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Partially complex ranks for real projective varieties

Abstract. Let X(C) ⊂ Pr(C) be an integral non-degenerate variety
defined over R. For any q ∈ Pr(R) we study the existence of S ⊂
X(C) with small cardinality, invariant for the complex conjugation and
with q contained in the real linear space spanned by S. We discuss the
advantages of these additive decompositions with respect to the X(R)-
rank, i.e. the rank of q with respect to X(R). We describe the case of
hypersurfaces and Veronese varieties.
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1 - Introduction

In recent years a lot of effort is devoted to the study of secant varieties of
projective varieties which are defined over R ([4,7,9,10,11,23,24]). As in [7]
a label is a pair (a, b) ∈ N2 \ {(0, 0)}. The weight of a label (a, b) is the integer
2a+ b. To know a label it is sufficient to know its weight and one of its entries.
Let σ : Pr(C) → Pr(C) denote the complex conjugation. Let X(C) ⊂ Pr(C) be
an integral and non-degenerate complex projective variety. The pair consisting
of X(C) and the embedding X(C) →֒ Pr(C) is defined over R if and only
if σ(X(C)) = X(C) (the reader may take the latter as the definition of a
real embedded variety). Note that Pr(R) = {x ∈ Pr(C) | σ(x) = x} and
X(R) = X(C) ∩ Pr(R) = {x ∈ X(C) | σ(x) = x}.

D e f i n i t i o n 1.1. A finite set S ⊂ X(C), S �= ∅, is said to have a label

(resp. to have (a, b) as its label, resp. to have a label of weight k) if σ(S) = S
(resp. σ(S) = S, b = |S ∩X(R)| and |S| = 2a+ b, resp. σ(S) = S and |S| = k).
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For any finite subset S ⊂ X(C) let �S�C denote the minimal complex linear
subspace of Pr(C) containing S. Set �S�R := �S�C∩Pr(R). Note the σ(�S�C) =
�S�C if σ(S) = S. Thus dimC�S�C = dimR�S�R if σ(S) = S. For any integer
k > 0 the k-secant variety σk(X(C)) of X(C) is the closure in Pr(C) of all linear
spaces �S�C with S ⊂ X(C) and |S| = k. If X(C) ⊂ Pr(C) is defined over R,
then the variety σk(X(C)) is defined over R and σk(X(C)) ∩ Pr(R) is the set
σk(X(C))(R) of the real points of σk(X(C)). Quite often σk(X(C))(R) is much
bigger than the set (sometimes called σk(X(R)) which is the closure in Pr(R)
of all points with X(R)-rank k (see Observation 4 in Remark 2.2, Example 2.3
and Remark 1.3). To see in a concrete example how to use labels we give the
following example.

P r o p o s i t i o n 1.2. Let X(C) ⊂ Pn+1(C) be an integral hypersurface de-

fined over R. Every q ∈ Pn+1(R) has either (1, 0) or (0, 2) or (0, 1) as a label.

Rema r k 1.3. Take X(C) as in Proposition 1.2. The proposition shows
that each q ∈ Pn+1(R) has a label with weight equal to rX(C)(q). In general not
all points of Pr+1(R) \X(R) have real rank 2, even when X(R) is Zariski dense
in X(C) ([23, 24]). Compare the very interesting geometry in [9, 11, 23, 24]
with the very simple description given by Proposition 1.2.

To show that labels help to get cheap additive decompositions of “ general ”
points of Pr(R) (or of σk(X(C))(R)), i.e. all except a part with smaller real
dimension (and in particular smaller Hausdorff dimension) we prove the fol-
lowing Theorem 1.4. Let Xreg(C) denote the set of smooth points of X(C).
Set Xreg(R) := Xreg(C) ∩X(R). Since X(C) is an integral variety, Xreg(C) is
a connected complex manifold and dimXreg(C) = dimX(C). If Xreg(R) �= ∅,
then Xreg(R) is a real analytic manifold of real dimension dimXreg(C), which is
Zariski dense in Xreg(C) (Remark 2.1), but closed in Xreg(C) in the euclidean
topology. We recall that generic uniqueness holds for a secant variety σk(X(C))
if for a general q ∈ σk(X(C)) there is a unique set S ⊂ X(C) such that |S| = k
and q ∈ �S�; here “general” means “for all q in a non-empty Zariski open subset
of σk(X(C))”, but to test this condition it is sufficient to prove it for all points
q of a non-empty open subset of σk(X(C)) for the euclidean topology.

T h e o r em 1.4. Let X(C) ⊂ Pr(C) be an integral and non-degenerate vari-

ety defined over R and such that Xreg(R) �= ∅. Let g be the minimal integer such

that σg(X(C)) = Pr(C). Assume that generic uniqueness holds for σg−1(X(C)).
Then there exists an open subset U ⊂ Pr(R) (for the Zariski topology) such that

dimPr(R) \U ≤ r− 1 (and in particular Pr(R) \U has measure 0 and contains

no euclidean open subset) and each q ∈ U has a label of weight g + 1.
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The main application of Theorem 1.4 is whenX(C) is a Veronese embedding
of Pn. Let νd : Pn(C) → Pr, r := −1+

(

n+d
n

)

, be the order d Veronese embedding
of Pn, i.e. the embedding associated to the vector space SdCn+1 of all homoge-
neous degree d complex polynomials in n+1 variables. Set X(C) := νd(Pn(C)).
In this case for any finite S ⊂ Pn(C) the linear space �νd(S)�C is the C-linear
span of all ℓdp, where p ∈ S and ℓp is the linear form whose equivalence class
corresponds to p ∈ Pn(C). Both X(C) and the embedding X(C) →֒ Pn(C) are
defined over R. If d is odd and S ⊂ Pn(R) (with |S| minimal) the interpretation
above gives the definition of X(R)-rank. If d is even we allow signs, i.e. to de-
fine the X(R)-rank or real rank of f ∈ SdRn+1 we allow as addenda ±ℓdp. As an
immediate consequence of Theorem 1.4 and taking r := g − 1 in [18, Theorem
1.1] we get the following result.

T h e o r em 1.5. Fix integers n ≥ 1 and d ≥ 3. Assume (n, d) /∈ {(2, 6),
(3, 4), (5, 3)}. Set r := −1+

(

n+d
n

)

and g := ⌈(r+1)/(n+1)⌉. Let X(C) ⊂ Pr(C)
be the order d Veronese embedding. Let B be the set of x ∈ Pn(R) without a

label of weight g + 1. Then B is contained in a real hypersurface of Pr(R) and

in particular it has measure 0 and contains no non-zero euclidean open subset.

We stress that our bounds do not depend on the real algebraic geometry of
X(R) or X(C). In our opinion they give a very strong minimal way (minimal
number of real parameters) to represents almost all Pr(R) using finitely many
charts with minimal number of parameters. The number of needed charts is
upper bounded in an explicit way. Easy examples (the real rational normal
curve) shows that the bound is sharp.

If dimX(C) = 1 generic uniqueness always holds over C for any submaxi-
mal secant variety ( [16, Corollary 2.8]) and hence as an easy consequence of
Theorem 1.4 we get the following result.

P r o p o s i t i o n 1.6. Let X(C) ⊂ Pr(C) be an integral and non-degenerate

curve defined over R and with X(R) infinite. The set of all p ∈ Pr(R) without
a label of weight ⌊(r + 5)/2⌋ has real dimension < r.

We extend Theorem 1.4 to arbitrary secant varieties in the following way.

T h e o r em 1.7. Let X(C) ⊂ Pr(C) be an integral and non-degenerate va-

riety defined over R and such that Xreg(R) �= ∅. Fix an integer k ≥ 2 such that

generic uniqueness holds for σk−1(X(C)). Then there exists a Zariski open sub-

set U ⊂ σk(X(C))(R) such that dimR σk(X(C))(R)\U ≤ dimR σk(X(C))(R)−1
and each q ∈ U has a label of weight k + 1.

We recall that if dimX(C) = n and σk+n−2(X(C)) has dimension (k + n−
2)(n+1)−1, then generic uniqueness holds for σk−1(X(C)) ([8, Theorem 5.1]).
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Thus Theorem 1.7 may be applied in a huge number of cases ([2,5,13,17,18,22];
see [8] for a partial, but longer, list). In particular it applies to several Segre
embeddings of multiprojective spaces, i.e. to tensors, and of Segre-Veronese
embeddings of a multiprojective space, i.e. to partially symmetric tensors. We
mention that if a > b > 0 and generic uniqueness holds for σa(X(C)), then
it holds for σb(X(C)) ([8, Proposition 2.3]) and in particular it holds for the
Veronese embeddings of a projective space, except for a very short list. The
drawback of Theorem 1.7 is that for these examples it covers just one case not
covered in [7]. Indeed if generic uniqueness holds for σk(X(C)) it is sufficient
to use labels of weight k by [7, Theorem 3] and all of them are necessary, since
different labels cover disjoint non-empty euclidean open subsets.

R ema r k 1.8. We explain here why we think that our approach is compu-
tationally promising. We just consider Pr(R), but Theorem 1.7 may be used for
the real parts of arbitrary k-secants varieties. Let g be the first positive integer
such that σg(X(C)) = Pr(C). For each q ∈ Pr(R) let rX(R)(q) denote the small-
est cardinality of a set S ⊂ X(R) such that q ∈ �S�R ( [3,4,7,9,10,11,19,24]).
An integer x is a typical rank of X(R) if there is a non-empty open subset ∆x

for the euclidean topology such that rX(R)(q) = x for all q ∈ ∆x. Let E be
the set of all typical ranks of X(R). Taking each ∆x maximal (i.e. taking the
interior for the euclidean topology of the set of all points with X(R)-rank x)
the set Pr(R) \∪x∈E∆x has measure zero and usually the game is to handle all
q ∈ ∪x∈E∆x. For each x ∈ E to describe each of ∆x we need a subset of X(R)
with cardinality x and hence roughly speaking we need xn real parameters,
where n := dimC X(C) (unless of course we know that a much smaller subset
of X(R)x will do, but each case needs a detailed study to restrict the subsets of
X(R) with cardinality x which must be used to give ∆x). Call g

′ the maximal
typical rank. Roughly speaking, we need ng′ real parameter for at least one
euclidean open subset of Pr(R). The integer g is the minimal typical rank. It is
known that g′ ≤ 2g and often g′ ≤ 2g−1 or g′ ≤ 2g−2 in some cases ([9,12]). In
Theorem 1.4 (and hence in its corollaries like Theorem 1.5 and Proposition 1.6),
we need to take labels of weight g+1. There are ⌊(g+1)/2⌋ labels of weight g+1
(resp. g). For any label (a, b) of weight 2a+ b we only need (2a+ b)n real pa-
rameters. Indeed we take b distinct points p1, . . . , pb ∈ X(R) and a sufficiently
general points q1, . . . , qa ∈ X(C) \X(R). The choice of q1, . . . , qa depends on
2an real parameters. Then we add the complex conjugate of q1, . . . , qa. On the
contrary, to use typical ranks we sometimes need almost 2gn real parameters
(e.g. for the typical ranks of bivariate polynomial of the bivariate polynomials,
a problem settled by G. Blekherman in [10]).

Using the labels we may also handle real varieties X(C) ⊂ Pr(R) with
Xreg(R) = ∅ (even with X(R) = ∅) for which the notion of typical rank (or
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even the real rank if X(R) = ∅) is not very interesting. We only consider
labels (a, 0), i.e. corresponding to a points of X(C) \X(R) and their complex
conjugates. We prove the following result.

T h e o r em 1.9. Assume Xreg(R) = ∅. Let g be the generic rank of X(C).
Fix an even integer k such that 4 ≤ k ≤ g. Assume that generic uniqueness

holds for σk−2(X(C)). Then σk(X(C))(R) is Zariski dense in σk(X(C)) and

there is an open subset U of σk(X(C))(R) such that σk(X(C))(R) \ U is a real

hypersurface of σk(X(C))(R) and for each q ∈ U there is S ⊂ Xreg(C) with

σ(S) = S, |S| = k + 2 and S of label (k+2
2 , 0).

Rema r k 1.10. Since we allow labels with weight > rX(C)(q) to cover q ∈
Pr(R), the open subsets covering almost all Pr(R) in Theorems 1.4 and 1.5 and
Proposition 1.6 (or almost all σk(X(C))(R) in Theorem 1.7) may overlap. In
Theorem 1.9 we have a unique label, but even in this case many q ∈ Pr(R) may
be in the linear span of different σ-invariant sets with label (k+2

2 , 0).

R ema r k 1.11. As in [7] the interested reader may work over an arbitrary
real closed field R instead of the field R, just using C := R(i) (an algebraic
closure of R) instead of C.

I thank the Referee for useful suggestion on the organization of the paper.

2 - The proofs

Rema r k 2.1. Let X(C) be an integral projective variety defined over R.
Set n := dimC X(C). The set X(R) is a closed subset of the compact r-
dimensional complex space Pr(R). Let Xreg(C) be the set of all smooth points
of X(C). Since X(C) is an integral variety, Xreg(C) is a non-empty connected
smooth n-dimensional complex manifold. LetM(C) be a smooth and connected
n-dimensional complex manifold defined over R and let M(R) denote the set
of all its real points. Assume M(R) �= ∅ and fix p ∈ M(R). Call AM(C),p the
local ring at p of the complex analytic manifold M(C). Obviously M(R) is
closed in M(C). It is well-known that M(R) is a smooth (but not necessarily
connected) differential manifold of pure dimension n ( [21, Ch. II, Corollary
4.11]). Now assume that M(C) is the complex analytic manifold associated to
a complex algebraic variety defined over R and that the real structure of the
complex analytic manifoldM(C) is the one induced by the assumption that this
algebraic variety is defined over R. The set M(R) is the same in the algebraic
and in the analytic category. We claim that M(R) is dense for the Zariski
topology of the algebraic variety M(C). To prove the claim it is sufficient to
prove that if f ∈ AM(C),p and if f vanishes at the germ of M(R) at p, then
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f = 0. Suppose for instance that M(C) (as an analytic manifold) contains
a euclidean neighborhood U of 0 ∈ C with the usual complex conjugation
involution with R and write ACn,0 for the local ring of convergent power series
in n complex variables. If f ∈ ACn,0 vanishes at each point of U ∩Rn, then all
coefficients of the power series of f vanishes (this is easily reduced to the case
n = 1 in which it is obvious that if f �= 0, then f has at most countably many
zeros). By [21, Proposition 4.2] the involution σ : M(C) → M(C) is uniquely
determined by the set of its fixed points (when non-empty).

R ema r k 2.2. Let X(C) ⊂ Pr(C) be an integral and non-degenerate va-
riety defined over R (no assumption on X(R) and/or Xreg(R)). Fix an even
integer k ≥ 2. Just to simplify the language we assume k ≤ r + 1, so that k
general points of X(C) are linearly independent. For any positive integer t set
X(C)(t) := {(a1, . . . , at) ∈ X(C)t | ai �= aj for all i �= j}. Since X(C)(t) is a
non-empty Zariski open subset of X(C)t, it is an irreducible quasi-projective
variety. It is invariant for the complex conjugation σ and the fixed point set
is just the set X(R)t ∩ X(C)(t). The symmetric group St of permutations of
{1, . . . , t} acts on X(C)(t) and this action commutes with the complex conju-
gation. Since X(C)(t) is a quasi-projective variety, there is a quasi-projective
variety X(C)(t) parametrizing the orbits for this action of St ( [25, p. 111]) and
X(C)(t) is defined over R. X(C)(t) parametrizes the subsets S ⊂ X(C) with
cardinality t. An element S ∈ X(C)(t) is an element of X(C)(t)(R) if and only
if σ(S) = S. Thus if q ∈ X(C) \X(R), the set {q, σ(q)} ∈ X(C)(2)(R), while
{q, σ(q)} � X(R). Thus for any even t ≥ 2 there are many S ∈ X(C)(t)(R)
which are not contained in X(R). If X(R) �= ∅ this is also true for all odd
integers t ≥ 3.

C l a im 1. For all even integers t ≥ 2 the set X(C)(t)(R) is Zariski dense
in X(C)(t).

P r o o f o f C l a im 1. Since X(C)(t) is an irreducible complex variety, to
prove Claim 1 it is sufficient to prove that the Zariski closure of X(C)(t)(R) in
X(C)(t) contains a non-empty euclidean open subset. First assume t = 2, take
some q ∈ Xreg(C) \Xreg(R) and a euclidean neighborhood U of q ∈ Xreg(C) \
Xreg(R). All points {q, σ(q)}, q ∈ U , are contained in X(C)(2)(R) and their
union give a euclidean neighborhood of {q, σ(q)} in X(C)(2). Now assume t ≥ 4
and set b := t/2. We take {q1, . . . , qb} ∈ X(C)(b) with the additional restriction
that qi �= σ(qj) for any i, j and use all these points {q1, . . . , qb, σ(q1), . . . , σ(qb) ∈
X(C)(t)(R).

O b s e r v a t i o n 1. If Xreg(R) �= ∅ for all integers t ≥ 1 the set X(C)(t)(R)
is Zariski dense in X(C)(t).

C l a im 2. The set σk(X(C))(R) is Zariski dense in σk(X(C)).
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P r o o f o f C l a im 2. For all integers t ≥ 1 set

X(C)�t� := {S ∈ X(C)(t) | S is linearly independent}.

X(C)�t�) is a non-empty Zariski open subset of X(C)(t) defined over R and
X(C)�t�(R) = X(C)�t� ∩ X(C)(t)(R). Thus X(C)�t�(R) is Zariski dense in
X(C)�t�. For each S ∈ X(C)�t�(R) the linear space �S�C is defined over R
and hence �S�C ∩ Pr(R) is a real projective space of dimension t − 1. Since k
is even, Claim 1 shows that the union of these real projective spaces is Zariski
dense in σk(X(C)).

O b s e r v a t i o n 2. Take X(C) with X(R) = ∅. Claim 2 gives that
σ2(X(C))(R) is large. For instance we may take as X(C) a smooth plane
conic X(C) ⊂ P2(C) defined over R but with no real point (the smooth conic
x20 + x21 + x22 = 0). We get σ2(X(C)) = P2(R). Proposition 1.2 shows that each
q ∈ P2(R) has (1, 0) as a label.

O b s e r v a t i o n 3. If Xreg(R) �= ∅, then σx(X(C))(R) is Zariski dense in
σx(X(C)) also for odd x. In many cases with x ≥ 2 it is larger than the union
of all linear spaces �S�R with S ⊂ X(R) and ♯(S) ≤ x.

O b s e r v a t i o n 4. Fix an integer x ≥ 2 and assume that each subset of
X(C) with cardinality 2x is linearly independent. This is sufficient to get that
each q ∈ Pr(C) with rX(C)(q) = x is in the linear span of a unique set S ⊂ X(C)
with cardinality x. Thus q ∈ Pr(R) is and only if σ(S) = S. Since x ≥ 2, many
such points q are not in the linear span of the union of x points of X(C).

E x amp l e 2.3. Let X(C) ⊂ P3(C) be the rational normal curve. Let
τ(X(C)) be its tangent develobale. By Sylvester’s theorem ([20]) a point q ∈
P3(C) has rX(C)(q) = 2 if and only if q ∈ P3(C) \ τ(X(C)). Fix q ∈ P3(R) \
τ(X(C)) ∩ P3(R) and fix S ⊂ X(C) such that q ∈ �S�C and |S| = 2. Since any
4 points of X(C) are linearly independent. Thus S is unique. Since σ(q) = q
we get σ(S) = S. Thus S has a label. Call U (resp. U ′) the set of all
q ∈ P3(R)\τ(X(C))∩P3(R) such that S has label (2, 0) (resp. (0, 1)). We have
U ∩U ′ = ∅, U ∪U ′ = P3(R) \ τ(X(C))∩P3(R) and U and U ′ are semialgebraic
sets of real dimension 3.

P r o o f o f P r o p o s i t i o n 1.2. If q ∈ X(R), then (1, 0) is a label for q. Fix
q ∈ Pn+1(R) \X(R). Let T (C) be the set of all lines L ⊂ Pn+1(C) containing
o. The set T (C) is an n-dimensional complex space. Since q ∈ Pn+1(R), T (C)
is the complexification of a real n-dimensional projective space T (R). For any
x ∈ Pn+1(R) \ {q} the lines spanned by {q, x} is an element of T (R). Since
q /∈ X(C), no element of T (C) is contained in X(C). The set of all L ∈ T (C)
tangent to X(C) is a proper closed algebraic subset ∆(C) ⊆ T (C) defined
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over R. Since Xreg(R) �= ∅ and each element of T (C) meets X(C), there is
o ∈ Xreg(R) such that the line L spanned by {q, o} is transversal to X(C). Set
d := deg(X(C)) and S := L∩X(C). Since L ∈ T (R), we have σ(S) = S. Since
L /∈ ∆, we have |S| = d. Since σ(S) = S, there is a set S′ ⊆ S such that
σ(S′) = S′ and |S′| = 2. The line L is spanned by S′. The set S′ has either
label (1, 0) or label (0, 2).

P r o o f o f T h e o r em 1.4. Set n := dimX(C). Since generic uniqueness
holds for the secant variety σg−1(X(C)), σg−1(X(C)) is not defective, i.e. it has
dimension (n + 1)(g − 1) − 1. Let V ⊂ σg−1(X(C))(R) be the set of all points
with a label of weight g−1. Since generic uniqueness holds for σg−1(X(C)), the
set σg−1(X(C)) \ V has real dimension < (n+ 1)(g − 1) ([7, Theorem 3]), i.e.,
since it is a semialgebraic set, it does not contain a non-empty open subset of
Pr(R) for the euclidean topology. A Zariski dense subset of Pr(C) is obtained
taking the union of all �{x, y}�C with x ∈ V and y ∈ X(C) \X(R) (Claims 1
and 2 of Remark 2.2). Thus we get a Zariski dense subset of Pr(C) taking the
union of all complex linear spaces �{x, y, σ(y)}�C. The complex linear space
�{x, y, σ(y)}�C is the linear span of σ-invariant set, i.e. a finite set with a label:
if x has (a, b) as one of its label, then we may take (a+ 1, b) as the label.

R ema r k 2.4. The proof of Theorem 1.4 shows that we may omit the label
(0, g + 1).

P r o o f o f T h e o r em 1.5. By [18, Theorem 1.1] generic uniqueness holds
for σg−1(X(C)), with the exceptions listed in the statement of Theorem 1.5.

P r o o f o f P r o p o s i t i o n 1.6. Since X(C) is a curve, its secant varieties
are non-degenerate ([1, Corollary 1.5], [15, Remark 3.1 (i)]). Thus if r is odd we
have σ(r+1)/2(X(C)) = Pr(C), while if r is even we have σ(r+2)/2(X(C)) = Pr(C)
and σr/2(X(C)) is a hypersurface of Pr(C). Thus in the set-up of Theorem 1.4
we have g = ⌊(r + 2)/2⌋. By [16, Corollary 2.8] generic uniqueness holds for
σ⌊r/2⌋(X(C)). Apply Theorem 1.4.

P r o o f o f T h e o r em 1.7. Use that σk(X(C)) is the join of σk−1(X(C))
and X(C).

P r o o f o f T h e o r em 1.9. Let W be a non-empty Zariski open subset of
σk−2(X(C)) such that for each q ∈ W there is a unique Sq ⊂ X(C) with
|Sq| = k − 2 and q ∈ �Sq�. The uniqueness of Sq gives σ(Sq) = Sq if q ∈
W ∩Pr(R). Restricting if necessary W we may assume that all Sq are contained
in Xreg. Thus Sq ∩ X(R) = ∅ for all q. Thus if q has a label, then the label
is of type (k2 − 1, 0). Then we take the join with 2 copies of X(C),i.e, to
some q ∈ W we associate all sets Sq ∪ {y, z, σ(y), σ(z)} ⊂ X(C) with y, z ∈
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X(C) \X(R), |{y, z, σ(y), σ(z)}| = 4 and Sq ∩ {y, z, σ(y), σ(z)} = ∅. Note that
Sq ∪ {y, z, σ(y), σ(z)} is a σ-invariant set with label (k2 + 1, 0).
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