Riv. Mat. Univ. Parma, Vol. 11 (2020), 89-98

SIMONE BORGHESI

Homotopy theory and complex geometry

Abstract. Abstract homotopy theory provides a framework in which
any site § can be embedded and its objects studied. In this context,
objects of the site appear distinguished among more general ones. The
purpose of this framework is to create an environment where the site
S and supplementary “combinatorial/homotopical” data can blend to-
gether. Such a blending is achieved by a well-established mathematical
procedure, the localization. The challenge in using this framework in
practice is to find close ties between these general objects and the ones
in S. I will describe the results that G. Tomassini and I have obtained
on these topics.
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1 - Motivation

Roughly speaking, homotopy theory is the study of topological spaces mod-
ulo relations coming from homotopic continuous maps. Since the first half of
the past century, it appeared that many questions involving topological spaces
were homotopy invariant. This observation motivated the creation of functors
from the category Top of topological spaces and continuous maps to abelian
categories (mostly modules over rings) to detect finer structures. Such functors
are called (co)homology theories. In the second half of the 1950s, mathemati-
cians studied how to transform the category Top in a way that (co)homology
theories would loose fewer information, thus effectively making T'op more sim-
ilar to the abelian categories used to study it. It immediately appeared that
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endowing Top of the necessary structures, in a mathematically coherent way,
was quite a feat. A new generation of mathematicians, mostly focused on these
topics, produced a fair amount of literature and results, but it was not until
the first half of the 1990s, when Voevodsky thoroughly employed them, that
they assumed a definite and organic form.

The interdisciplinary branch of mathematics identified with the use of ab-
stract homotopy theory on rigid objects, such as algebraic varieties, was ef-
fectively created by him in those years. According to Beilinson’s foundational
ideas, there should exist a cohomology theory defined on algebraic varieties,
motivic cohomology, very similar to singular cohomology. Few candidates had
been proposed few years earlier, but several of Beilinson’s conjectural properties
were yet to be proven. Among them, was not present one which is fundamen-
tal to singular cohomology: the natural action of the Steenrod algebra on the
graded cohomology ring. Assuming the existence of such an action in an ap-
propriate form, Voevodsky was able to prove a very deep result in algebraic
k-theory: Milnor’s conjecture. There is more than one way to construct the
well known action of this algebra on singular cohomology. The one chosen by
Voevodsky in his application is the longest, required the creation of several
auxiliary categories, and the writing of several hundred pages of papers. Some
of these foundational results are proved quite in generality, allowing for their
use in contexts different from algebraic geometry. Omne of them is complex
geometry.

As it occasionally happens in mathematics, it is better to consider the math-
ematical object we wish to study as an object of a particular kind among
more general ones, created to overcome shortcomings that the particular ones
have. The category of complex spaces and holomorphic maps S is faithfully
fully embedded in larger categories Prshp(S) and A°PPrshp(S), the category of
presheaves of sets and simplicial presheaves of sets over S, respectively. The
latter serves as the substrate on which we act with various localizations, eventu-
ally obtaining the categories H, and H. The category Prshr(S) is closed under
limits and colimits (quotients, in particular) and A°Prshy(S) adds combina-
torial data that, at first glance, may appear to be solely useful to physically
enable to perform localizations. A deeper understanding of such a combinato-
rial structure, reveals surprising connections with isomorphisms of the category
S (see Section 4). Moreover, we discovered that the structures on A°’Prshr(S)
allowing to obtain the category H are intimately related to the notion of hy-
perbolicity of complex spaces (see Section 3 and 4.1).
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2 - The categories

Let S denote the category of complex spaces and holomorphic maps. The
Yoneda embedding & — Prshp(S) is a faithfully full embedding, that identifies
any complex space X with its representable presheaf Hol(—, X'). The category
Prshy(S) is both complete and cocomplete, however the Yoneda embedding is
not well behaved with existing colimits in §. Indeed, consider the diagram

CP! —~ CP?

pt

It has a point pt as colimit in the category of complex spaces, but the colimit
presheaf of the Yoneda embedding of the diagram is not the point presheaf
Hol(—,pt)!. This observation highlights the kind of problems we face when
attempting to add general colimits to the category of complex spaces. Adding
new objects to a category may result in universal properties that were valid in
the initial category are no longer valid in the enlarged one.

In classical homotopy theory, topological spaces and maps are studied “up
to homotopy”. Categorically, this may be translated in “adding inverses” to all
projections X xR — X, for any topological space X. A very reasonable question
is if it is possible to consider complex spaces “up to holotopy’, i.e. if inverting
all projections py : X x C — X for any complex space X would produce a
manageable category. As it will appear later, the resulting homotopy theory
has some exotic aspects: for example, any hyperbolic complex space exhibits
properties making it similar to an individual point in classical homotopy theory.
It so happens that even the category Prshy(S) is not suitable to attempt this
construction, hence we have to further enlarge it. Let A°Prshy(S) be the
category of simplicial presheaves. An object of this category is a diagram
of presheaves F;, i > 0 and morphisms 0y, : F; — F;_1, h = 0,--- ,i (face
morphisms), s : F;_1 — F;, k =0,--- ,i—1 (degeneracy morphisms), satisfying
certain “simplicial relations”. The passage from Prsh(S) to A°PPrshy(S) was
initially thought to be merely a technical complication necessary to be able to
invert all the maps px within the Bousfield localization’s framework.

One more recent surprising discovery is that A°’Prshp(S) is intimately re-
lated to the category Grpdg of S-groupoids, if we endow the former category
by a certain localizing model structure. Moreover, stacks in Grpdg correspond

for instance, the preshaf F'(X) = {continuous functions X — C} has sections on CP? that
are constant on CP! but are not themselves constant, hence the sheaf F negates the universal
property that Hol(—, pt) must satisfy in order to be the colimit in Prshp(S).
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to very specific objects in the model structure on A°?Prshp(S) (see [4]). Since
passing from S-groupoids to stacks, and eventually to (complex) analytic stacks,
keeps adding classical “complex spaces flavour” to these objects, we realize that
under the thick layer of abstract nonsense inherent to simplicial presheaves still
hides some complex analytical content. The purpose of model structures on the
category of simplicial preshaves is to represent the morphisms we wish to in-
vert as weak equivalences. When this is possible, a well-established machinery
is used to make the localized categories more manegeable. In our applications
we considered two weak equivalences: the simplicial and the C-weak equiva-
lence, the former being a stronger condition than the latter. Their associated
homotopy (localized) categories are denoted by Hs and H, respectively.

3 - Hyperbolicity

One observation started our interest in these techniques applied to com-
plex spaces. A particular family of simplicial presheaves is fundamental in
the localization process: X € A%Prshy(S) is called C-local if it is simpli-
cially fibrant and the projections p : J x C — )Y induce bijection of sets
Homy, (Y, X) — Homy (Y x C, &) for all Y € A°Prshp(S). We will come
back later on the first condition. The second one reminds very much of a
hyperbolicity-type condition. Indeed, let me recall Brody’s Theorem:

a compact complex space X is Kobayashi hyperbolic if and only if any holo-
morphic map f: C — X is constant.

This is equivalent to require that all projections Y xC — Y induce bijections
Hol(Y,X) — Hol(Y x C,X) for all complex spaces Y. There is an evident
similarity between the definitions of C-locality and this condition, which I will
call Brody hyperbolicity. In fact, the relation between these two concepts is
stronger (Theorem 3.1, p.10, [1]): a complex space X is C-local if and only
if for any complex space Y, the projection ¥ x C — Y induces bijections
Hol(Y, X) — Hol(Y x C, X). Since any complex space is simplicially fibrant
in A°PPrshy(S) (ref. Theorem 2.3, [3]), we get a generalization of complex
space hyperbolicity by defining a simplicial presheaf to be Brody hyperbolic if
it is C-local. A strictly related notion is the one of Brody hyperbolic complex
space X modulo a closed subspace C C X. This is a complex space such
that any holomorphic map C — X has image contained in C. We define a
simplicial presheaf X’ to be hyperbolic modulo a subsimplicial presheaf C if X /C
is a hyperbolic simplicial presheaf. Even in this case, the notion for simplicial
presheaves extends the one for complex spaces (see Corollary 3.3, p.11, [1]).

The remark on hyperbolicity alone allows mathematicians to apply a num-



15] HOMOTOPY THEORY AND COMPLEX GEOMETRY 93

ber of general model categories results to complex spaces. Among them, I would
like to mention the existence of a hyperbolic resolution functor. An interesting
question is if it makes sense to determine the “closest” hyperbolic object to a
complex space X, in a functorial way. One answer is provided by the following

Theorem 3.1 (cfr. page 9, [1]). There exists an hyperbolic resolution
functor ($),t) with the following properties:

1. 9 : APPrshp(S) — A°PPrshr(S) is a functor and v : 1d — $) is a natural
transformation;

H(X) is simplicially fibrant and hyperbolic for any X € A°PPrshp(S);
ty 1 X = 9(X) is injective and a C-weak equivalence;

if Y is hyperbolic, then r: Y — (V) is a simplicial weak equivalence;

SR

if f: X =Y is a C-weak equivalence, H(f) : H(X) — H(Y) is a simplical

weak equivalence.

A consequence of this theorem is that $(X’) is indeed the “closest” hy-
perbolic simplicial sheaf to X: let ) be a hyperbolic simplicial presheaf and
f X = Y any morphism of simplicial presheaves, then there exists a unique
morphism (in H,) f: $H(X) — Y such that f factors as X — H(X) — V. The
hyperbolic model is essentially unique in the sense that any hyperbolic object in
the class of X' in H is its hyperbolic model; more precisely, two such hyperbolic
simplicial presheaves are simplicially weak equivalent.

Of course, there no such a thing as free lunch and the price to pay for this
general result (there are no assumptions on the simplicial presheaves consid-
ered) is that f is only a morphism in H,, i.e. a fraction in A°PPrshp(S). At a set
theoretic level, one would imagine to obtain a candidate for a hyperbolic model
by “taking quotients” of X by all the images of maps C — X. It is therefore
quite surprising that the canonical morphism ty : X — H(X) is injective. To
understand better the passage from X to $(X), imagine to take the homotopy
quotient of X in the category Hs, instead of the quotient in A°?Prshp(S): that
involves attaching a simplicial cone over C to X (mapping cone). A model for
the simplicial cone over C is (C x A1)/C x A, where A§ is the subsimplicial set
of Al generated by the point Jy(p) € (Al)g, p being the only non-degenerate
point in (A');. The trivialization of maps is done by attaching new combina-
torial data to X to make those maps simplicially homotopic to a constant and
not constant themselves.

These conclusions hold true for complex spaces X, being a particular case
of simplicial presheaves, however, even considering these very special simplicial
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spaces, $(X) will not be representable by a complex space in general. If it
does exist a complex space Y representing the hyperbolic model of a simplicial
presheaf, it is unique up to biholomorphism?. $(C) is represented by a point
since it is isomorphic to C in H and is hyperbolic itself. p, : H(V) — H(X)
is an isomorphism in H3, if p : V — X is a vector bundle, because p is a
C-weak equivalence; if X is a Brody hyperbolic complex space, then it is a
representative of the hyperbolic model of V, since §(V) = X in H,*, thus
in H a fortiori. Intuitively, a non-Brody hyperbolic complex space X whose
hyperbolic model is representable by a Brody hyperbolic complex space is not
very far from being hyperbolic itself. Because of this, we introduced the concept
of weak Brody hyperbolicity for complex spaces: X is weakly Brody hyperbolic
if its hyperbolic model can be represented by a complex space. By using certain
functors, we were able to prove that complex projective spaces CP" are not
weakly Brody hyperbolic, for n > 1 (Section 6, [1]).

3.1 - Holotopy groups

Arguably, the most important functors to study CW complexes in homotopy
theory are the homotopy groups. They are defined as pointed homotopy classes
of pointed continuous maps from n dimensional spheres to the CW-complex. In
the case of complex spaces, they can be used to study the underlying topological
structure, but completely ignore complex structures, should they exist. It would
be nice to have some similar construction, sensitive to the complex structures of
the spaces, although it is impossible to expect such hypothetical groups to have
the striking relationship with homotopy equivalences of homotopy groups. The
naive approach to define homotopy groups, which involves maps from spheres,
halts at the very beginning. Not only odd dimensional spheres cannot have
an almost complex structure, but a classical theorem of Borel and Serre states
that only S? and S% can (and do) have one. Thus, the category of complex
spaces and holomorphic maps is not the correct one to consider complex spaces,
should we wish to study maps from spheres to them. In the paper [6], the
authors did define presheaves involving appropriate homotopy classes of maps
from certain models of spheres in an algebraic context . Motivated by those
constructions, we considered the complex analytic case (Section 4, [1]); the
existence of bounded topologically-contractible objects like the unit Poincaré
disc D made the objects involved even more exotic. Models of circles we used

*Lemma 3.3, [1].
3because of property 5 of Theorem 3.1.
4because of property 4 of Theorem 3.1.
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are: the parabolic C/(011 1), the hyperbolic D/(z1 11 z5) and the complex space
C\ 0. The quotients are taken in the category of presheaves, as opposed
to complex spaces. Notice that the hyperbolic disk is, in fact, a family of
circles parametrized by the complex numbers 21 e zo. Morphisms in the pointed
category H, from appropriate smash products of these circles to a simplicial
presheaf X' define holotopy groups (and sets) of X. To give an idea of the
subtleties involved, I mention that one can prove that the parabolic circle is
isomorphic to the simplicial circle S} = A!'/9A!, in the category H, but not
in Hg,. S is a simplicial presheaf comprising just a finite number of points in
any simplicial level, hence the presheaf C/(01II 1) loses any complex analytic
content, when considered in H,. Similarly, we will mention in a moment that
the complex spaces CP™ have a non homotopy-trivial map from S! to them,
despite complex spaces being simplicial presheaves with constant (i.e. trivial)
simplicial structure. Theorem 4.1 of [1] links complex spaces to these functors:
it states that all the holotopy groups of a Brody hyperbolic complex space
vanish, except possibly in dimension 0. This result can be used to show that
a complex space is not weakly Brody hyperbolic, if we are able to provide a
nontrivial holotopy class in positive dimension. This is precisely what we do in
Section 6 of [1]: by means of the topological realization functor, we prove that
the canonical, closed embedding CP! < CP" represents a nontrivial holotopy
class in dimension (2, 1).

4 - Stacks, the geometrization of simplicial sheaves

The algebraic analogue of the category H had been created with the purpose
of determining an appropriate action of the Steenrod operations )y on motivic
cohomolgy groups of simplicial presheaves. The passage from schemes over a
field to simplicial presheaves over the site of schemes with the Nisnevich topol-
ogy, appeared to simply be a complication necessary to make the homotopy
machinery applicable. No algebraic content was apparent on these abstract
gadgets, except what implied by working on a site, hence simplicial dimension
0 data. In the first decade of the years 2000s, abstract homotopy theorists were
able to unravel some of the obscurity inherent in simplicial sheaves, by link-
ing them with S-groupoids and stacks ([4], [5]). These abstract mathematical
objects are categories statisfying an increasing number of conditions, aiming
at making them behave more and more like objects of the base site, algebraic
schemes, in the original applications. Historically, their founding ideas and cre-
ation go back to Grothendieck and Deligne-Mumford. They are motivated by
the interest mathematicians have in endowing moduli “spaces” by geometrical
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structures, allowing them to be studied through classical techniques. The fol-
lowing are the key results relating groupoids and stacks to simplicial presheaves.

Theorem 4.1. There ezists a Quillen equivalence (Tyiq, N) of functors

Toid * (S3) ' A%Prshp(S); — (Grp/S).
and N : (Grp/S)r — (S?) " APPrshp(S) ;.

Where (52)~tA%Prshy(S); is the localized category with respect of mor-
phisms generated by the trivial map fron the simplicial sphere S? — pt, J is
the model structure we endowed the category of simplicial presheaves in order
to create Hs. S is the base site (compex spaces with the strong topology in our
case) and L is a model structure whose weak equivalences strictly relate to the
condition for an S groupoid to be a stack.

Theorem 4.2. The pair of functors (w4, N) induce an equivalence be-
tween the full subcategories of fibrant simplicial presheaves and stacks.

The immediate consequence is that simplicial presheaves with trivial holo-
topy in simplicial degrees 2 and higher maybe thought of as groupoids, via the
explicit functor m,4 and viceversa, via the functor N. Moreover, the obscure
condition making a simplicial presheaf fibrant for the Joyal model structure,
is, in fact, a “gluing” condition making a stack out of a groupoid. Although a
stack structure is still not sufficient to perform constructions that are usual for
complex spaces, it constitutes a huge leap forward towards simplicial sheaves
geometrization. It is the supplementary complex analytic condition on the stack
which makes them manageable: for a stack ), this amounts to have an atlas
p: X — Y, smooth and surjective map, and assume that the diagonal mor-
phism Y — Y x ) is representable. At times, we had to assume p étale; these
stacks are usually called Deligne-Mumford analytic stacks. Analytic stacks can
be represented by simplicial complex spaces. Moreover, some questions regard-
ing analytic stacks can be rephrased in terms of complex spaces by means of
the atlas.

4.1 - Stack hyperbolicity

After the introduction of hyperbolicity for simplicial presheaves, we won-
dered if that was the “right” definition. One of the most celebrated results in
hyperbolic geometry is the Brody’s Theorem that states the equivalence be-
tween two properties of complex spaces: the Kobayashi pseudodistance of a
complex space X is a distance and the fact that any holomorphic map C — X
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is constant. The Kobayashi pseudodistance between two points p and ¢ in X
is defined to be the infimum of all the lenghts of the chains of holomorphic
discs from p to ¢q. A chain of holomorphic discs from p to ¢ is a sequence
f1,--., fi of holomorphic maps f; : D — X such that f;_1(b;) = f;(a;), with
a1y 0k,01,...,0p € D, 1 < j < k. The length of a chain is the number
Z?;ol dp(a;i,b;) where dp is the Poincaré distance on D. The Kobayashi pseu-
dodistance dx (p,q) between p and ¢ is then defined as

n—1
inf > " dp(as, bs)
=0

where the infimum is taken over all chains of holomorphic discs from p to q.

The aim of the paper [1] is to provide further evidence that the notion of
simplicial presheaf hyperbolicity we have given in [3] is useful; in particular, we
prove Brody’s Theorem for Deligne-Mumford analytic stacks. The proof effec-
tively begins by providing a definition of Kobayashi hyperbolicity for groupoids,
which extends the one for complex spaces and is very similar in spirit (ref. Sec-
tion 4.2.1.). The notion is given for arbitrary presheaves and then extended
to groupoids by making parabolic holotopy groups in presheaves and requiring
Kobayashi hyperbolicity for all the holotopy presheaves of a groupoid, which
effectively reduces to hyperbolicity just of the presheaves my and m;. Giving
a definition of (relative) analytic chains of a presheaf was in itself nontrivial
and constitutes the foundation for the Kobayashi pseudodistance in the sec-
tions of a presheaf and consequently for the notion of Kobayashi hyperbolicity
for presheaves. The strategy of replacing groupoids with holotopy groups is
motivated by the fact that the latter completely determine global simplicial
homotopy equivalences of groupoids and therefore of (local) stack equivalences.
Proposition 4.3 of [1] shows that, for stacks, Brody hyperbolicity as well is
equivalent to Brody hyperbolicity for holotopy presheaves. Therefore, to prove
the main theorem it suffices to consider holotopy presheaves. The proof involves
manipulation of the sections of such presheaves. By progressively adding struc-
tures on groupoids up to obtaining analytic stacks X — ), we could express
these sections over a complex space U in terms of certain holomorphic maps
U; - X and U; - X xy X, for open subspaces U; of X.

Another key idea is to use the coarse moduli space X — Q(X') associated to a
flat analytic groupoid X = R = X, fact proved in [2]. The coarse moduli space
we will consider is the one associated to X xy X = X for a Deligne-Mumford
analytic stack X — Y. A purposedly defined metric on Q()) endows the sets
of sections of the holotopy presheaves of metric structures and compactness of
the analytic stack ) is crucially used to establish the Brody’s Theorem.
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In the last section of [3], we provide two applications. En route to prove
Brody’s theorem, we remarked that Brody hyperbolicity of the coarse moduli
space Q(Y) is a stronger condition than Brody hyperbolicity for the Deligne-
Mumford analytic stack ). However, the concept of stack hyperbolicity cannot
be reduced to the hyperbolicity of a complex space. We construct an example
of a Brody hyperbolic stack with a non hyperbolic coarse moduli space: the
stack is the Galois quotient [X/Gal(C(X)/C(T"))] where T is a one dimensional
torus and X — T is a degree 4 Galois covering branched in two points, each
with ramification index 4. The coarse moduli space of this stack is 7'

On complex spaces, hyperbolicity implies rather peculiar properties: one is
that a hyperbolic space has finitely many biholomorphisms. In section 9, we
prove that, under the stronger condition of hyperbolicity of the coarse moduli
space, the 2-group of automorphisms of a compact Deligne-Mumford analytic
stack has only finitely many isomorphisms classes.

I wish to express my gratitude to Pino for so many mathematical discussions
during these past years; his interdisciplinary interests and open-mindedness in
mathematics have ignited the fuel moving us across the study of this excep-
tionally heterogeneous subject.
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