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Prolongation of diffeomorphisms and

smoothness of invariant submanifolds

Abstract. We study various questions related to the smoothness of a
real submanifold M which is invariant under a family of real-analytic
or holomorphic diffeomorphisms. We show that in various situations it
is possible to conclude that M is necessarily real-analytic (or the same
smoothness of the diffeomorphisms involved if these are not analytic).
The prolongation method we use also allows to recover some known
results by employing relatively simple tools.
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1 - Introduction

Let M be a real submanifold of Rn or Cn. The general problem we want to
consider is the following: suppose thatM is invariant under a family of (complex
or real) analytic diffeomorphisms of the ambient space. Does it follow that M
is itself real-analytic, except possibly on a “thin” subset? Analogous questions
can be posed when the diffeomorphisms are just of class C∞ or Ck for some
k ∈ N.

One version of this problem can be formulated more precisely as follows:
let M ⊂ R

n be a smooth m-dimensional submanifold, 0 ∈ M , and let ψ ∈
Diffω(Rn, 0) be a germ of real-analytic diffeomorphism fixing 0. Under which
conditions does the ψ-invariance of M force it to be of class Cω around 0?
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Clearly, this needs not be the case in general: for instance the graph M =
{y = f(x)} ⊂ R

2 of any smooth even function f : R → R is invariant under
the reflection ψ(x, y) = (−x, y). Another simple example is given by any ψ ∈
Diffω(Rn, 0) admitting a large-dimensional set of fixed points, where we can
choose as M any nowhere analytic submanifold M ⊂ {ψ(x) = x}.

In both cases the differential of ψ at 0 admits eigenvalues of modulus 1.
However, nowhere analytic smooth invariant submanifolds may exist even if ψ
is hyperbolic (i.e. dψ(0) admits no such eigenvalues):

E x amp l e 1.1. In R
3, let ψ(x, y, z) = (12x, 2y,

1
2z) and define M = {z =

xφ(xy)} for an arbitrary, nowhere analytic function φ ∈ C∞(R) with φ(0) = 0.
Then M is a nowhere analytic ψ-invariant surface of class C∞.

One of the aims of this paper is to show that this is not possible when
the eigenvalues of the restriction of dψ(0) to T0(M) all have modulus strictly
smaller (or, equivalently, strictly larger) than 1. We call such an invariant
submanifold contracting.

T h e o r em 1.2. Let M be a smooth contracting submanifold for ψ ∈
Diffω(Rn, 0) : then M is of class Cω around 0.

Though the statement above might be well-known (see related results in [3,
Theorem 3.1]; see also [5] for the case of CR manifolds invariant under complex-
analytic contractions), we were not be able to find it explicitly presented in this
form in the literature. Additionally, the approach we follow might itself be of
some interest in that it allows to reduce the proof to relatively elementary
tools (the stable manifold theorem) without relying on advanced dynamical
techniques.

In Theorem 1.2 it is in fact sufficient to require that M is of class Ck

for a certain k which depends on the eigenvalues of dψ(0); the smoothness
assumption is stated more precisely in Theorem 4.1. We also remark that
no assumption is made on the resonances of the eigenvalues of dψ(0), hence
situations in which the invariant submanifoldM is non-unique are also included
in the previous result.

The proof is achieved in sections 3, 4 by considering the prolongation of
the action of ψ to a suitable jet bundle: the behavior of the eigenvalues of the
lift allows then to apply the stable manifold theorem, and thus show that the
defining equations of M locally satisfy a system of real-analytic PDEs, forcing
it to be of class Cω.

The study of the prolongation of the action of local diffeomorphisms turns
out to be also useful in the context of some different but related problems.
A set K ⊂ R

n is called homogeneous under local diffeomorphisms of class Ck
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(k ∈ N∪{∞, ω}) if for all p, q ∈ K there exists a neighborhood U of p in R
n and a

diffeomorphism φ : U → φ(U) such that φ(K∩U) = K∩φ(U) and φ(p) = φ(q).
It was proved in [6] that a locally closed subset of Rn is C1-homogeneous if and
only if it is a submanifold of class C1. In [8] this result was extended to the
C∞ class. As an application of the prolongation method, in section 5 we show
that the C∞ case can be recovered in a relatively straightforward way from the
C1 case by applying an inductive procedure involving the prolongation to the
space of 1-jets. It is worth pointing out that the case k = ω is still an open
problem; indeed some of the results in the present paper are linked to certain
approaches to the proof of the real-analytic version of this result.

The situation when the manifold M is invariant but not contracting is much
more subtle, and whether it is possible to conclude that M is real-analytic
might depend on invariants of higher order than the eigenvalues of ψ (cf. [4]
for a treatment of the case of curves in the plane). It is interesting, then, that
for some special (but still large) subgroups of diffeomorphisms one can give a
partially positive answer - in the sense that analyticity holds in general only
outside of the origin. This is the case for the group of conformal diffeomorphism
of R2 or the group of analytic shears of R2. The proof is based on a somewhat
deeper analysis of the dynamics of the diffeomorphism germs involved and is
given in section 6. For instance, the study of the conformal case relies on the
coordinates provided by the Leau-Fatou flower theorem, but as it turns out the
crucial ingredient is again the analysis of the action of the prolongation of the
diffeomorphism to the space of 1-jets.

2 - Preliminaries

2.1 - Tensor notation

Let j ∈ N. We will denote by I the “asymmetric” multiindices, that is the
elements of the set {1, . . . ,m}j . We will denote by α the usual multiindices of
length j, i.e. α = (α1, . . . , αm) with |α| = ∑

i αi = j. To any I = (I1, . . . , Ij) ∈
{1, . . . ,m}j we associate a multiindex α(I) by defining α(I) = (α1, . . . , αm)
with ακ = |{i : Ii = κ}|.

We will use coordinates (ηI)I∈{1,...,m}
j on the vector space (Rm)⊗j of tensors

of order j over R
m, and coordinates (ξα)|α|=j for the subspace Symj(Rm) of

symmetric tensors. In these coordinates, the inclusion Symj(Rm) →֒ (Rm)⊗j

corresponds to the linear map

Symj(Rm) ∋ ξ = (ξα)|α|=j → ι(ξ) = (ξα(I))I∈{1,...,m}j ∈ (Rm)⊗j .

In a similar fashion, we will use coordinates (ηI,i)1≤i≤d,I∈{1,...,m}
j ,
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(ξα,i)1≤i≤d,|α|=j for the spaces R
d ⊗ (Rm)⊗j and R

d ⊗ Symj(Rm) respectively.

More in general, we will use coordinates η = (η1, . . . , ηℓ) on the space
∏ℓ

κ=1R
d⊗

(Rm)⊗κ and ξ = (ξ1, . . . , ξℓ) on the space
∏ℓ

κ=1 R
d ⊗ Symκ(Rm), where ηj =

(ηjI,i)1≤i≤d,I∈{1,...,m}
j and ξj = (ξjα,i)1≤i≤d,|α|=j.

For j ∈ N and any I = (I1, . . . , Ij) ∈ {1, . . . ,m}j , we use the notation

∂I =
∂

∂xIj

∂

∂xIj−1

. . .
∂

∂xI1
,

while for any multiindex α = (α1, . . . , αm) with |α| = ∑

i αi = j we write as
customary

∂α =
∂|α|

∂xα1

1 . . . ∂xαm
m

.

Of course, we have ∂I = ∂α(I) for any I ∈ {1, . . . ,m}j ; in the following, though,
it be will useful to keep separate notations for the same operator.

Let V,W be vector spaces. Since V ∗⊗W ∼= Hom(V,W ), for any T ∈ V ∗⊗W
we will still denote by T the corresponding homomorphism T : V → W (and
vice versa ). For vector spaces V,W1,W2,W3 and any pair of elements T1 ∈
W1⊗V ⊗W3, T2 ∈ V ∗⊗W2, we use this identification to define the contraction
of T1 and T2 as (Id ⊗ T2 ⊗ Id)T1 ∈ W1 ⊗W2 ⊗W3. If W3

∼= R (i.e. the third
factor is not there) we write the contraction as

· : (W1 ⊗ V )× (V ∗ ⊗W2) → W1 ⊗W2

where T1 · T2 = (Id ⊗ T2)T1 for any T1 ∈ W1 ⊗ V , T2 ∈ V ∗ ⊗W2. If V = R
i,

we identify R
i with (Ri)∗ via the standard Euclidean scalar product, and we

consider · as a product (W1 ⊗ R
i) × (Ri ⊗W2) → W1 ⊗W2. We remark that,

using the isomorphismW1⊗R
d ∼= Hom(Rd,W1), we have T1 ·T2 = (T1⊗Id)T2 =

(Id⊗ T2)T1. We also define the “inverse” map G → G (where G ∼= GL(i,R) is
an open dense subset of Ri ⊗ R

i) by requiring T · T−1 = Id for all T ∈ G.

Given a real vector space V and a smooth map f : Rm → V we denote by
fx the map R

m → V ⊗ R
m defined by

R
m ∋ x → fx(x) =

m
∑

i=1

(

∂f

∂xi
(x)⊗ ∂

∂xi

)

∈ V ⊗ R
m.

For j ∈ N, we define the map fxj : Rm → V ⊗ (Rm)⊗j recursively by fxj(x) =
(fxj−1)x(x). With this convention, if V = R

d, f = (f1, . . . , fd) and x0 ∈ R
m,

we have that fxj(x0) is the element η = (ηI,i)1≤i≤d,I∈{1,...,m}
j of Rd ⊗ (Rm)⊗j

defined by ηI,i = ∂Ifi(x0). In particular, fx(x0) is just the differential of f at
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the point x0. It is also clear (since ∂I = ∂α(I)) that fxj(x0) is in fact an element

of Rd ⊗ Symj(Rm) for all j ≥ 1.

Furthermore, given any smooth map ρ : Rm → R
m and putting g(x) =

fxj(ρ(x)), the chain rule can be written as gx(x) = fxj+1(ρ(x)) · ρx(x), where
fxj+1(ρ(x)) ∈ (V ⊗ (Rm)j)⊗R

m, ρx(x) ∈ R
m⊗R

m and · is the product defined
above.

Suppose f : Rm → V and g : Rm → V ∗, h = gf : Rm → R. Then the
Leibniz rule implies hx = gxf + (g ⊗ Id)fx ∈ R ⊗ R

m ∼= R
m, where (g ⊗ Id) :

R
m → Hom(V ⊗ R

m,Rm). If now f : Rm → W1 ⊗ V , g : Rm → V ∗ ⊗ W2,
f · g = (Id ⊗ g)f : Rm → W1 ⊗ W2, we deduce (f · g)x = (Id ⊗ gx)f + (Id ⊗
g ⊗ Id)fx = f · gx + (Id ⊗ g ⊗ Id)fx, where Id ⊗ g ⊗ Id is a map R

m →
Hom(W1 ⊗ V ⊗ R

m → W1 ⊗W2 ⊗R
m).

2.2 - Stable manifold theorem

Given a linear operator A and an eigenvalue λ of A, the generalized eigen-

space associated to λ is defined as the set of the vectors v such that (A−λI)kv =
0 for some k ∈ N. Let ψ ∈ Diffω(Rn, 0) (the group of germs of real-analytic
diffeomorphisms fixing the origin in R

n), and let λ1, . . . , λr ∈ C
∗ (1 ≤ r ≤ n)

be the eigenvalues of dψ(0). For λ ∈ {λ1, . . . , λr}, λ ∈ R, we denote by Eλ ⊂
R
n the generalized eigenspace associated to λ. We still denote by dψ(0) the

extension of the differential of ψ to C
n and for any λ ∈ {λ1, . . . , λr}, λ ∈ C \R,

we denote by Eλ ⊂ C
n the (complex) generalized eigenspace associated to λ,

and put E
λ,λ

= (Eλ ⊕ E
λ
) ∩ R

n. The (real) stable space Es ⊂ R
n for dψ(0) is

defined as follows:

Es =
⊕

λ∈{λ1,...,λr},|λ|<1,λ∈R

Eλ ⊕
⊕

λ∈{λ1,...,λr},|λ|<1,λ∈C\R

Eλ,λ.

We will need the following version of the well-known stable manifold theorem
(see [1]):

T h e o r em 2.1. Let ψ ∈ Diffω(Rn, 0) and let Es be the stable subspace of

dψ(0). Then there exists a ψ-invariant local embedded submanifold W s
loc of class

Cω, whose tangent space at 0 is Es, and δ > 0 such that the set of the p ∈ B(0, δ)
whose orbit is exponentially convergent to 0 coincides with W s

loc ∩B(0, δ). W s
loc

is called the stable manifold of ψ through 0.
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2.3 - Bundles of manifold jets

Let p ∈ R
n and fix m,k ∈ N, m ≤ n. We denote by M(m,k, p) the set of

germs at p of m-dimensional submanifolds M ⊂ R
n, p ∈ M , which are of class

Ck in a neighborhood of p. Let ∼k be the equivalence relation in M(m,k, p)
given by (M,p) ∼k (M ′, p) ⇔ the order of contact between M and M ′ at p is
equal to k. We denote by Jk(m, p) the quotient of M(m,k, p) with respect to
∼k, and by jkp : M(m,k, p) → Jk(m, p) the relative projection. Furthermore,
for any domain U ⊂ R

n we define

J k(m,U) =
⋃

p∈U

Jk(m, p).

The set J k(m,U) can be endowed with a natural structure of (real-analytic)
manifold. As a matter of fact,

J k(m,U) ∼= U ×Gr(m,Rn)×
∏

2≤j≤k

R
d ⊗ Symj(Rm)

where d = n −m and Symj(Rm) ⊂ (Rm)⊗j is the space of symmetric tensors
of order j over R

m. Note that Symj(Rm) is diffeomorphic to R
N(m,j), where

N(m, j) =
(

m+j−1
m−1

)

is the number of multiindices in m variables of order j. A
chart

ϕ(k) : U ×
∏

1≤j≤k

(

R
N(m,j)

)d

→ J k(m,U),

corresponding to the splitting R
n(x, y) = R

m(x) × R
d(y), can be described

explicitly as follows:

ϕ(k)(x0, y0, ξ
1, . . . , ξk) = k−jet at (x0, y0) of M = {ρ1 = . . . = ρd = 0},where

ρj(x, y) = yj − (y0)j −
∑

1≤|α|≤k

ξ
|α|

α,j(x− x0)
α ∀1 ≤ j ≤ d.

It is straightforward to check that the
(

n
m

)

charts constructed in a way analogous

to ϕ(k) (corresponding to the
(

n
m

)

charts of Gr(m,Rn)) define a real-analytic
atlas for J k(m,U). In the following, we are always going to consider the co-
ordinates given by ϕ(k) in a neighborhood of the point (x0, y0) = (0, 0) ∈ U ,
ξℓ = 0.

Moreover, with this structure the map J k(m,U) ∋ η → π(η) ∈ U defined by
π(η) = p ⇔ η ∈ Jk(m, p) is clearly of class Cω, and corresponds to the natural
projection on the U -factor in the coordinates induced by ϕ(k). Hence J k(m,U)
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can be regarded as a (trivial) real-analytic fiber bundle π : J k(m,U) → U with
fibers diffeomorphic to Jk(m, 0).

Let M ⊂ U be an embedded m-dimensional submanifold of class Ck′ , k′ ≥
k. We define a (uniquely determined) subset M(k) ⊂ J k(m,U) by requiring
π(M(k)) = M and M(k) ∩ π−1(p) = {jkp ((M,p))} for all p ∈ M . We call M(k)

the prolongation of M to the k-jet bundle. If M is defined as {yj = fj(x)}1≤j≤d

in a neighborhood of 0 ∈ U , passing through the chart ϕ(k) one can see that
M(k) is locally parametrized as

M ∋ p →
(

p, α!
∂|α|fj(p)

∂xα 1≤|α|≤k,1≤j≤d

)

∈ U ×
∏

1≤j≤k

(

R
N(m,j)

)d

,

which shows that M(k) is a m-dimensional Ck′−k-submanifold of J k(m,U),
and that the map π : M(k) → M is a diffeomorphism of class Ck′−k.

3 - Prolongation of a local diffeomorphism

Let U ⊂ R
n be a domain, and let ψ : U → ψ(U) ⊂ R

n be a diffeomorphism
of class Ck′ , k′ ≥ k. For any p ∈ U , ψ, we consider the map

M(m,k, p) ∋ (M,p) → (ψ(M), ψ(p)) ∈ M(m,k, ψ(p));

it is immediate to check that

(ψ(M), ψ(p)) ∼k (ψ(M ′), ψ(p)) ⇔ (M,p) ∼k (M ′, p),

hence the map above induces a (real-analytic) bijection ˜ψ
(k)
p : Jk(m, p) →

Jk(m,ψ(p)) between the respective quotient spaces, defined by ˜ψ
(k)
p (jkp (M,p))

= jk
ψ(p)(ψ(M), ψ(p)). Since by definition J k(m,U) = ∪p∈UJ

k(m,k, p), the

collection { ˜ψ(k)
p }p∈U defines in turn a map

˜ψ(k) : J k(m,U) → J k(m,ψ(U))

satisfying π ◦ ˜ψ(k) = ψ. We call ˜ψ(k) the prolongation of ψ to J k(m,U).
In fact, ˜ψ(k) is a bundle isomorphism of class Ck′−k between J k(m,U) and
J k(m,ψ(U)), which is actually real-analytic along the fibers.

Furthermore, for any m-dimensional submanifold M ⊂ U of class Ck, let
N = ψ(M) ⊂ ψ(U) and let M(k) ⊂ J k(m,U), N (k) ⊂ J k(m,ψ(U) be the
respective prolongations: then one has ˜ψ(k)(M(k)) = N (k). In particular, M is
ψ-invariant if and only if M(k) is ˜ψ(k)-invariant.
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From now on we will assume that 0 ∈ U and work in the coordinates
induced on J k(m,U) by the chart ϕ(k) defined in the previous section. We
are interested in the case in which ψ(0) = 0 and the differential dψ(0) admits
an invariant m-dimensional subspace, which we can assume to coincide with
R
m(x) in suitable coordinates. In our notation, this amounts to ˜ψ(1) fixing the

origin in the chart ϕ(1) for J 1(m,U). We want to compute the eigenvalues of
the differential d( ˜ψ(k)) at the point {(x0, y0) = (0, 0), ξℓ = 0}.

In order to do so, let p ∈ U , and let (M,p) ∈ M(m,k, p). If p is close enough
to 0 and Tp(M) is close enough to R

m(x), in a neighborhood of p = (x0, y0) we
can write M = {y = f(x)}, where f is a R

d-valued mapping of class Ck defined
in a neighborhood of x0 in R

m, and furthermore the germ (ψ(M), ψ(p)) can be
expressed in a similar way as ψ(M) = {y = f̂(x)} around ψ(p) = q = (x1, y1).
Writing the components of ψ as ψ(x, y) = (g(x, y), h(x, y)), then f̂ must satisfy
the mapping equation

(1) f̂(g(x, f(x))) = h(x, f(x))

for x in a neighborhood of x0 in R
m. The linear map given by gx(x0, y0) +

gy(x0, y0)f
′(x0) is invertible if f

′ is small enough. This implies that there exists
an inverse map ρ(x) = ρf (x) of class Ck, defined in a neighborhood of x1 in
R
m, such that g(ρ(x), f(ρ(x))) ≡ x. Thus we can rewrite (1) as

(2) f̂(x) = h(ρ(x), f(ρ(x))),

valid for x in a neighborhood of x1 in R
m. Computing the first derivatives, we

get

(3) f̂x(x) = hx(ρ(x), f(ρ(x))) · ρx(x) + hy(ρ(x), f(ρ(x))) · fx(ρ(x)) · ρx(x),

f̂x(x1) = hx(x0, y0) · ρx(x1) + hy(x0, y0) · fx(x0) · ρx(x1).
Differentiating the relation g(ρ(x), f(ρ(x))) ≡ Id, we have

(gx(ρ(x), f(ρ(x))) + gy(ρ(x), f(ρ(x))) · fx(ρ(x))) · ρx(x) = Id, i.e.

ρx(x1) = (gx(x0, y0) + gy(x0, y0) · fx(x0))−1

hence

(4) f̂x(x1) = (hx(x0, y0)+hy(x0, y0)·fx(x0))·(gx(x0, y0)+gy(x0, y0)·fx(x0))−1.

We will interpret the expression (4) in the following way. Let η = (ηj,i), 1 ≤
i ≤ d, 1 ≤ j ≤ m, be coordinates for the space R

d ⊗R
m. Using the notation of

section 2.1, we define a map P p,1 : Rd ⊗ R
m → R

d ⊗ R
m by

P p,1(η) = (hx(x0, y0) + (hy(x0, y0)⊗ Id)η) · (gx(x0, y0) + (gy(x0, y0)⊗ Id)η)−1.



[9] prolongation and smoothness of invariant submanifolds 107

Of course, the map P p,1 is actually defined for η in a neighborhood of 0 in
R
d⊗R

m, and it is rational in the components of η. By (4), the map P p,1 is the

expression of the map ˜ψ
(1)
p : J1(m, p) → J1(m, q) in the coordinates induced by

ϕ(1).
Let us now specialize to (x0, y0) = (0, 0). By assumption, R

m(x) is an
invariant space for dψ(0), which means hx(0, 0) = 0. Hence we can write the
map P 0,1 as

P 0,1(η) = ((hy(0, 0) ⊗ Id)η) · (gx(0, 0) + (gy(0, 0) ⊗ Id)η)−1.

Note that (gx(0, 0) + (gy(0, 0) ⊗ Id)η)−1 = gx(0, 0)
−1 + O(|η|), which in turns

implies
P 0,1(η) = (hy(0, 0) ⊗ g−1

x (0, 0))η +O(|η2|),
where now we interpret g−1

x (0, 0) as a linear map R
m → R

m.
This computation can be extended to higher order jets:

L emma 3.1. Fixed any p = (x0, y0) ∈ U , for all 1 ≤ ℓ ≤ k, there exists a

rational map

P p,ℓ :

ℓ
∏

j=1

R
d ⊗ (Rm)⊗j → R

d ⊗ (Rm)⊗ℓ

satisfying the following properties:

• P p,ℓ restricts to a map P p,ℓ :
∏ℓ

j=1R
d ⊗ Symj(Rm) → R

d ⊗ Symℓ(Rm);

• ∂αf̂i(x1) = P p,ℓ
i,α

(

∂βfι(x0)|β|≤ℓ,1≤ι≤d

)

for any multiindex α with |α| = ℓ
and any 1 ≤ i ≤ d;

• if p = p0 = (0, 0), we can write P p0,ℓ = P p0,ℓ
1 + P p0,ℓ

2 , where P p0,ℓ
1 is a

rational map having second-order dependence on the factor R
d ⊗ (Rm)⊗ℓ

and P p0,ℓ
2 is a linear map only depending on the factor R

d ⊗ (Rm)⊗ℓ,

induced by

hy(0, 0) ⊗ g−1
x (0, 0)⊗ℓ : Rd ⊗ (Rm)⊗ℓ → R

d ⊗ (Rm)⊗ℓ.

Moreover, the map P p,ℓ depends on p in a Ck′−ℓ smooth way.

P r o o f. We start with the following observation: for any 1 ≤ j ≤ k, there
exists a rational map

Qp,j :

j
∏

κ=1

R
d ⊗ (Rm)⊗κ → R

m ⊗ (Rm)⊗j
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such that for any I ∈ {1, . . . ,m}j , 1 ≤ i ≤ m,

(5) ∂Iρi(x1) = Qp,j
I,i (∂Jfι(x0) : 1 ≤ ι ≤ d, J ∈ {1, . . . ,m}κ, 1 ≤ κ ≤ j);

furthermore, Qp,j restricts to a map Qp,j :
∏j

κ=1 Sym
κ(Rm) → Symj(Rm).

Indeed, for j = 1 we have

ρx(x) = (gx(ρ(x), f(ρ(x))) + gy(ρ(x), f(ρ(x))) · fx(ρ(x)))−1

and it is straightforward to prove the claim inductively by differentiating the
previous expression and evaluating at x = x1. Note that in particular ρxj(x1) =
Qp,j(∂Jfι(x0)).

Next, we will prove inductively that, for any j ≥ 2, we can write

(6) f̂xj(x) = (hy(ρ(x), f(ρ(x))) ⊗ (ρx(x))
⊗j)fxj(ρ(x))

+hy(ρ(x), f(ρ(x))) · fx(ρ(x)) · ρxj (x)

+hx(ρ(x), f(ρ(x))) · ρxj(x) +Rj(x)

where Rj is a map whose components are polynomials in ∂Ih(ρ(x), f(ρ(x)))
(with I ∈ {1, . . . , n}κ, 1 ≤ κ ≤ j), ∂Jf(ρ(x)) (with J ∈ {1, . . . ,m}κ, 1 ≤ κ < j)
and ∂Lρ(x) (with L ∈ {1, . . . ,m}κ, 1 ≤ κ < j). More explicitly, there is a
polynomial map

˜Rj :

j
∏

κ=1

R
d ⊗ (Rn)⊗κ ×

j−1
∏

κ=1

R
d ⊗ (Rm)⊗κ ×

j−1
∏

κ=1

R
m ⊗ (Rm)⊗κ → R

d ⊗ (Rm)⊗j

such that Rj(x) = ˜Rj(∂Ihi1(ρ(x), f(ρ(x))), ∂J fi2(ρ(x)), ∂Lρi3(x)) for all x ∈ U .
For j = 1 we have in fact (from (3))

f̂x(x) = hy(ρ(x), f(ρ(x))) · fx(ρ(x)) · ρx(x) + hx(ρ(x), f(ρ(x))) · ρx(x)

= (hy(ρ(x), f(ρ(x))) ⊗ ρx(x))fx(ρ(x)) + hx(ρ(x), f(ρ(x))) · ρx(x),

therefore we can set R1 = 0. Assuming that (6) holds for a certain j, we verify
that it holds for j + 1 by differentiating in it. By the Leibniz and the chain
rules we can compute for j = 1

[(hy(ρ(x), f(ρ(x)))⊗ρx(x))fx(ρ(x))]x= (hy(ρ(x), f(ρ(x)))⊗(ρx(x))
⊗2)fx2(ρ(x))

+hy(ρ(x), f(ρ(x))) · fx(ρ(x)) · ρx2(x) + S2
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and for j ≥ 2

[(hy(ρ(x), f(ρ(x))) ⊗ (ρx(x))
⊗j)fxj(ρ(x)))]x

= (hy(ρ(x), f(ρ(x))) ⊗ (ρx(x))
⊗(j+1))fxj+1(ρ(x))) + Sj+1

where in both cases Sj+1 is a map whose components are polynomials in
∂Ih(ρ(x), f(ρ(x))), ∂Jf(ρ(x)), ∂Lρ(x) and do not contain derivatives of order
j + 1 of either ρ at x or of f at ρ(x). Analogously,

[hy(ρ(x), f(ρ(x)))·fx(ρ(x))·ρxj (x)]x= hy(ρ(x), f(ρ(x)))·fx(ρ(x))·ρxj+1(x)+S′

j+1,

[hx(ρ(x), f(ρ(x))) · ρxj (x)]x = hx(ρ(x), f(ρ(x))) · ρxj+1(x) + S′′

j+1,

where again S′

j+1 and S′′

j+1 are polynomials that do not contain ρxj+1(x) or
fxj+1(ρ(x)). Since it is immediately seen that the first derivatives of the terms
in Rj yield terms in Rj+1, differentiating (6) we thus get

f̂xj+1(x) = (hy(ρ(x), f(ρ(x))) ⊗ (ρx(x))
⊗(j+1))fxj+1(ρ(x))

+ hy(ρ(x), f(ρ(x))) · fx(ρ(x)) · ρxj+1(x)

+ hx(ρ(x), f(ρ(x))) · ρxj+1(x) + [Rj ]x + Sj+1 + S′

j+1 + S′′

j+1

which gives the inductive step with Rj+1 = [Rj ]x + Sj+1 + S′

j+1 + S′′

j+1.
Evaluating (6) at x = x1 we have

f̂xj(x1) = (hy(x0, y0)⊗ (ρx(x1))
⊗j)fxj (x0) + hy(x0, y0) · fx(x0) · ρxj(x1)

+ hx(x0, y0) · ρxj(x1) +Rj(x1);

define now, using coordinates η = (η1, . . . , ηℓ) on the space
∏ℓ

κ=1R
d⊗ (Rm)⊗κ,

the map P p,ℓ :
∏ℓ

κ=1R
d ⊗ (Rm)⊗κ → R

d ⊗ (Rm)⊗ℓ as

P p,ℓ(η) = (hy(x0, y0)⊗ (Qp,1(η))⊗ℓ)ηℓ + hy(x0, y0) · η1 ·Qp,ℓ(η)

+ hx(x0, y0) ·Qp,ℓ(η)

+ ˜Rℓ(∂Ihi(x0, y0), η
κ
(1≤κ≤ℓ−1), Q

p,ℓ
L,l(η)(1≤l≤m,L∈{1,...,m}

κ,1≤κ≤ℓ−1)),

so that f̂xℓ(x1) = P p,ℓ(∂Ifi(x0)). This expression verifies the first two state-
ments of the lemma because of (5) and the polynomial form of ˜Rℓ. It is also
clear that the dependence of P p,ℓ on p is of class Ck′−ℓ.

Let us now choose (x0, y0) = (0, 0). We define P p0,ℓ
2 (η) = (hy(0, 0) ⊗

(g−1
x (0, 0))⊗ℓ)ηℓ and P p0,ℓ

1 (η) = P p0,ℓ(η) − P p0,ℓ
2 (η). Since, as computed be-

fore,
Qp0,1(η) = (gx(0, 0) + gy(0, 0) · η1)−1 = g−1

x (0, 0) +O(|η|),
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we have

(hy(0, 0) ⊗ (Qp,1(η))⊗ℓ)ηℓ = P p0,ℓ
2 (η) +O(|η|2);

furthermore we have hx(0, 0) = 0 since R
m(x) is an invariant space for dψ(p0).

The proof is then concluded by observing that the summand hy(0, 0)·η1 ·Qp0,ℓ(η)

in the expression of P p0,ℓ(η) does not contain any linear term in ηℓ, while ˜Rℓ

does not depend on ηℓ at all. �

4 - Analiticity of invariant manifolds

Assume that M is a m-dimensional invariant submanifold for ψ ∈
Diffω(Rn, 0), 0 ∈ M . We say that M is contracting if T0(M) ⊂ Es. In such
a case we always choose coordinates in which T0(M) = R

m(x), and writing
ψ = (g, h) it follows that hx(0) = 0. Since R

m is an invariant subspace for
dψ(0), we can reorder its eigenvalues in such a way that λ1, . . . , λs (s ≤ r)
are the eigenvalues of gx(0) – in particular we have |λj | < 1 for 1 ≤ j ≤ s.
Furthermore, we order the eigenvalues in such a way that |λ1| is the maximum
of {|λj | : 1 ≤ j ≤ s} and |λr| is the minimum of {|λj | : s + 1 ≤ j ≤ r}. Put

τ = τ(ψ) = log |λr |

log |λ1|
(note that log |λ1| �= 0).

T h e o r em 4.1. Let M be an invariant contracting submanifold for ψ ∈
Diffω(Rn, 0), 0 ∈ M . Suppose that M is of class C∞: then it is of class Cω.

More precisely, let τ = τ(ψ) be defined as above. If M is of class Ck+1 with

k > τ , then it is real-analytic.

L emma 4.2. With the assumptions above, the orbit of every point p ∈ M
sufficiently close to 0 is exponentially convergent to the origin, i.e. |ψ◦j(p)| ≤ µj

for some 0 < µ < 1.

P r o o f. Since the spectral radius of the linear map A = gx(0, 0) : R
m → R

m

is by assumption smaller than 1, we can choose a suitable norm � · � on R
m in

such a way that �A� = ν < 1 (indeed, we can take ν arbitrarily close to |λ1|).
Assume that M is locally defined by {y = f(x)} with f of class C1, f(0) = 0,
fx(0) = 0; for x close enough to 0, we can write g(x, f(x)) = Ax + �x�2θ(x),
where the map θ : Rm \ {0} → R

m is bounded. It follows that �g(x, f(x))� ≤
�A��x� + C�x�2 for some C > 0, hence, fixed ǫ > 0 such that ν + ǫ < 1, we
have �g(x, f(x))� ≤ (ν + ǫ)�x� for all �x� ≤ ǫ/C. We put µ = ν + ǫ.

If now p0 = (x0, f(x0)) ∈ M , we define (xj , yj) = pj = ψ◦j(p0). By the ψ-
invariance of M we have yj = f(xj), xj+1 = g(xj , f(xj)) for any j ∈ N. From
the previous arguments we thus get �xj� ≤ µj for all j ∈ N if x0 is small enough.
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Since f is of class C1 and fx(0) = 0, for small x0 we have |f(xj)| ≤ �xj� ≤ µj

for all j ∈ N . The conclusion of the lemma is then verified with respect to the
norm �x�+ |y| on R

n(x, y), and thus with respect to the Euclidean norm. �

Co r o l l a r y 4.3. If M is of class Ck and j < k, the orbit under �ψ(j) of

any point p ∈ M(j) such that π(j)(p) is sufficiently close to 0 is exponentially

convergent to �p = (π(j))−1(0) ∩M(j).

P r o o f. Up to a polynomial change of coordinates, we can assume that
M = {y = f(x)} with ∂αf(0) = 0 for all multiindices α with |α| ≤ j. As
remarked earlier, a local parametrization for M(j) around p0 ∼= 0 in the chart
ϕ(j) is given by

R
m ∋ x →

�

x, f(x), α!∂αfκ(x)1≤|α|≤j,1≤κ≤d

�

∈ U ×
�

1≤i≤j

�

R
N(m,i)

�d

.

The conclusion then follows in the same way as in Lemma 4.2, using the facts
that for any (x0, y0) ∈ M , (xi, yi) = ψ◦i(x0, y0) we have |xi| ≤ µi and that
∂αfκ(x) is a function of class C1 vanishing at 0 for all |α| ≤ j, 1 ≤ κ ≤ d. �

P r o o f [ Theorem 4.1]. Let the coordinates (x, y) on R
n be chosen in such

a way that M = {y = f(x)} with ∂αf(0) = 0 for all |α| ≤ k. In the chart
ϕ(k), it follows that the origin is a fixed point for �ψ(k). Using coordinates

(x, y, ξ1, . . . , ξk) for U ×�

1≤j≤k

�

R
N(m,j)

�d ∼= U ×�

1≤j≤k R
d⊗ Symj(Rm) and

writing p = (x, y), we can locally express �ψ(k) as

�ψ(k)(p, ξ1, . . . , ξk) = (g(p), h(p), P p,1(ξ1), P p,2(ξ1, ξ2), . . . , P p,k(ξ1, . . . , ξk))

where the maps P p,j, 1 ≤ j ≤ k, are defined in Lemma 3.1. Furthermore, the
differential of �ψ(k) at 0 is given by the following block-triangular matrix:

d �ψ(k)(0) =



















dψ(0) 0 0 · · · 0

∗ P̂ p0,1
2 0 · · · 0

∗ ∗ P̂ p0,2
2 · · · 0

...
...

...
. . .

...

∗ ∗ ∗ · · · P̂ p0,k
2



















where for all 1 ≤ j ≤ k we denote by P̂ p0,j
2 : Rd⊗Symj(Rm) → R

d⊗Symj(Rm)

the restriction of the linear map P p0,j
2 : Rd ⊗ (Rm)⊗j → R

d ⊗ (Rm)⊗j defined
in Lemma 3.1.
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In particular, the eigenvalues of P̂ p0,j
2 are a subset of the eigenvalues of

P p0,j
2 . Since P p0,j

2 = hy(0, 0) ⊗ g−1
x (0, 0)⊗j , the latter ones are given by the set

Λj = {λiλ
−1
ℓ1

λ−1
ℓ2

· · ·λ−1
ℓj

: s+ 1 ≤ i ≤ r, 1 ≤ ℓκ ≤ s}.

The assumption k > τ implies in particular that Λk ⊂ {z ∈ C : |z| > 1}, so
that the eigenvalues of P̂ p0,k

2 have all modulus bigger than 1.
It follows that the span over C of the vectors

{

∂

∂ξk
α,ℓ

}

|α|=k,1≤ℓ≤d
(which is

an invariant subspace for the complex linear extension of d ˜ψ(k)(0) due to the
triangular form of the matrix above) is generated by the union of generalized
eigenspaces relative to eigenvalues of modulus bigger than 1. In particular, none
of the ∂

∂ξk
α,ℓ

belong to E(k),s, the stable space for d ˜ψ(k)(0), and E(k),s projects

injectively into the factor Rn ×∏

1≤j≤k−1R
d ⊗ Symj(Rm).

Let S(k) be the (real-analytic) stable manifold for ˜ψ(k) through 0. From the
fact that T0(S(k)) = E(k),s and the arguments above follows that there exist
functions {Fα,ℓ}|α|=k,1≤ℓ≤d, locally defined on a neighborhood of 0 in R

n ×
∏

1≤j≤k−1R
d ⊗ Symj(Rm) and of class Cω, such that

S(k) ⊂ Z =
⋂

|α|=k,1≤ℓ≤d

{ξkα,ℓ = Fα,ℓ(p, ξ
1, . . . , ξk−1)}

around the origin in R
n ×∏

1≤j≤k R
d ⊗ Symj(Rm).

Our next observation is that the prolongation M(k) of M is locally con-
tained in S(k), and thus in Z. Indeed since M is of class Ck+1 we have from
Corollary 4.3 that the orbit under ˜ψ(k) of any point of M(k) close enough to 0
is exponentially convergent to the origin, thus Theorem 2.1 implies that locally
M(k) ⊂ S(k).

It follows that the map f = (f1, . . . , fd) locally satisfies the (overdetermined)
system of partial differential equations with real-analytic coefficients

(7) ∂αfi(x) = Fα,i(x, f(x), (∂βfκ(x))|β|<k,1≤κ≤d) for all |α| = k, 1 ≤ i ≤ d,

∂αfi(0) = 0 for all |α| < k, 1 ≤ i ≤ d.

The fact that f is of class Cω around 0 follows then from (7) via, for instance,
an iterative application of the Cauchy-Kowalevski theorem.

Indeed, putting x = (x1, . . . , xm) we can first show that f(x1, 0),
(∂βfκ(x1, 0))|β|<k,1≤κ≤d are of class Cω. Defining

V : R → W = R
d ×

∏

1≤j≤k−1

R
d ⊗ Symj(Rm)
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as V(x1) = (f(x1, 0), ∂βfκ(x1, 0)) we have by (7) that V(0) = 0 and dV
dx1

(x1) =
(LV(x1),H(x1,V(x1))) where L is a linear operator acting on W and H(t,V)
is a map of class Cω defined on R×W whose components are given by

H(t,V) = Fα,i(t, 0,Vβ,κ), 1 ≤ i ≤ d, |α| = k, α1 ≥ 1.

The unique analytic solution of this ODE is given by V(x1).
For the inductive step, assume that f(x1, . . . , xℓ−1, 0), (∂βfκ(x1, . . . ,

xℓ−1, 0))|β|<k,1≤κ≤d are analytic on R
ℓ−1 ⊂ R

m and let V(x′, xℓ) = (f(x′, xℓ, 0),
∂βfκ(x

′, xℓ, 0)) where x′ = (x1, . . . , xℓ−1). V satisfies a system of the kind
∂V
∂xℓ

(x′, xℓ) = (LV(x′, xℓ),H(x′, xℓ,V(x′, xℓ))) with real analytic boundary con-

ditions V(x′, 0) = (f(x′, 0), ∂βfκ(x
′, 0)), where again L is a suitable linear op-

erator and H is a real-analytic map whose components are a certain subfamily
of the Fα,i. By the Cauchy-Kowalevski theorem, we have that V(x′, xℓ) is the
unique analytic solution of this system. �

Rema r k 1. If we just assume ψ to be a diffeomorphism of class Ck′ with
k′ ≥ k+2, the same proof can still be applied to show that M is in fact of class
Ck′ as soon as it is of class Ck+1. Indeed, in this case we have that S(k), and
hence each Fα,i, is of class C

k′−k. Then (7) implies that f is of class Ck′ by the
standard bootstrap argument: we first have that each fα,i is of class C2 since
both Fα,i and its arguments (∂βfκ(x))|β|<k,1≤κ≤d are of class at least C2. This

implies that f is of class Ck+2, and applying recursively the same argument we
conclude that f is of class Ck′.

5 - Locally closed subsets

Let K ⊂ R
n be a locally closed subset; from [6], [7] follows that if K is

C1-homogeneous then it is locally a submanifold of class C1. We wish to give
a simple argument showing that this result implies that the same is true for
Ck-homogeneity, k ∈ N (and thus also for C∞-homogeneity). The inductive
procedure we use is analogous to the one employed in [8]; however, our argument
relies on the results in [6], [7] as the basis for the induction (while the one in
[8] does not) and thus is somewhat simpler.

Let M ⊂ R
n be a m-dimensional submanifold of class C1, and let M =

{(p, TpM) : p ∈ M} ⊂ R
n × Gr(m,Rn) be the 1st-jet prolongation of M .

Choosing coordinates (x, y) for R
n ∼= R

m(x) × R
n−m(y), x = (x1, . . . , xm),

y = (y1, . . . , yn−m), and assuming that 0 ∈ M , T0(M) = R
m(x), we can express

M locally as a graph M = {y = f(x)} for a suitable f ∈ C1(Rm,Rn−m). Then
M can be locally written as M = {y = f(x), ξ = df(x)} where we denote
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by ξ = (ξjℓ)
1≤ℓ≤n−m
1≤j≤m the local coordinates for a chart of Gr(m,Rn) and by df

the differential matrix of f (since the arguments are all local, from now on we
restrict to a neighborhood of 0 and we identify Gr(m,Rn) ∼= R

m(n−m)). It is
then clear that M is a locally closed subset of Rn × Gr(m,Rn) – being the
graph of a continuous map – and it is a (m-dimensional) submanifold of class
Ck if M is a submanifold of class Ck+1, k ≥ 1.

The converse is not true: M can be a submanifold of class Cω even if M is
not more than C1-smooth (for example M = {y = x4/3} ⊂ R

2, see the remark
after Lemma 7.1 in [8]). Nevertheless

L emma 5.1. Suppose that M is a submanifold of class Ck, k ≥ 1. Then

there is a non-empty open set U ⊂ M such that M ∩ U is of class Ck+1.

P r o o f. Let π be the projection π : Rn ×Gr(m,Rn) → R
m, π(x, y, ξ) = x.

By construction, π|M is one to one; furthermore M is m-dimensional, since
π|M : M → R

m is a local homeomorphism. It follows that min{dimker π|TqM :
q ∈ M} = 0, otherwise by the rank theorem there would exist x̃ ∈ R

m such
that π−1(x̃) ∩ M is a positive dimensional manifold. Choose q0 ∈ M such
that kerπ|Tq0

M = {0}, and let x0 = π(q0). By the implicit function theorem
we have that, around q0, M can be written as the graph of a map F of class
Ck defined on a neighborhood V of x0 in R

m. By construction we must have
F (x) = (f(x), df(x)) for x ∈ V , hence f is of class Ck+1 around x0. �

Rema r k 2. In fact, the open set U in Lemma 5.1 is dense in M .

We claim that, for any m,n, k ∈ N, an m-dimensional submanifold of Rn of
class C1 which is Ck-homogeneous is of class Ck. Assume that this is true for
all k ≤ k0 (k0 ≥ 1) and let M ⊂ R

n be an m-dimensional Ck0+1-homogeneous
submanifold of class C1.

As discussed in section 3, any Ck0+1-smooth local diffeomorphism ψ of Rn

prolongs to a Ck0-smooth local diffeomorphism ˜ψ of Rn×Gr(m,Rn) (by using
the action of dψ on the m-planes), and ˜ψ(M) ⊂ M if ψ(M) ⊂ M . Hence from
the Ck0+1-homogeneity of M follows that M is Ck0-homogeneous. Since M is
locally closed, by [6], [7] we have that M is a submanifold of class C1. The
inductive assumption then implies that M is of class Ck0 . By Lemma 5.1 there
is an open set U �= ∅ such that M ∩U is of class Ck0+1: by homogeneity, then,
M is of class Ck0+1 everywhere.
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6 - Planar curves

In this section, we prove some more precise analyticity statements that can
be given in low dimension. We will show that curves in R

2 which are invariant
under a diffeomorphism germ ψ must be analytic (at least outside 0) even if
they are not contracting, provided that ψ is not an involution and belongs to
certain special subgroups of germs. In the proof, for the contracting case, we
also recover in a more elementary way the statement of Theorem 1.2.

We start with the group Hol(C, 0) of germs of holomorphic diffeomorphisms
defined around the origin in C ∼= R

2 and fixing the origin.

P r o p o s i t i o n 6.1. Let f ∈ Hol(C, 0), f not an involution.Let γ ⊂ C be

a (real) embedded curve of class C1. Suppose that 0 ∈ γ and γ is invariant

under f . Then there exists a neighborhood U of 0 in C such that U ∩ γ \ {0} is

real-analytic.

P r o o f. Write the expansion of f around 0 as f(z) = λz + O(z2), λ ∈ C.
Since the differential of f at 0 must preserve the direction T0(γ), it follows that
λ ∈ R \ {0}. Up to replacing f with f◦2 = f ◦ f (which is not the identity
since f is not an involution), we can assume λ > 0, and possibly considering
f−1 instead of f we can further suppose λ ≤ 1.

If 0 < λ < 1, then f is holomorphically conjugated to its linearization
˜f(z) = λz (see for example [2, Theorem 2.1]); let γ̃ be the image of γ under the
linearizing change of coordinates. Up to a rotation, we can assume that T0(γ̃)
is horizontal (i.e. generated by ∂/∂x). The analyticity of γ will follow from the
following

C l a im . γ̃ coincides with the x-axis.

Indeed, otherwise, choose p ∈ γ̃ such that arg Tp(γ̃) �= 0 (here and in the
rest of the proof, we are going to improperly apply the function arg to linear
subspaces T ⊂ C, defined modulo multiples of π as the argument of a vector gen-
erating T ). By invariance of γ̃ under ˜f we have that arg Tpj (γ̃) = arg Tp(γ̃) �= 0

for all j ∈ N, where pj = ˜f◦j(p) = λjp: it follows that γ̃ is not of class C1 at 0,
a contradiction. Therefore, in this case the curve γ̃ (and hence γ) is actually
real-analytic around 0.

To treat the case when λ = 1 (the parabolic case) we will use the Leau-Fatou
flower theorem, which provides a description of the dynamics of such a germ
f . Since we need to examine the proof of this result rather than its statement
alone, we shall refer to the proof which is contained in [2, Theorem 2.12], and
employ the notation set up in there.
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We first recall the essential features of the theorem. We can write the Taylor
expansion of f as f(z) = z+ak+1z

k+1+O(zk+2) with k ≥ 1, ak+1 ∈ C\{0}. The
k directions v+1 , . . . , v

+
k ∈ bD ∼= S1 which solve the equation

ak+1

|ak+1|
vk = −1 are

called attracting directions for f . Then there exist simply connected domains
P
v
+

1

, . . . , P
v
+

k
⊂ C with the following properties:

(1) 0 ∈ bP
v
+

j
and f(P

v
+

j
) ⊂ P

v
+

j
;

(2) limn→∞ f◦n(z) = 0 and limn→∞

f◦n(z)

|f◦n(z)| = v+j for all z ∈ P
v+j

.

The domain P
v
+

j
is called attracting petal centered at the direction v+j . The

repelling directions v−j and the repelling petals P
v−j

are the attracting direc-

tions/petals associated to the germ f−1. The attracting and repelling petals
can be so chosen that their union (plus the point 0) is a neighborhood of 0 in
C; also, from the proof follows that each petal locally contains an open sector
centered at 0. Moreover, for any j = 1, . . . , k the action f|P

v
+

j

is holomorphi-

cally conjugated to the map ζ → ζ + 1, defined on a half-plane of the form
{ζ ∈ C : Reζ > C} for some C > 0.

Let P be a petal which intersects γ; without loss of generality (possibly
considering f−1 in place of f and conjugating with a complex linear transfor-
mation) we can suppose that P is an attracting petal, centered at v = 1. From
the property (2) above we deduce that T0(γ) is the x-axis; it also follows that
γ ∩ {x > 0} is locally contained in P .

Let Ψ be a map conjugating f to ζ → ζ + 1 (such a Ψ is called Fatou

coordinate), and let γ̃ be the image of γ under Ψ. Our aim is to show that γ̃ is
of the form {y = y0} for some y0 ∈ R. If γ̃ does not coincide with a horizontal
line, there exists p ∈ γ̃ such that arg Tp(γ̃) = α �= 0. This of course also implies
arg Tp+n(γ̃) = α for all n ∈ N.

We are thus lead to computing the differential d(Ψ−1) at the point p + n,
which is given by the multiplication by a certain ξn ∈ C \ {0}. We are going
to show that arg ξn → π as n → ∞: posing qn = Ψ−1(p+ n), this would imply
that qn → 0 and arg Tqn(γ) = arg ξn + α → π + α �= {0, π} as n → ∞, which
would contradict the fact that γ is of class C1.

We turn then to the construction of the Fatou coordinate Ψ; as mentioned
above, we follow the one given in [2]. The map Ψ is obtained in two steps.
First of all, the restriction of f to a domain of the kind {|zk − δ| < δ} (for
a small δ > 0) is conjugated, through the map ψ(z) = 1/(kzk), to a function
ϕ : Hδ → Hδ of the kind

(8) ϕ(z) = z + 1 + b/z +R(z)
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where R(z) = O(1/z2) and Hδ = {Rew > 1/2kδ}. Afterwards, ϕ is conjugated
to the translation ζ → ζ +1 through a holomorphic mapping σ : Hδ → C (that
is to say, σ ◦ ϕ(z) = σ(z) + 1), so that Ψ = σ ◦ ψ.

Let p ∈ γ̃ be the point chosen above. We set r = σ−1(p) and, for n ∈ N,
rn = σ−1(p + n). It also follows that rn = ψ(qn) (where the points qn =
Ψ−1(p+ n) are defined above) and that rn = ϕ◦n(r). We have that arg rn → 0
as n → ∞. Indeed, for every z ∈ Hδ one has (see [2, Th. 2.12, Eq. (2.18)])
|ϕ◦n(z)| = O(n): by (8), this implies rn+1 − rn = 1 + O(1/n). It follows that
for any ǫ > 0 there exists n0 ∈ N such that | arg(rn− rn0

)| < ǫ for all n > n0 (in
fact, for all large n, rn+1 is contained in a sector centered at rn with opening
angle less than ǫ), which in turn implies that | arg rn| < 2ǫ for all large enough
n, as claimed.

Computing, now, the derivative of ψ−1(z) = 1/(kz)1/k gives ∂
∂z
ψ−1(z) =

−1/(kz)
k+1

k . It follows that arg( ∂
∂z
ψ−1(rn)) = π − k+1

k
arg rn → π as n → ∞.

Since Ψ−1 = ψ−1 ◦ σ−1, with ξn as previously defined we get ξn = ∂
∂z
ψ−1(rn) ·

∂
∂z
σ−1(p+n), thus to show that arg ξn → π it is sufficient to show that ∂

∂z
σ−1(p+

n) → 1 or, equivalently, that ∂
∂z
σ(rn) → 1 as n → ∞. We will concentrate on

the latter.

The mapping σ is constructed as the limit of the functions σn(z) = ϕ◦n(z)−
n− b log n; it can be shown that the sequence {σn}n∈N is uniformly convergent
on compact subsets of Hδ. We will prove that, for any ǫ > 0, we can fix a
sufficient large n0 such that | ∂

∂z
σj(rn)− 1| = | ∂

∂z
ϕ◦j(rn)− 1| < ǫ for all n ≥ n0

and j ∈ N. This will imply that | ∂
∂z
σ(rn) − 1| < ǫ for n ≥ n0, which is the

desired conclusion.

In order to do this, we need to estimate the derivatives of ϕ◦j . Let R(z) be
the function appearing in the expression (8); then R is not obtained as a conver-
gent series in 1/z (indeed, one should not expect ϕ to extend meromorphically to
a neighborhood of ∞). However, from the computation performed in the proof
of the Leau-Fatou theorem follows that there is a convergent series S ∈ C{x},
S(x) =

∑

i≥2k six
i, such that R(z) = S(1/z

1

k ). Since S′(x) ≤ C0|x|2k−1 for
some C0 > 0 and

∂

∂z
R(z) = S′

(

1

z
1

k

)

·
(

− 1

z
k+1

k

)

,

we get | ∂
∂z
R(z)| ≤ C0/|z|

2k−1

k
+ k+1

k = C0/|z|3. Posing T (z) = −b/z2 + ∂
∂z
R(z),

we deduce that |T (z)| ≤ C1/|z|2 for some C1 > 0 and ∂
∂z
ϕ(z) = 1+ T (z). Now

from (8) we get, for all z ∈ Hδ,

ϕ◦(j+1)(z) = ϕ◦j(z) + 1 +
b

ϕ◦j(z)
+R(ϕ◦j(z))
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differentiating which we obtain

∂

∂z
ϕ◦(j+1)(z)− ∂

∂z
ϕ◦j(z) = T (ϕ◦j(z)) · ∂

∂z
ϕ◦j(z)

so that

(9)

∣

∣

∣

∣

∂

∂z
ϕ◦(j+1)(z)− ∂

∂z
ϕ◦j(z)

∣

∣

∣

∣

≤ C1

|ϕ◦j(z)|2 ·
∣

∣

∣

∣

∂

∂z
ϕ◦j(z)

∣

∣

∣

∣

.

Fix any small ǫ > 0. Then we can select n1 ∈ N such that
∑

∞

n=n1
1/n2 < ǫ/8C1.

Choose a point z1 ∈ Hδ such that Re z1 ≥ n1/2. Again from the proof of the
Leau-Fatou theorem in [2] (see Th. 2.12, Eq. (2.15)), we get that

(10) Reϕ◦j(z) > Re z + j/2 (⇒ |ϕ◦j(z)| > Re z + j/2)

for all z ∈ Hδ, j ∈ N. We will now prove by induction that | ∂
∂z
ϕ◦j(z1)− 1| < ǫ

for all j ∈ N. For j = 1, by definition of T we have ∂
∂z
ϕ(z1)− 1 = T (z1), hence

| ∂
∂z
ϕ(z1)− 1| = |T (z1)| ≤ C1/|z1|2 ≤ 4C1/(n1)

2 < ǫ/2. Suppose, then, that for

some j ∈ N we have | ∂
∂z
ϕ◦j(z1)− 1| ≤ 8C1

∑n1+j−1
i=n1

1/i2 < ǫ; in particular, this

implies | ∂
∂z
ϕ◦j(z1)| < 2. Using (9) and (10), we get

∣

∣

∣

∣

∂

∂z
ϕ◦(j+1)(z1)− 1

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂

∂z
ϕ◦(j+1)(z1)−

∂

∂z
ϕ◦j(z1)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂

∂z
ϕ◦j(z1)− 1

∣

∣

∣

∣

≤ 4C1

(n1 + j)2
· 2 + 8C1

n1+j−1
∑

i=n1

1

i2
= 8C1

n1+j
∑

i=n1

1

i2
< ǫ,

which gives the inductive step. Summing up, the previous argument provides
the estimate | ∂

∂z
σ(z1)− 1| < ǫ for all z1 satisfying Re z1 ≥ n1/2. On the other

hand, by (10) follows immediately that Re rn = Reϕ◦n(r) → ∞ as n → ∞.
Together with the previous statement, this implies ∂

∂z
σ(rn) → 1 as n → ∞,

which concludes the proof of the lemma. �

Next, we are interested in the case of the group Shrω(R2, 0) of germs of
analytic shears, that is diffeomorphisms of the kind φ(x, y) = (h(x), y + g(x))
where h, g : R → R are real-analytic, h(0) = g(0) = 0 and h′(0) = 0.

P r o p o s i t i o n 6.2. Let φ ∈ Shrω(R2, 0), φ not an involution, and let γ ⊂
R
2 be a φ-invariant germ of curve around 0, which is of the form γ = {y = f(x)}

for some continuous function f . Then γ \ {0} is of class Cω; moreover, γ is

uniquely determined.
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P r o o f. The shear φ has the following form:

φ(x, y) = (h(x), y + g(x))

where h, g are germs of functions real-analytic around 0 in R and dh(0)/dx �= 0.
We can write h(x) = λx + O(x2), where λ ∈ R \ {0}. Replacing φ by φ◦2 or
φ◦(−2) (none of them is the identity since φ is not an involution) if necessary,
we can further assume that 0 < λ ≤ 1.

Suppose, first, that 0 < λ < 1. The local holomorphic extension h(z)
of h to a neighborhood of 0 in C has the form h(z) = λz + O(z2), hence
it is linearizable by a local holomorphic change of coordinates η(z). Since
the restriction h(x) of h(z) to the real axis is real-valued, the same holds for
the restriction η(x) of η(z) (cfr. [2, Proposition 1.9], where the coefficients
of the series defining η are explicitly computed). Conjugating φ by the map
(x, y) → (η(x), y), it follows that in the new coordinates we can assume it
to take the form φ(x, y) = (λx, y + g1(x)) for a certain g1 ∈ Cω(R, 0). Let
{y = f1(x)} be the expression of γ in these coordinates. The invariance of γ
under φ, then, translates into the following identity

(11) f1(x) + g1(x) = f1(λx),

holding for x in a small enough neighborhood of 0 in R. We can show by a direct
power series computation that (11) admits, locally, a real-analytic solution ˜f1.
Indeed, if g1(x) =

∑

∞

j=1 ajx
j, looking for ˜f1 of the form ˜f1(x) =

∑

∞

j=1 bjx
j we

get
∞
∑

j=1

(1− λj)bjx
j = −

∞
∑

j=1

ajx
j

which has the unique solution bj = −aj/(1 − λj), j ∈ N. From 0 < λ < 1

follows that the factor (1− λj)−1 is uniformly bounded in j, thus the series ˜f1
has a positive radius of convergence. Let γ̃ be the germ of real-analytic curve
defined by {y = ˜f1(x)}; we claim that γ = γ̃.

In order to verify the claim, fix C > 0 such that |g1(x)| ≤ C|x| in a neigh-
borhood of 0, and let p0 ∈ γ, p0 = (x0, y0). Then, if {pj}j∈N is the orbit of p0
under φ (i.e. pj = φ◦j(p0)) we also have {pj} ⊂ γ by invariance. One verifies
by induction that

pj = (xj , yj) = (λjx0, y0 +

j−1
∑

k=0

g1(λ
kx0))

for all j ≥ 1. Now, since pj ∈ γ and xj → 0 as j → ∞, from the fact
that 0 ∈ γ follows that we must also have yj → 0 as j → ∞. It follows
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that Σ(x0) =
∑

∞

k=0 g1(λ
kx0) converges and that y0 = −Σ(x0) is uniquely

determined by the abscissa x0 and by the components of the shear φ. We deduce
that f1(x) = −Σ(x) so that γ is in turn uniquely determined, hence γ = γ̃ is
real-analytic. We also observe that, since

∑

k |g1(λkx)| ≤ C|x|(1 − λ)−1, the
series defining Σ(x) is in fact absolutely convergent; one can also check by a
straightforward power series computation that

∑

k g1(λ
kx) =

∑

j bjx
j (with bj

as above).

We turn now to the case λ = 1. We note that we cannot have h(x) ≡ x;
otherwise, in view of (11) (with λ = 1) we would also get g(x) ≡ 0, against the
assumption that φ is a non-trivial germ. After a linear change of coordinates,
and possibly taking φ−1 in place of φ, we can thus assume that h has the
expression h(x) = x− xk+1 +O(xk+2) for some k ≥ 1. A further real-analytic
conjugation of h allows to put it in the form h(x) = x−xk+1+ax2k+1+O(x2k+2)
(see [2, Remark 1.14]). The equation expressing the invariance of γ under φ
now reads

(12) f(x) + g(x) = f(h(x)) = f(x+O(xk+1)).

Denote by g(w) the holomorphic extension of g to a neighborhood U of 0 in
Cw, and let g(w) = gℓw

ℓ + O(wℓ+1), ℓ ≥ 1 be the Taylor expansion of g. Note
that, in the case when f is of class C∞, taking the k-order Taylor expansion
about 0 of both sides in (12) we get that ℓ ≥ k+1; we will show that the same
conclusion can be drawn if f is just assumed to be continuous. For a large
enough C > 0, we have 1

C
|w|ℓ ≤ |g(w)| ≤ C|w|ℓ for all w ∈ U .

As before, let h(z) = z−zk+1+az2k+1+O(z2k+2) be the local holomorphic
extension of h to a neighborhood of 0 in Cz, z = x + iu. In what follows we
recycle the terminology and the notation employed in Lemma 6.1. Since the
coefficient of zk+1 is −1 we have that v = 1 ∈ S1 is an attracting direction
for the parabolic germ h. By the Leau-Fatou flower theorem, the positive x-
axis is the center of (hence locally contained in) an attracting petal P ⊂ C.
Consider the map ψ(z) = 1/kzk, conjugating h|P to a function ϕ : Hδ → Hδ

of the kind ϕ(z) = z + 1 + b/z + R(z). We recall, from equation (10), that
|ϕ◦j(z)| > Re z + j/2 > j/2 for all z ∈ Hδ, j ∈ N.

We can choose a small enough R > 0 such that h◦j(z) ∈ U for all z ∈
BR(0) ∩ P and j ∈ N. Let Br(x) (for small x, r > 0) be a ball contained
in BR(0) ∩ P ; then ψ(Br(x)) ⊂ Hδ, which in view of the previous paragraph
implies |ϕ◦j(ψ(z))| > j/2 for all z ∈ Br(x), j ∈ N. Composing with the inverse
of ψ we get

(13) |h◦j(z)| = |ψ−1 ◦ ϕ◦j ◦ ψ(z)| = 1

(k|ϕ◦j(ψ(z))|) 1

k

≤ D

j
1

k
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for all z ∈ Br(x), j ∈ N, whereD = (2/k)1/k . On the other hand, for any z ∈ Hδ

we have |ϕ◦j(z)| = O(j) (see Lemma 6.1), so that with the same argument we
get h◦j(x′) ≥ D′/j1/k for all small enough x′ ∈ R

+ and j ∈ N, where D′ > 0 is
a constant depending on x′ – note that h◦j(x′) > 0 for small x′ > 0.

Suppose first that ℓ ≤ k; by the choice of the constant C above, we get

for any small x′ > 0 |g(h◦j(x′))| ≥ D′ℓ/Cj
ℓ
k ≥ D′′/j. Moreover, the sign of

g(h◦j(x′)) is constant for j ∈ N, depending only on the sign of gℓ. It follows that
in the case ℓ ≤ k the series

∑

∞

j=0 g(h
◦j(x′)) is divergent for any small x′ > 0.

If instead ℓ ≥ k+1, by (13) and the choice of C we have that |g(h◦j(z))| ≤
CDk+1/j

k+1

k for all z ∈ Br(x), j ∈ N. It follows that the series
∑

∞

j=0 g(h
◦j(z))

converges uniformly over Br(x) to a holomorphic function Σ(z). Since for any
x > 0 small enough there exists r > 0 such that Br(x) ⊂ BR(0) ∩ P , we
conclude that in the case ℓ ≥ k+1 the series Σ(x) =

∑

∞

j=0 g(h
◦j(x)) converges

and defines a real-analytic function on a neighborhood of 0 in R
+.

We will now show that γ ∩ {x > 0} is real-analytic in a neighborhood of 0
(the treatment of γ ∩ {x < 0} is similar). Fix p0 = (x0, y0) ∈ γ with x0 > 0
small enough, and let {pj = φ◦j(p0)} be the orbit of p0 under the shear map φ.
In the same way as before, we can inductively compute

pj = (xj , yj) = (h◦j(x0), y0 +

j−1
∑

k=0

g(h◦k(x0))

for all j ∈ N. By the Leau-Fatou theorem, since x0 belongs to the attracting
petal P for h(z), we have xj → 0 as j → ∞; since {pj} ⊂ γ and 0 ∈ γ, we must
again have yj → 0. It follows that the series

∑

∞

k=0 g(h
◦k(x0)) converges – hence,

by the discussion above, ℓ ≥ k+1 – and that y0 = −∑

∞

k=0 g(h
◦k(x0)) = −Σ(x0).

In conclusion, we have that f(x) = −Σ(x) is real-analytic for x > 0, hence
γ ∩ {x > 0} is real-analytic and, furthermore, it is univocally determined by
the germ φ (since the series defining Σ(x) only depends on g and h). �

Rema r k 3. In general, even when a shear ψ ∈ Shrω(R2, 0) admits a
(unique) invariant curve, this needs not be real-analytic around 0. For instance,
defining

ψ(x, y) =

(

x

1− x
, y + x2

)

then one can verify that ψ admits an (at least continuous) invariant curve γ,
but γ is not real-analytic – although γ \ {0} is. Indeed, following the proof of
Lemma 6.2 we can define f(0) = 0 and

f(x) = −
∞
∑

k=0

(

x

1− kx

)2

for x < 0, f(x) =

∞
∑

k=1

(

x

1 + kx

)2

for x > 0
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so that γ = {y = f(x)} is the unique invariant curve for ψ. Clearly γ \ {0} is
real-analytic, but a straightforward computation shows that f is not of class
C2 around 0. One can also check that ψ admits a unique formal invariant curve
of the form {y = ̂f(x)} with ̂f ∈ R[[x]]: it follows that ̂f cannot be convergent,
otherwise by Lemma 6.2 its sum would locally coincide with f(x). As it turns
out, the coefficients of ̂f are in fact given by the Bernoulli numbers (I thank
H.C. Herbig for this observation).
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