m)
n+1(x) = (x+m+ n)D(m)

n (x)− n(x− 1)D
(m)
n−1(x) .

P r o o f. Given a finite set S, we have
(

Ren
(m)
x

)′
[S] = Ren

(m)
x [S + {∗}].

So, a structure of species
(

Ren
(m)
x

)′
on S is a permutation σ on (S+{∗})+M ,

where each fixed point in S+ {∗} has weight x. If ∗ is a fixed point, then ∗ has
weight x and σ reduces to a permutation σ1 on S+M . Otherwise, if ∗ is not a
fixed point, then, by removing ∗, we have that σ is equivalent to a non-empty
linear order λ on a subset I+J , where I ⊆ M and J ⊆ S, and to a permutation
σ′ on (S \ J) + (M \ I). This implies formula (44).
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Again, we can adapt this argument to deduce recurrence (45). Let σ be a
permutation on (S + {∗}) +M , where every fixed points in S + {∗} has weight
x. When we remove ∗, we have the following cases. (i) If ∗ is a fixed point, then
∗ has weight x and σ reduces to a permutation σ1 on S +M . (ii) If ∗ is not a
fixed point, but swaps with an element v of S, then σ reduces to a permutation
σ2 on (S \ {v}) +M . (iii) If ∗ is not a fixed point and does not swap with an
element of S, then the cycle containing this element reduces to a cycle γ which
is never a 1-cycle in S, and so σ reduces to a permutation σ3 in S +M .

Viceversa, we have the following cases. (i) To recover σ from σ1, we have
to add a new fixed point in S with weight x. (ii) To recover σ from σ2, we have
to choose one element of S, and this can be done in n different ways. (iii) To
recover σ from σ3, we have to insert ∗ in one cycle of σ3, and this can be done
in m+ n− k different ways, where k is the number of fixed points of σ3 in S.

From this analysis, we have

D
(m)
n+1(x) = xD(m)

n (x) + nD
(m)
n−1(x) +

n
∑

k=0

(

n

k

)

(m+ n− k)d
(m)
n−kx

k

= xD(m)
n (x) + nD

(m)
n−1(x) + (m+ n)D(m)

n (x)−
n
∑

k=0

(

n

k

)

kd
(m)
n−kx

k

= (x+m+ n)D(m)
n (x) + nD

(m)
n−1(x)− x

d

dx
D(m)

n (x) .

By the Appell identity (37), we have at once recurrence (45). �

3.3 - Properties of m-arrangements

We conclude this section by establishing some basic relations between m-

arrangements, m-permutations and m-derangements. Let a
(m)
n be the general-

ized arrangement numbers, counting the m-arrangements of an n-set.

T h e o r em 12. We have the relations

Arr(m) = Exp ·Perm(m)(46)

Arr(m) = Exp2 ·Der(m)(47)

and the identities

a(m)
n =

n
∑

k=0

(

n

k

)

(m+ k)! or (m+ n)! =
n
∑

k=0

(

n

k

)

(−1)n−ka
(m)
k(48)
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a(m)
n =

n
∑

k=0

(

n

k

)

2n−kd
(m)
k or d(m)

n =
n
∑

k=0

(

n

k

)

(−2)n−ka
(m)
k .(49)

P r o o f. To give a structure of species Arr(m) on a finite set S means to
give a subset I of S, an m-permutation σ on I and the uniform structure on
S \ I. This immediately implies relation (46). Then, this relation and relation
(15) implies relation (47). Relations (46) and (47) immediately yield the first
identities in (48) and (49), respectively. The other identities are simply the
inverse of the previous ones. �

Th e o r em 13. The numbers a
(m)
n have exponential generating series

(50) a(m)(t) =
∑

n≥0

a(m)
n

tn

n!
=

m! et

(1− t)m+1
.

P r o o f. By relation (46), we have

Card(Arr(m); t) = Card(Exp ·Perm(m); t)

= Card(Exp; t) ·Card(Perm(m); t) .

By identities (9) and (11), we obtain series (50). �

For the derivative of the species of arrangements, we have the following
result.

T h e o r em 14. We have the relation

(51) Arr′ = 2Arr+ (Lin− 1) ·Arr

and the identity

(52) an+1 = an +

n
∑

k=0

(

n

k

)

k! an−k .

P r o o f. By relation (47) with m = 0, we have Arr = Exp2 · Der. By
differentiating this relation by the Leibniz rule (valid also for species), we get

Arr′ =
(

Exp2 ·Der
)′
= 2Exp2 ·Der+Exp2 ·Der′ = 2Arr+Exp2 ·Der′ .

Then, by relation (38), we have

Arr′ = 2Arr+Exp2 · (Lin− 1) ·Der = 2Arr+ (Lin− 1) ·Arr .

This is relation (51), which immediately yields identity (52). �

Theorem 14 can be extended by using relations (47) and (41).
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T h e o r em 15. We have the relation

(53)
(

Arr(m)
)′
= 2Arr(m) +

m
∑

i=0

(

m

i

)

(Lin− 1)(i) ·Arr(m−i)

and the identity

(54) a
(m)
n+1 = a(m)

n +

m
∑

i=0

n
∑

j=0

(

m

i

)(

n

j

)

(i+ j)! a
(m−i)
n−j .

Rema r k 16. The generalized arrangement numbers can be expressed by
means of the generalized rencontres polynomials:

(55) a(m)
n = D(m)

n (2) .

So, by replacing x by 2 in recurrences (10) and (11) obtained in [15] for the
generalized rencontres polynomials, we immediately have the recurrences

a
(m)
n+2 = (m+ n+ 3) a

(m)
n+1 − (n+ 1) a(m)

n

a
(m+1)
n+1 = (n+ 1) a(m+1)

n + (m+ 1) a
(m)
n+1 .

Moreover, again for x = 2, identities (26) and (35) become

n
∑

k=0

(

n

k

)

a
(m)
k dn−k =

n
∑

k=0

(

n

k

)

akd
(m)
n−k(56)

a(m)
n = m!

n
∑

k=0

(

n

k

)

(m)k an−k .(57)

Similarly, identity (44) specializes in identity (54). Other identities of this kind

can be obtained by specializing any identity involving the polynomials D
(m)
n (x).

4 - An extension of the Clarke-Sved identity

There are some formulas relating the ordinary derangement numbers dn and
the Bell numbers bn. For instance, we have the identities

n
∑

k=0

[

n+ 1

k + 1

]

(−1)kbk = dn(58)

n
∑

k=0

{

n+ 1

k + 1

}

(−1)kdk = bn(59)
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where the coefficients
[

n
k

]

are the Stirling numbers of the first kind and the
coefficients

{

n
k

}

are the Stirling numbers of the second kind [38, Section 6.1]
(sequences A132393 and A008277 in [65]), or the identities

n
∑

k=0

(

n

k

)

krdn−k = n! br (r ≤ n)(60)

n
∑

k=0

(

n

k

)

krdk = n!

r
∑

k=0

(

r

k

)

(−1)knr−kbk (r ≤ n) ,(61)

or the nice congruence [68]

(62)

p−1
∑

k=1

bk
(−s)k

≡ (−1)s−1ds−1 (mod p )

valid for every positive integer s and any prime p not dividing s.

There are also formulas relating the Bell numbers and the generalized de-
rangement numbers. For instance, the identities ((39) and (40) in [15])

n
∑

k=0

{

n

k

}

(−1)kd
(m)
k = m!

n
∑

k=0

(

n

k

)

(−1)n−k(m+ 1)n−kbk(63)

n
∑

k=0

{

n+ 1

k + 1

}

(−1)kd
(m)
k = m!

n
∑

k=0

(

n

k

)

(−1)n−kmn−kbk(64)

have been obtained by using the formal technique of Sheffer matrices. By the
same approach, we can extend formulas (58) and (59). Recall that the r-Stirling
numbers of the first kind

[

n
k

]

r
and the r-Stirling numbers of the second kind

{

n
k

}

r
are defined [11] by the exponential generating series

∑

n≥k

[

n

k

]

r

tn

n!
=

1

(1− t)r
1

k!

(

ln
1

1− t

)k

(65)

∑

n≥k

{

n

k

}

r

tn

n!
= ert

(et − 1)k

k!
,(66)

and that the r-Bell numbers [49] have exponential generating series

(67) b(r)(t) =
∑

n≥0

b(r)n

tn

n!
= ertee

t−1 .



238 m.m. ferrari, e. munarini and n. zagaglia salvi [22]

T h e o r em 17. For every m, r ∈ N, with r ≤ m, we have the identities

n
∑

k=0

[

n

k

]

m+1

(−1)k b
(r)
k =

d
(m−r)
n

(m− r)!
(68)

n
∑

k=0

{

n

k

}

m+1

(−1)k d
(m−r)
k = (m− r)! b(r)n .(69)

P r o o f. By series (65) and (67), we have the generating series

∑

n≥0

[

n
∑

k=0

[

n

k

]

m+1

(−1)k b
(r)
k

]

tn

n!
=

b(r)(ln(1− t))

(1− t)m+1
=

e−t

(1− t)m−r+1
=

d(m−r)(t)

(m− r)!
.

This proves the first identity (68). Similarly, by series (17) and (66), we have
the generating series

∑

n≥0

[

n
∑

k=0

{

n

k

}

m+1

(−1)k d
(m−r)
k

]

tn

n!

= e(m+1)td(m−r)(−et + 1) = (m− r)! ertee
t−1 = (m− r)!b(r)(t) .

This proves the second identity (69). �

Congruence (62) has been generalized to the exponential polynomials [68],
and these congruences have been further generalized in [67] and then in [50]
to the r-Bell numbers and to the r-Bell polynomials.

Here, we are interested in the Clarke-Sved identity (61), obtained in [22]
and generalized in [41], and in the related identity (60). We give an extension of
these formulas to the generalized derangement numbers and to the generalized
rencontres polynomials.

Given an r-set R, let MapR be the species of maps from R, i.e., the species
defined by MapR[S] = {f : R → S}, for every finite set S. Similarly, let SurR

be the species of surjective maps from R. Then, let F
(m)
R be the species defined,

for every finite set S, by

F
(m)
R [S] = { (f, σ) ∈ MapR[S]×Perm(m)[S] : Imf ⊆ S ∩ Fix(σ) } .

The species F
(m)
R can be decomposed in two different ways, as proved in the

following theorem.

Th e o r em 18. We have the relations

F
(m)
R = MapR ·Der(m)(70)
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F
(m)
R = SurR ·Perm(m) .(71)

Equivalently, we have the relation

(72) MapR ·Der(m) = SurR ·Perm(m)

and the identity

(73)

n
∑

k=0

(

n

k

)

krd
(m)
n−k = m!n!

min(n,r)
∑

k=0

{

r

k

}(

m+ n− k

m

)

.

P r o o f. To give a structure of species F
(m)
R on a finite set S means to give

a map f : R → S and an m-permutation σ on S such that the image of f is
contained in the set of fixed points of σ in S. This is equivalent to give a triple
(I, g, δ), where I is a subset of S (I = S ∩ Fix(σ)), g is a map from R to I and
δ is an m-derangement on S \ I. Hence, we have the relation

F
(m)
R [S] =

∑

I⊆S

MapR[I]×Der(m)[S \ I]

which is equivalent to relation (70).

Equivalently, to give a structure (f, σ) of species F
(m)
R on a finite set S

means to give a triple (I, g, σ′), where I is a subset of S such that I ⊆ S∩Fix(σ)
(I = Imf), g is a surjective map from R to I and σ′ is an m-permutation of
S \ I (the restriction of σ to (S \ I) +M). This implies relation (71).

From relations (70) and (71) we have relation (72). Finally, by evaluating
such a relation on an n-set, we have identity (73). �

For m = 0 and r ≤ n, identity (73) reduces to identity (60). Now, to obtain
an extension of identity (61), we can proceed as follows. Given an r-set R, let

G
(m)
R be the species defined, for every finite set S, by

G
(m)
R [S] = { (f, σ) ∈ MapR[S]×Perm(m)[S] : Imf ⊆ S \ Fix(σ) } .

This species can be decomposed as follows.

T h e o r em 19. We have the relation

(74) G
(m)
R = Exp · (MapR �Der(m)) .

P r o o f. To give a structure of species G
(m)
R on a finite set S means to give

a map f : R → S and an m-permutation σ on S such that the image of f is
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contained in the set of non-fixed points of σ belonging to S. This is equivalent
to give a triple (I, g, δ), where I is a subset of S (I = Fix(σ)), g is a map from R
to S \I and δ is an m-derangement of S \I (the restriction of σ to (S \I)+M).
So, we have

G
(m)
R [S] =

∑

I⊆S

Exp[I]×MapR[S \ I]×Der(m)[S \ I]

=
∑

I⊆S

Exp[I]× (MapR �Der(m))[S \ I]

from which we have relation (74). �

By Theorems 18 and 19, we have the following result.

T h e o r em 20. We have the identity

(75)

n
∑

k=0

(

n

k

)

krd
(m)
k = m!n!

r
∑

k=0

(

r

k

)

(−1)knr−k

min(n,k)
∑

i=0

{

k

i

}(

m+ n− i

m

)

.

P r o o f. The left-hand side of identity (75) is an immediate consequence of
relation (74) when it is evaluated on an n-set. To obtain the right-hand side

of (75), we determine the size of G
(m)
R [S] by using the principle of inclusion-

exclusion. Let S be an n-set and let σ be an m-permutation on S. Then, let

G
(m)
R,σ [S] = {f ∈ MapR[S] : (f, σ) ∈ G

(m)
R [S]}. Let R = {x1, x2, . . . , xr} and

let Ai = {f ∈ MapR[S] : f(xi) ∈ S ∩ Fix(σ)}. Let [r] = {1, 2, . . . , r}. Then

|G(m)
R,σ [S]| = |A′

1 ∩A′
2 ∩ · · · ∩A′

r| =
∑

I⊆[r]

(−1)|I|

∣

∣

∣

∣

∣

⋂

i∈I
Ai

∣

∣

∣

∣

∣

.

The elements of the set
⋂

i∈I Ai are the functions f : R → S mapping each
element xi, with i ∈ I, to a fixed point of σ belonging to S, and mapping each
further element of R to an arbitrary element of S. This means that

∣

∣

∣

∣

∣

⋂

i∈I
Ai

∣

∣

∣

∣

∣

= |S ∩ Fix(σ)||I| nr−|I| .

So, we have

|G(m)
R,σ [S]| =

∑

I⊆[r]

(−1)|I||S ∩ Fix(σ)||I|nr−|I|
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=
r

∑

k=0

(

r

k

)

(−1)k|S ∩ Fix(σ)|knr−k

and

|G(m)
R [S]| =

∑

σ∈Perm(m)[S]

|G(m)
R,σ [S]|

=
∑

σ∈Perm(m)[S]

r
∑

k=0

(

r

k

)

(−1)k|S ∩ Fix(σ)|knr−k

=
r

∑

k=0

(

r

k

)

(−1)knr−k
∑

σ∈Perm(m)[S]

|S ∩ Fix(σ)|k .

By identity (73), we have

∑

σ∈Perm(m)[S]

|S ∩ Fix(σ)|k =
∑

I⊆S

∑

δ∈Der(m)[S\I]

|I|k

=

n
∑

i=0

(

n

i

)

ikd
(m)
n−i = m!n!

min(n,k)
∑

i=0

{

k

i

}(

m+ n− i

m

)

.

Consequently, we have

|G(m)
R [S]| = m!n!

r
∑

k=0

(

r

k

)

(−1)knr−k

min(n,k)
∑

i=0

{

k

i

}(

m+ n− i

m

)

.

This is the right-hand side of (75). �

For m = 0 and r ≤ n, identity (75) reduces to identity (61).

R ema r k 21. The results obtained in Theorems 18, 19 and 20 can be

generalized to the weighted case. Let F
(m)
R,x be the weighted species given by

the species F
(m)
R where each fixed point in S has weight x. Let MapR,x be

the weighted species of maps from R where every element of the codomain
has weight x. Similarly, let SurR,x be the weighted species of surjective maps
from R where every element of the codomain has weight x. Then, the results
obtained in Theorem 18 can be generalized to the relations

F
(m)
R,x = MapR,x ·Der(m) , F

(m)
R,x = SurR,x ·Ren(m)

x

MapR,x ·Der(m) = SurR,x ·Ren(m)
x
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and identity (73) becomes the polynomial identity

(76)
n
∑

k=0

(

n

k

)

krd
(m)
n−kx

k =

min(n,r)
∑

k=0

{

r

k

}(

n

k

)

k!xkD
(m)
n−k(x) .

Now, let G
(m)
R,x be the weighted species given by the species G

(m)
R where each

fixed point in S has weight x. The relation obtained in Theorem 19 becomes

(77) G
(m)
R,x = Expx · (MapR �Der(m)) .

Moreover, the proof of Theorem 20 can be easily extended to the weighted case.
Just, notice that

w(G
(m)
R [S]) =

r
∑

k=0

(

r

k

)

(−1)knr−k
∑

σ∈Perm(m)[S]

|S ∩ Fix(σ)|kx|S∩Fix(σ)|

and
∑

σ∈Perm(m)[S]

|S ∩ Fix(σ)|kx|S∩Fix(σ)|

=

n
∑

i=0

(

n

i

)

ikd
(m)
n−ix

i =

min(n,k)
∑

i=0

{

k

i

}(

n

i

)

i!xiD
(m)
n−i(x) .

So, in conclusion, identity (75) becomes

(78)
n
∑

k=0

(

n

k

)

krd
(m)
k xn−k =

r
∑

k=0

(

r

k

)

(−1)knr−k

min(n,k)
∑

i=0

{

k

i

}(

n

i

)

i!xiD
(m)
n−i(x) .

Identity (73) can also be generalized in the following other way. To do that,
we will use the differential operator Θ = t d

dt , for which we have [38, p. 310]

Θn =
n
∑

k=0

{

n

k

}

tkDk .

Furthermore, for an exponential series a(t) =
∑

n≥0 an
tn

n! , we have

(79) Θma(t) =
∑

n≥0

nman
tn

n!

and, in particular, we have

(80) Θn eαt = Sn(αt) e
αt

where Sn(x) =
∑n

k=0

{

n
k

}

xk is an exponential polynomial [62, p. 63].
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Th e o r em 22. We have the identity

(81)

n
∑

k=0

(

n

k

)

kr(1− x)kD
(m)
n−k(x) = m!n!

min(n,r)
∑

k=0

{

r

k

}(

m+ n− k

m

)

(1− x)k .

P r o o f. By series (8) and formula (80), the exponential generating series
of the left-hand side of identity (81) is

∑

n≥0

[

n
∑

k=0

(

n

k

)

kr(1− x)kD
(m)
n−k(x)

]

tn

n!
=

∑

n≥0

nr(1− x)n
tn

n!
·
∑

n≥0

D(m)
n (x)

tn

n!

= (Θre(1−x)t) ·D(m)(x; t) = Sr((1− x)t) e(1−x)t · m!e(x−1)t

(1− t)m+1

= Sr((1− x)t)
m!

(1− t)m+1
= m!

r
∑

k=0

{

r

k

}

(1− x)k
tk

(1− t)m+1

= m!
r

∑

k=0

{

r

k

}

(1− x)k
∑

n≥k

(

n+m− k

m

)

tn

=
∑

n≥0



m!n!

min(n,r)
∑

k=0

{

r

k

}(

n+m− k

m

)

(1− x)k





tn

n!
.

Taking the coefficients of tn

n! in the first and last series, we get identity (81). �

Identities (76) and (81) can be generalized to the polynomials associated
with the enriched partitions. Indeed, we have the following result.

T h e o r em 23. Let F be a species with F[∅] = ∅ and |F[{∗}]| = 1. Then,
we have the identities

n
∑

k=0

(

n

k

)

krp̃Fn−kx
k =

min(n,r)
∑

k=0

{

r

k

}(

n

k

)

k!xkpFn−k(x)(82)

n
∑

k=0

(

n

k

)

kr(1− x)kpFn−k(x) =

min(n,r)
∑

k=0

{

r

k

}(

n

k

)

k!pFn−k · (1− x)k .(83)

P r o o f. By series (12) and (14) and by formulas (79) and (80), the expo-
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nential generating series of the left-hand side of identity (82) is

∑

n≥0

[

n
∑

k=0

(

n

k

)

krp̃Fn−kx
k

]

tn

n!
=

∑

n≥0

nrxn
tn

n!
·
∑

n≥0

p̃Fn
tn

n!
= (Θrext) · p̃Fn (t)

= Sr(xt) e
xt · ef(t)−t = Sr(xt) p

F(x; t) =

r
∑

k=0

{

r

k

}

xk tkpF(x; t)

=
r

∑

k=0

{

r

k

}

xk
∑

n≥k

(

n

k

)

k!pFn−k(x)
tn

n!
=

∑

n≥0





min(n,r)
∑

k=0

{

r

k

}(

n

k

)

k!xkpFn−k(x)





tn

n!
.

Taking the coefficients of tn

n! in the first and last series, we have identity (82).
Similarly, by series (14) and by formulas (79) and (80), the exponential

generating series of the left-hand side of identity (83) is

∑

n≥0

[

n
∑

k=0

(

n

k

)

kr(1− x)kpFn−k(x)

]

tn

n!
=

∑

n≥0

nr(1− x)n
tn

n!
·
∑

n≥0

pFn (x)
tn

n!

= (Θre(1−x)t) · pFn (x; t) = Sr((1− x)t) e(1−x)t · ef(t) e(x−1)t

= Sr((1− x)t) ef(t) = Sr((1− x)t) pF(t) =

r
∑

k=0

{

r

k

}

(1− x)k tkpF(t)

=
r

∑

k=0

{

r

k

}

(1− x)k
∑

n≥k

(

n

k

)

k!pFn−k

tn

n!
=

∑

n≥0

[

r
∑

k=0

{

r

k

}(

n

k

)

k!pFn−k(1− x)k

]

tn

n!
.

Taking the coefficients of tn

n! in the first and last series, we get identity (83). �

Finally, for the generalized arrangement numbers, we have the following
result.

T h e o r em 24. We have the identities

n
∑

k=0

(

n

k

)

2kkrd
(m)
n−k =

min(n,r)
∑

k=0

{

r

k

}(

n

k

)

k! 2ka
(m)
n−k(84)

n
∑

k=0

(

n

k

)

2n−kkrd
(m)
k =

r
∑

k=0

(

r

k

)

(−1)knr−k

min(n,k)
∑

i=0

{

k

i

}(

n

i

)

i! 2ia
(m)
n−i(85)

n
∑

k=0

(

n

k

)

(−1)kkra
(m)
n−k = m!n!

min(n,r)
∑

k=0

{

r

k

}(

m+ n− k

m

)

(−1)k .(86)
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P r o o f. By formula (55), just set x = 2 in identities (76), (78) and (81). �

For r = 0, both identities (84) and (85) reduce to the first identity in (49).
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