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A four dimensional Jensen formula

Abstract. We prove a Jensen formula for slice-regular functions of one
quaternionic variable. The formula relates the value of the function and
of its first two derivatives at a point with its integral mean on a three
dimensional sphere centred at that point and with the disposition of its
zeros. The formula can be extended to semiregular slice functions.
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1 - Introduction and preliminaries

The aim of this note is to prove a Jensen formula for slice-regular functions
of one quaternionic variable. We show how the results obtained in [10] can be
applied to extend to any slice-regular function the formula proved by Altavilla
and Bisi in [1] for slice-preserving functions. The formula relates the value
of the function and of its first and second derivatives at a point on the real
axis, its integral mean on a three dimensional sphere centred at that point,
and the position of its zeros. The formula can be generalized to semiregular
slice functions, where also poles enter in the formula. See [2, Theorem 5.2] for
another Jensen-type formula for slice-regular functions, in which the integration
is performed on a two-dimensional slice of the domain.

Slice-regular functions constitute a recent function theory in several hy-
percomplex settings (see [4,5,6,8]). This class of functions was introduced by
Gentili and Struppa [5] for functions of one quaternionic variable. Let H denote
the skew field of quaternions, with basic elements i, j, k. For each quaternion
J in the sphere

S = {J ∈ H | J2 = −1} = {x1i+ x2j + x3k ∈ H | x21 + x22 + x23 = 1}
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of imaginary units, let CJ = �1, J� ≃ C be the subalgebra generated by J .
Then we have the “slice” decomposition

H =
�

J∈S

CJ , with CJ ∩ CK = R for every J,K ∈ S, J �= ±K.

A differentiable function f : Ω ⊆ H → H is called (left) slice-regular on Ω
if, for each J ∈ S, the restriction

f
|Ω∩CJ

: Ω ∩ CJ → H

is holomorphic with respect to the complex structure defined by left multipli-
cation by J . For example, polynomials f(x) =

�

m xmam with quaternionic
coefficients on the right are slice-regular on H and convergent power series are
slice-regular on an open ball centered at the origin.

Let x0, x1, x2, x3 denote the real components of a quaternion x = x0+x1i+
x2j+x3k. In the following, we use the *-algebra structure of H given by the R-
linear antiinvolution x �→ x̄ = x0−x1i−x2j−x3k. Let t(x) := x+ x̄ = 2Re(x)
be the trace of x and n(x) := xx̄ = x20 + x21 +x22 +x23 = |x|2 the norm of x. We
also set Im(x) = (x− x̄)/2 = x1i+ x2j + x3k.

Let H⊗RC be the algebra of complex quaternions, with elements w = a+ıb,
a, b ∈ H, ı2 = −1. Every quaternionic polynomial f(x) =

�

m xmam lifts to a
unique polynomial function F : C → H⊗RC which makes the following diagram
commutative for every J ∈ S:

C ≃ R⊗R C
F−−−−→ H⊗R C

ΦJ





�





�

ΦJ

H
f−−−−→ H

where ΦJ : H⊗RC → H is defined by ΦJ(a+ıb) := a+Jb. The lifted polynomial
is simply F (z) =

�

m zmam, with variable z = α+ ıβ ∈ C.
In this lifting, the usual product of polynomials with coefficients in H on one

fixed side (the one obtained by imposing that the indeterminate commutes with
the coefficients when two polynomials are multiplied together) corresponds to
the pointwise product in the algebra H⊗R C.

The remark made above about quaternionic polynomials suggests a way to
define H-valued functions on a class of open domains in H. Let D ⊆ C be a
set that is invariant with respect to complex conjugation. In H ⊗R C consider
the complex conjugation that maps w = a + ıb to w = a − ıb (a, b ∈ H). If a
function F : D → H ⊗R C satisfies F (z) = F (z) for every z ∈ D, then F is
called a stem function on D. Let ΩD be the circular subset of H defined by

ΩD =
�

J∈S

ΦJ(D).
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The stem function F = F1 + ıF2 : D → H⊗R C induces the (left) slice function

f = I(F ) : ΩD → H in the following way: if x = α + Jβ = ΦJ(z) ∈ ΩD ∩ CJ ,
then

f(x) = F1(z) + JF2(z),

where z = α+ ıβ.

The previous lifting suggests also the definition of the slice product of two
slice functions f = I(F ) and g = I(G). It is the slice function f · g = I(FG)
obtained by means of the product in the algebra H⊗RC. We recall the formula
that links the slice product to the quaternionic pointwise product: if f(x) = 0,
then (f · g)(x) = 0, while for every x such that f(x) �= 0 it holds (f · g)(x) =
f(x)g(f(x)−1xf(x)).

The function f = I(F ) is called slice-preserving if F1 and F2 are real-valued
(this is the case already considered by Fueter [3] for holomorphic F ). In this
case, f(x) = f(x) for each x ∈ ΩD, and the slice product f · g coincides with
the pointwise product of f and g for any slice function g.

The slice function f is called circular if F2 ≡ 0. In this case, if x = α+βJ ∈
H \ R, f(y) = f(x) for every y in the sphere Sx = α+ βS.

If the stem function F is holomorphic, the slice function f = I(F ) is called
(left) slice-regular. We shall denote by SR(ΩD) the right H-module of slice-
regular functions on ΩD. When the domain D intersects the real axis, this
definition of slice regularity is equivalent to the one proposed by Gentili and
Struppa [5]. This approach to slice regularity has been developed on any real
alternative *-algebra. See [6,7,8] for details and other references.

1.1 - The slice derivatives and the spherical operators

The commutative diagrams shown above suggest a natural definition of the

slice derivatives
∂f

∂x
,
∂f

∂xc
of a slice functions f . They are the slice functions

induced, respectively, by the derivatives
∂F

∂z
and

∂F

∂z
:

∂f

∂x
= I

(

∂F

∂z

)

and
∂f

∂xc
= I

(

∂F

∂z

)

.

With this notation a slice function is slice-regular if and only if
∂f

∂xc
= 0 and

if this is the case also the slice derivative
∂f

∂x
is slice-regular. These derivatives

satisfy the Leibniz formula for slice product of functions.
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We now recall from [6] two other operators that describe completely slice
functions. Let f = I(F ) be a slice function on ΩD, induced by the stem function
F = F1 + ıF2, with F1, F2 : D ⊆ C → H.

D e f i n i t i o n 1.1. The function f◦

s : ΩD → H, called spherical value of f ,
and the function f ′

s : ΩD \ R → H, called spherical derivative of f , are defined
as

f◦

s (x) :=
1

2
(f(x) + f(xc)) and f ′

s(x) :=
1

2
Im(x)−1(f(x)− f(xc)).

If x = α + βJ ∈ ΩD and z = α + ıβ ∈ D, then f◦

s (x) = F1(z) and
f ′

s(x) = β−1F2(z). Therefore f◦

s and f ′

s are slice functions, constant on every
set Sx = α + β S. Observe that on ΩD ∩ R, the spherical value of f coincides
with f . The functions f◦

s and f ′

s are slice-regular only if f is locally constant.
Moreover, the formula

f(x) = f◦

s (x) + Im(x)f ′

s(x)

holds for each x ∈ ΩD \ R. If F is of class C1, the formula holds also for
x ∈ ΩD ∩ R. In particular, if f is slice-regular, f ′

s extends to the real points of

ΩD with the values of the slice derivative
∂f

∂x
. The zero set Df of f ′

s is called

degenerate set of f (see [4, §7] for its properties). The spherical value and the
spherical derivatives satisfy the following Leibniz-type product rule (see [6, §5]):

(1) (f · g)′s = f ′

s · g◦s + f◦

s · g′s.

1.2 - Normal function and multiplicities of zeros

Given a slice function f = I(F ) : ΩD → H, with F = F1+ ıF2, its conjugate
function f c and its normal function N(f) are the slice functions defined by

f c = I(F c) = I(F c
1 + ıF c

2 ) and N(f) = f · f c = f c · f,

where F c
µ(z) = Fµ(z) for µ = 1, 2, z ∈ D. The adjective normal here is

justified by the fact that N(f) can be seen as the norm of f in the *-algebra
of slice functions with antiinvolution f �→ f c (in the literature, also the term
symmetrization is used for the normal function). Observe that at every real
point a ∈ ΩD∩R, f c(a) = f(a) and N(f)(a) = |f(a)|2. When f is slice-regular,
also f c and N(f) are slice-regular, with N(f) always slice-preserving (we refer
to [6, §6] for more details about these functions).

Let V (f) = {x ∈ ΩD | f(x) = 0} be the set of zeros of the slice function f .
We recall some of its basic properties (see [4,6]). The elements x ∈ V (f) can
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be of three types: real zeros (when x ∈ R), spherical zeros (when x �∈ R and
Sx ⊆ V (f)) or isolated nonreal zeros (when Sx �⊆ V (f)). For any slice function
f , it holds

V (N(f)) =
⋃

y∈V (f)

Sy.

For every f ∈ SR(ΩD), f �≡ 0, the set V (f) consists of isolated points (real or
not real) or isolated 2-spheres of the form Sx (with nonreal x).

D e f i n i t i o n 1.2. Let f ∈ SR(ΩD), f �≡ 0. Let ∆y(x) = N(x − y) be the
characteristic polynomial of y ∈ H. Given y ∈ V (f) and a non-negative integer
s, we say that y is a zero of f of total multiplicity s if ∆s

y divides N(f) and
∆s+1

y does not divide N(f) in SR(ΩD). We will denote the integer s by m̃f (y).

Note that the total multiplicity is well-defined thanks to [6, Corollary 23]. It
has the property: m̃N(f)(y) = 2m̃f (y) for every y ∈ V (f). This can be proved
as in [6, Theorem 26], where the argument deals with slice-regular polynomials
but it is valid for any slice-regular function (see also [4, Proposition 6.14]). A
more refined definition of multiplicity for zeros of f can be found in [4, §3.6].

1.3 - Slice-regularity and harmonicity

In this section we recall some results from [10] concerning the relation be-
tween slice-regularity and harmonicity with respect to the standard Laplacian
operator ∆4 of R4. The Cauchy-Riemann-Fueter operator

∂CRF =
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

factorizes ∆4, since it holds:

∂CRF∂CRF = ∂CRF∂CRF = ∆4,

where

∂CRF =
∂

∂x0
− i

∂

∂x1
− j

∂

∂x2
− k

∂

∂x3

is the conjugated operator.

For any i, j with 1 ≤ i < j ≤ 3, let Lij = xi
∂

∂xj
− xj

∂

∂xi
and let

Γ = −iL23 + jL13 − kL12 be the quaternionic spherical Dirac operator on
Im(H). The operators Lij are tangential differential operators for the spheres
Sx = α+ β S (β > 0) and the operator Γ factorizes the Laplace-Beltrami oper-
ator of the 2-sphere.
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P r o p o s i t i o n 1.1. ([10, Proposition 6.1]) Let Ω = ΩD be an open circular

domain in H. For every slice function f : Ω → H, of class C1(Ω), the following

formulas hold on Ω \ R:
(a) Γf = 2 Im(x)f ′

s.

(b) ∂CRF f − 2
∂f

∂xc
= −2f ′

s.

P r op o s i t i o n 1.2. ( [10, Corollary 6.2]) Let Ω = ΩD be an open circular

domain in H. Let f : Ω → H be a slice function of class C1(Ω). Then

(a) f is slice-regular if and only if ∂CRF f = −2f ′

s.

(b) ∂CRF f − 2
∂f

∂x
= 2f ′

s and 2
∂f ′

s

∂x
= ∂CRF f

′

s.

P r op o s i t i o n 1.3. ( [10, Theorem 6.3]) Let Ω = ΩD be an open circular

domain in H. If f : Ω → H is slice-regular, then it holds:

(a) The spherical derivative f ′

s is harmonic on Ω (i.e. its four real components

are harmonic).

(b) The following generalization of Fueter’s Theorem holds: ∂CRF∆4f = 0.
As a consequence, every slice-regular function is biharmonic.

2 - A four dimensional Jensen formula

In order to obtain the quaternionic version of Jensen formula, we need three
preliminary results. Before giving the statements, we clarify what we mean in
the following by log |g|, for a slice-preserving function g = I(G) = I(G1 + ıG2)
defined on Ω. Since G1 and G2 are real-valued, the function g induced by
the stem function G1 − ıG2 satisfies g(x) = g(x) for every x ∈ Ω. Note that
(g)′s = −g′s, a property we will use later. The function |g| induced by the
real-valued stem function (G2

1 + G2
2)

1/2 satisfies |g|(x) = |g(x)| for all x ∈ Ω.
Moreover, g · g = |g|2. Finally, the function log |g| = I

(

1

2
log(G2

1 +G2
2)
)

is a
circular, slice-preserving function on Ω\V (g), satisfying (log |g|)(x) = log |g(x)|
for every x ∈ Ω \ V (g).

The first result we need was proved in [1, Theorem 2.1] using results from
[10]. For completeness we give a proof here.

P r o p o s i t i o n 2.1. Let Ω = ΩD be an open circular domain in H. If

g : Ω → H is slice-regular and slice-preserving, then
∂

∂x
log |g| is slice-regular

and log |g| is biharmonic on Ω\V (g). In particular, this is true when g = N(f)
for any slice-regular function f : Ω → H.
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P r o o f. Let g = I(G) = I(G1 + ıG2) ∈ SR(Ω) be slice-preserving. Let
∆2 be the two-dimensional Laplacian. Since G : D → C is holomorphic,

∆2 log |G| = 0 where G does not vanish. Therefore
∂

∂z
log |G| is holomorphic

on D \ V (G), and
∂

∂x
log |g| = I( ∂

∂z
log |G|) is slice-regular. Since log |g| is a

circular slice function, its spherical derivative vanishes and then from point (b)
of Proposition 1.2

∂

∂x
log |g| = 1

2
∂CRF log |g|.

From point (b) of Proposition 1.3 we get

0 = ∂CRF ∆4

(

∂

∂x
log |g|

)

=
1

2
∂CRF∆4∂CRF log |g| = 1

2
∆2

4 log |g|,

i.e. log |g| is biharmonic. �

Rema r k 2.1. If g : Ω → H is slice-regular but not slice-preserving, then
the function log |g|, mapping x to log |g(x)|, can be not biharmonic. This
can happen also if g is one-slice-preserving (see [1, Remark 2.8]). We recall
that a slice function f is one-slice-preserving if there exists J ∈ S such that
f(Ω ∩ CJ) ⊆ CJ .

P r o p o s i t i o n 2.2. Let Ω be an open circular domain in H with Ω ∋ 0. If

f : Ω → H is slice-regular and f(0) �= 0, then

∆4 log |N(f)|x=0 = −4Re

(

f(0)−1∂
2f

∂x2
(0)

)

+ 4Re

(

(

f(0)−1∂f

∂x
(0)

)2
)

.

P r o o f. In this proof we denote the spherical value and the spherical
derivative of a slice function f by vsf and ∂sf respectively. Let g = I(G) ∈
SR(Ω) be slice-preserving. Using Propositions 1.2 and 2.1, we get, outside
V (g),

∆4(log |g|2) = ∂CRF∂CRF (log |g|2) = 2 ∂CRF

∂

∂x
(log |g|2) = −4 ∂s

(

∂

∂x
(log |g|2)

)

.

Since g is slice-regular, g is anti-regular (i.e. in the kernel of
∂

∂x
) and it holds,

by the Leibniz rule for slice product,

∂

∂x
(log |g|2) = I

(

∂

∂z
(log |G|2)

)

= I
(

1

|G|2
∂

∂z
(|G|2)

)

=
1

|g|2
∂

∂x
(g ·ḡ) = 1

|g|2
∂g

∂x
·ḡ.
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Therefore

∆4(log |g|2) = −4 ∂s

(

1

|g|2

∂g

∂x
· ḡ

)

.

Since |g|−2 is circular, from the Leibniz rule (1) for spherical value and derivative
we get

(2) ∆4(log |g|2) = − 4

|g|2 ∂s

(

∂g

∂x
· ḡ

)

= − 4

|g|2
(

∂s(
∂g

∂x
) · vsḡ + vs(

∂g

∂x
) · ∂sḡ

)

.

Now we set g = N(f). Firstly we must compute ∂s(
∂

∂x
(f ·f c)) ·vs(N(f)). Since

∂

∂x
(f · f c) =

∂f

∂x
· f c + f · ∂f

c

∂x
, we compute separately the two terms at x = 0.

The first one is
(

∂s

(

∂f

∂x
· f c

)

· vs(N(f))

)

|x=0

=

(

∂

∂x

(

∂f

∂x
· f c

))

|x=0

|f(0)|2,

where we used the fact that the spherical derivative extends to R as the slice
derivative. Then

(3)

(

∂s

(

∂f

∂x
· f c

)

· vs(N(f))

)

|x=0

=

(

∂2f

∂x2
(0) f(0) +

∣

∣

∣

∣

∂f

∂x
(0)

∣

∣

∣

∣

2
)

|f(0)|2.

The second term is
(

∂s

(

f · ∂f
c

∂x

)

· vs(N(f))

)

|x=0

=

(

∂

∂x

(

f · ∂f
c

∂x

))

|x=0

|f(0)|2

=

(

∣

∣

∣

∣

∂f

∂x
(0)

∣

∣

∣

∣

2

+ f(0)
∂2f

∂x2
(0)

)

|f(0)|2.(4)

It remains to compute the two terms coming from vs

(

∂

∂x
(f · f c)

)

· ∂sN(f).

Since ∂sN(f)
|x=0

= −∂sN(f)
|x=0

= − ∂

∂x
(f · f c)|x=0, the first one is equal to

(5)

(

vs(
∂f

∂x
· f c) · ∂sN(f)

)

|x=0

= −2
∂f

∂x
(0)f(0) Re

(

f(0)
∂f

∂x
(0)

)

,

whilst the second one is

(6)

(

vs(f · ∂f
c

∂x
) · ∂sN(f)

)

|x=0

= −2f(0)
∂f

∂x
(0) Re

(

f(0)
∂f

∂x
(0)

)

.
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Putting it all together, using (3), (4), (5), (6) in (2), we get

∆4 log |N(f)|x=0 =
1

2
∆4(log |N(f)|2)

|x=0

= − 2

|f(0)|2

�

2Re

�

f(0)
∂2f

∂x2
(0)

�

+ 2

�

�

�

�

∂f

∂x
(0)

�

�

�

�

2
�

− 2

|f(0)|4

�

−4

�

Re

�

f(0)
∂f

∂x
(0)

��2
�

= −4Re

�

f(0)−1
∂2f

∂x2
(0)

�

+ 4Re

�

�

f(0)−1
∂f

∂x
(0)

�2
�

,

where we used the fact that, for any a ∈ H, it holds−2|a|2+4Re(a)2 = 2Re(a2).
�

Rema r k 2.2. The formula of the previous proposition is still valid when
x = 0 is replaced by any real point x where f(x) �= 0.

Given a nonconstant function f ∈ SR(Ω), let Tf : Ω \ V (N(f)) → Ω \
V (N(f)) be the diffeomorphism defined by Tf (x) = f c(x)−1xf c(x) (see e.g. [4,
Proposition 5.32]). Note that Tf and its inverse Tfc map any sphere Sx onto
itself. Let Sf : Ω \ V (N(f)) → H be the map defined by

Sf (x) =







f ′

s(x)f(x)
−1xf(x)f ′

s(x)
−1 if x �∈ Df ,

x if x ∈ Df .

Observe that if f is slice-preserving, then Sf (x) = x for every x.

P r o p o s i t i o n 2.3. Let f ∈ SR(Ω) be nonconstant. The map Sf is a

diffeomorphism of the open set Ω \ (V (N(f)) ∪Df ).

P r o o f. Let x ∈ Ω \ (V (N(f))∪Df ) and y = Sf (x). Since y ∈ Sx, we have
f ′

s(y) = f ′

s(x) and then

f ′

s(y)
−1yf ′

s(y) = f(x)−1xf(x).

Since

f(x)x f(x)
−1

= n(f(x))f(x)−1x
f(x)

n(f(x))
= Tfc(x),

it holds Tfc(x) = f ′

s(y)
−1yf ′

s(y). Therefore x = Tf

�

f ′

s(y)
−1yf ′

s(y)
�

and the

map y �→ Tf

�

f ′

s(y)
−1yf ′

s(y)
�

is the inverse of Sf on Ω \ (V (N(f)) ∪Df ). �
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Let B(0, r) be an open ball with centre 0 and radius r with closure contained
in Ω and let f ∈ SR(Ω) be nonconstant. Assume that f �= 0 on ∂B(0, r). Under
this condition, the map Sf applies ∂B(0, r) onto itself. From what recalled in
§1.2, the zero set V (f) ∩ B(0, r) consists of a finite number of isolated real
points r1, . . . , rm, of isolated spheres Sx1

, . . . ,Sxt and isolated nonreal points
at+1, . . . , al. We choose one spherical zero ai in every sphere Sxi

, for i = 1, . . . , t.
We are now able to state the four-dimensional Jensen formula for slice-

regular functions.

T h e o r em 2.1. Let Ω be an open circular domain in H. Let Br = B(0, r)
be an open ball whose closure is contained in Ω. If f : Ω → H is slice-regular

and not constant, f(0) �= 0 and f �= 0 on ∂Br, then it holds:

log |f(0)|+ r2

4
Re

(

(

f(0)−1 ∂f

∂x
(0)

)2
)

− r2

4
Re

(

f(0)−1 ∂
2f

∂x2
(0)

)

=

=
1

2|∂Br|

∫

∂Br

log |f(x)|dσ(x) + 1

2|∂Br|

∫

∂Br

log |f ◦ Sf (x)|dσ(x)

−
m
∑

k=1

(

log
r

rk
+

r4k − r4

4 r2r2
k

)

−
l

∑

i=1

(

2 log
r

|ai|
+

|ai|4 − r4

4 r2|ai|4
(

t(ai)
2 − 2|ai|2

)

)

where the first sum ranges over the real zeros r1, . . . , rm of f in Br and the

second one over the non-real zeros a1, . . . , al of f in Br, repeated according to

their total multiplicities.

P r o o f. Let x = α + Jβ ∈ ∂Br \Df and let z = α + ıβ. Since f(x) �= 0,
N(f)(x) = f(x)f c(Tfc(x)). Moreover, if f = I(F ) = I(F1 + ıF2) and J ′ =
f(x)−1Jf(x), then Tfc(x) = f(x)−1xf(x) = α+ J ′β and

f c(Tfc(x)) = F1(z) + J ′F2(z) = F1(z) − F2(z)J ′ = F1(z) +KF2(z),

where K = −F2(z)J
′F2(z)

−1 = −f ′

s(x)J
′f ′

s(x)
−1 ∈ S. Therefore f c(Tfc(x)) =

f(Sf (x)) and then

log |N(f)(x)| = log |f(x)|+ log |f(Sf (x))| on ∂Br \Df .

On the other hand, if x ∈ ∂Br ∩Df then N(f)(x) = f(x)f c(x) = f(x)f(x) and

|f(x)| = |f(x)| = |f(x̄)|. Therefore

(7) log |N(f)(x)| = log |f(x)|+ log |f(Sf (x))| on ∂Br.

The Jensen formula for f follows now from the formula proved in [1, Theo-
rem 3.3] applied to the slice-preserving regular function N(f), using equation
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(7), the formula N(f)(0) = |f(0)|2, Proposition 2.2 and the fact that the total
multiplicities of zeros of f are one half the total multiplicities of them as zeros
of N(f). �

Rema r k 2.3. If f has no zeros in Br, the previous Jensen formula is a
consequence of the mean value formula for biharmonic functions applied to
log |N(f)|. In this case the last two sums in the formula are missing.

The Jensen formula can be extended to semiregular functions, the analogues
of meromorphic functions in the quaternionic setting (see [4, §5] and [9] for def-
initions and properties of these functions). In the slice-preserving case, Jensen
formula formula for semiregular functions was proved in [1].

Let Ω be an open circular domain in H and let Br = B(0, r) be an open ball
whose closure is contained in Ω. Let f : Ω → H be semiregular. We denote by
r1, . . . rm the real zeros of f in Br, by a1, . . . , al the non-real zeros of f in Br (as
above, in case of spherical zeros we choose one spherical zero in every sphere),
repeated according to their total multiplicities.

The poles of f can be real or spherical. In the latter case, if Sx is a spherical
pole, the order ordf (y) of the points y ∈ Sy are all equal, except possibly for
one point of lesser order (see [4, Theorem 5.28] and [9, Theorem 9.4]). We
denote by p1, . . . , pn the real poles of f in Br, repeated according to their
order. Let Sy1 , . . . ,Syp be the spherical poles of f in Br of the first type, having
the property that all points in Syi have the same order. Let Sz1 , . . . ,Szq be the
spherical poles of f in Br of the second type, with the points zj ∈ Szj chosen
such that ordf (zj) < maxz∈Szj ordf (z). Let if (zj) > 0 denote the isolated

multiplicity of f at zj for j = 1, . . . , q, as in [11, Definition 3.12]. Set

s1 =
1

2

p
∑

i=1

ordf (Syi), s2 =
1

2

q
∑

j=1

ordf (Szj ), s = s1 + s2,

where ordf (Sx) is the spherical order of f at Sx (which is two times the max-
imal order of the points of the sphere [9, Theorem 9.4]). It holds if (zj) ≥
1

2
ordf (Szj)− ordf (zj) > 0 for every j = 1, . . . , q ( [4, Proposition 5.31]).
Choose points b1, . . . , bs1 ∈ ∪p

i=1
Syi and bs1+1, . . . , bs ∈ ∪q

j=1
Szj (one point in

each sphere, repeated according to one-half the spherical order of the pole). Let
al+1, . . . , al+q′ denote the points z1, . . . , zq, repeated according to their isolated
multiplicities (q′ =

∑q
j=1

if (zj)).
With these notations, we can state the Jensen formula for semiregular func-

tions.

T h e o r em 2.2. Let Ω be an open circular domain in H and let Br = B(0, r)
be an open ball whose closure is contained in Ω. Let f : Ω → H be semiregular
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and not constant. Assume that 0 is not a pole nor a zero of f and ∂Br does

not contain zeros or poles of f . Then it holds:

log |f(0)|+ r2

4
Re

(

(

f(0)−1∂f

∂x
(0)

)2
)

− r2

4
Re

(

f(0)−1 ∂
2f

∂x2
(0)

)

=
1

2|∂Br|

∫

∂Br

log |f(x)|dσ(x) + 1

2|∂Br|

∫

∂Br

log |f ◦ Sf (x)|dσ(x)

−
m
∑

k=1

(

log
r

rk
+

r4k − r4

4 r2r2k

)

−
l+q′
∑

i=1

(

2 log
r

|ai|
+

|ai|4 − r4

4 r2|ai|4
(

t(ai)
2 − 2|ai|2

)

)

+
n
∑

k=1

(

log
r

pk
+

p4k − r4

4 r2p2
k

)

+
s

∑

i=1

(

2 log
r

|bi|
+

|bi|4 − r4

4 r2|bi|4
(

t(bi)
2 − 2|bi|2

)

)

.

P r o o f. The proof is based on the fact that one can find a slice-preserving
regular function g on an open neighbourhood Ω′ of Br such that gf has a
slice-regular extension h on Ω′. For every real pole pk ∈ Br, let

g
(1)

k
(x) = −(x− r2p−1

k
)−1(x− pk)rp

−1

k

and for every spherical pole bi, let

g
(2)

i (x) = ∆
r2b

−1

i
(x)−1∆bi(x)r

2|bi|−2.

Observe that g
(1)

k is the reciprocal of the slice-preserving quaternionic r-Bla-

schke factor Bpk,r and g
(2)

i (x) is the reciprocal of the normal function N(Bbi,r)
(see e.g. [1] for definition and properties of quaternionic r-Blaschke factors
Ba,r). We can set

g = g
(1)

1
· · · g(1)n g

(2)

1
· · · g(2)s .

Then g is a slice-preserving regular function on a neighbourhood Ω′ of Br, such
that |g| = 1 on ∂Br, having zero set V (g) = {p1, . . . , pn} ∪ {Sb1 , . . . ,Sbs} (with
multiplicities equal to the orders of the poles for f). We can assume that all
the zeros and poles of f stay in Ω′. Then gf extends regularly to a function
h ∈ SR(Ω′).

If the order of f is constant on every spherical pole (q = q′ = 0), then
V (h) ∩ Br = V (f) ∩ Br with equal total multiplicities. The Jensen formula for
f now follows from the formula for h, using the following facts:

1. |h(0)| = |f(0)||g(0)| = |f(0)|
n
∏

k=1

|pk|
r

s
∏

i=1

|bi|2
r2

.
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2. On ∂Br, since |g| = 1 and g is slice-preserving, it holds |h| = |f | and
log |N(h)| = 2 log |g| + log |N(f)| = log |N(f)|.

3. From [1, Lemma 3.1] (or from Proposition 2.2), it follows that

∆4 log |N(h)|x=0 = ∆4 log |N(f)|x=0 +∆4 log |N(g)|x=0

= ∆4 log |N(f)|x=0 − 2

n
∑

k=1

p4k − r4

r4p2k
− 2

s
∑

i=1

|bi|4 − r4

r4|bi|4
(

t(bi)
2 − 2|bi|2

)

.

If the order of f varies on some spherical pole Sbj , then V (h) vanishes also at
the points z1, . . . , zq, with total multiplicities equal to the isolated multiplicities
if (zj). The Jensen formula for f follows from the formula for h, using properties
1, 2, 3 above and the equality

q
∑

j=1

(

2 log
r

|zj |
+

|zj |4 − r4

4 r2|zj |4
(

t(zj)
2 − 2|zj |2

)

)

if (zj)

=

l+q′
∑

i=l+1

(

2 log
r

|ai|
+

|ai|4 − r4

4 r2|ai|4
(

t(ai)
2 − 2|ai|2

)

)

.

�

Rema r k 2.4. An example of semiregular function that has a spherical pole
where the order is not constant, is given by f(x) = (x2 +1)−1(x+ i). It has no
zeros and one spherical pole at S = Si, whose points have all order 1, except for
x = −i, that has order 0 and isolated multiplicity 1. One obtains the Jensen
formula for f on Br (r > 1) by multiplying f on the left by the slice-preserving
function

g = g
(2)

1
= r2(x2 + r4)−1(x2 + 1).

and applying Theorem 2.1 to the product h = gf = r2(x2+ r4)−1(x+ i), which
is slice-regular on H \ Sr2i, a neighbourhood of Br. This example shows that
the contribution to the formula of spherical poles with nonconstant order can
cancel out. This happens when if (zj) =

1

2
ordf (Szj ) for every j = 1, . . . , q.

Ac k n ow l e d gm en t s. The author would like to thank the anonymous
referee for her/his helpful suggestions.
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