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Fefferman type metrics, associated to a given 3-dimensional nondegene-
rate CR manifold M , and admitting shearfree null geodesic congruences
N . This class of metrics is obtained by a lifting procedure fromM toM×
R devised by I. Robinson and A. Trautman (cf. [71]– [72]) and notably
radiative gravitational fields are searched for (cf. e.g. R.K. Sachs, [74])
within the class. Conversely, nondegenerate CR structures arise (by the
Robinson-Trautmann construction, [71]) on leaf spaces M/N associated
to space-times M adapted to given optical structures
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(K,L), J). The
Graham-Sparling construction (cf. [40], [77]) is shown to be a particular
case of Robinson-Trautman construction where the complex structure on
the complex line bundle Ker(L)/K → M is induced by an f -structure
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1 - CR versus Lorentzian geometry and CR embedding problem

The purpose of this expository paper1 is to review the geometric ingredients
needed to describe the interaction between CR and pseudohermitian geometry
(such as discovered by S. M. Webster, [84], and N. Tanaka, [78]) on one hand,
and space-time physics on the other. Said interaction has two sources i.e. it has
been discovered independently within two distinct areas of scientific investiga-
tion, which are mathematical analysis of functions of several complex variables,
and general relativity and gravitation theory coupled with electromagnetism.
Given a smoothly bounded strictly pseudoconvex domain Ω ⊂ C

n, let K(z, w)
be the Bergman kernel of Ω and let us set

U(z, ζ) =
∣

∣ζ
∣

∣

2/(n+1)
K(z, z)−1/(n+1) , z ∈ Ω, ζ ∈ C \ {0}.

1Extended version of the lecture given at the meeting Complex Analysis and Geometry in

Pisa, October 5-6, 2018.
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By a result of C. Fefferman (cf. [33])

G =

n
∑

j,k=0

∂2U

∂zj ∂k
dzj ⊙ dzk , z0 = ζ,

is a semi-Kählerian metric on Ω×
(

C\{0}
)

. If j : Ω×S1 →֒ Ω×
(

C\{0}
)

is the
inclusion then, in the limit as z → ∂Ω, the metric j∗G tends to a Lorentzian
metric g on ∂Ω × S1 whose restricted conformal class

[

g
]

= {eu◦πg : u ∈
C∞(∂Ω, R)} is a biholomorphic invariant (here π : ∂Ω × S1 → ∂Ω is the
projection). This is Fefferman’s metric as first discovered in [33]. An open
problem left by C. Fefferman at the time [33] was written, was whether one
may build a Lorentzian metric g on M × S1 for any strictly pseudoconvex real
hypersurface M ⊂ C

n in such a manner that the restricted conformal class
[

g
]

be a CR invariant. The problem was solved by J. M. Lee (cf. [53]) who built a
Lorentzian metric Fη ∈ Lor

(

C(M)
)

on the total space C(M) of the canonical

circle bundle S1 → C(M)
π−→ M over a strictly pseudoconvex CR manifold M ,

not necessarily embedded, endowed with a positively oriented contact form η.
When M is a real hypersurface in C

n the canonical circle bundle is trivial [i.e.
C(M) ≈ M × S1, a principal bundle isomorphism]. The construction in [53] is
such that there is a conformal isometry of

(

C(∂Ω
)

, Fη) onto
(

∂Ω× S1 , g
)

.
Another scheme for associating a Lorentzian metric g ∈ Lor(M ×R) to any

3-dimensional CR manifold M was devised by I. Robinson and A. Trautman
(cf. [71]– [72]) and A. Trautman (cf. [82]), cf. (15) in Section § 2.6.1 below,
producing Lorentzian metrics g = g

(

η, σ, P, H,W
)

∈ Lor(M × R) associated
to a given pseudohermitian structure η, a globally defined C∞ section σ : M →
T1,0(M), and a parameter (C∞ function)

(

P, H, W
)

: M ×R →
(

R \ {0}
)

× R× C .

The construction of the assignment
(

η, σ, P, H,W
)

�→ g
(

η, σ, P, H,W
)

doesn’t
require additional assumptions on the Levi form Gη (i.e. it is general enough
to include the case of a Levi flat CR manifold M) and it is explained in detail
by C.D. Hill and J. Lewandowski and P. Nurowski (cf. [42]), although stripped
of the flag and optical geometry background in [71]– [72], to the purpose of
ingeniously applying the construction to the CR embedding problem.

The embedding problem for 3-dimensional CR manifolds is to build two func-
tionally independent CR functions ua : U → C, a ∈ {1, 2}, defined on some
neighbourhood U ⊂ M of any given point x0 ∈ M , such that

(

u1 , u2
)

: U → C
2

be a CR immersion. The problem admits an obvious global version, besides
from the local version just stated. Any real analytic CR manifold is locally
embeddable, essentially by applying the Cauchy-Kowalewski theorem to the
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tangential Cauchy-Riemann equations ∂bu = 0. This is a celebrated result by
A. Andreotti and C.D. Hill (cf. [2]). By a result of A. Andreotti and G.A.
Fredricks (cf. [3]) real analytic CR manifolds are also globally realizable, as CR
submanifolds of some complex manifold, perhaps other than C

2. In the C∞

category however, not even the local problem is always solvable. Indeed, by a
result of L. Nirenberg (cf. [61]) a certain perturbation L+ ϕ∂/∂t of the Lewy
operator L (cf. e.g. [45], p. 235) on R

3 furnishes a 3-dimensional CR manifold
which is not embeddable in any neighbourhood of the origin. Our discussion is
confined to the case of 3-dimensional CR manifolds so we only mention briefly
that positive results for higher dimensional CR manifolds were obtained by M.
Kuranishi (any strictly pseudoconvex CR manifold of dimension 2n + 1 ≥ 9
is locally embeddable in C

n+1, cf. [52]) while T. Akahori solved (cf. [1]) the
problem in dimension 2n + 1 = 7, and the CR embedding problem is open in
dimension 2n+1 = 5. Going back to the 3-dimensional case, one may not over
emphasise the importance of the work by C.D. Hill and J. Lewandowski and
P. Nurowski (cf. [42]) who focused on the close relationship between local em-
beddability of 3-dimensional CR manifolds M and the existence of Lorentzian
metrics on M × R satisfying Einstein’s equations Rµν = Λ gµν . The subtle
approach in [42] is to write the Cartan structure equations (for the Einstein
field g at hand)

dΓµ
ν + Γµ

α ∧ Γα
ν =

1

2
Rµ

ναβ Θ
α ∧Θβ

with respect to a special coframe {Θµ : 0 ≤ µ ≤ 3} [where Θa, a ∈ {1, 2},
are complex 1-forms and Θb, b ∈ {3, 4}, are real 1-forms such that g admits the
particularly simple representation g12 = g21 = 1 and g03 = g30 = 1 and gµν = 0
otherwise] and find indices

(

µ0 , ν0
)

such that the complex Pfaffian system

Γµ0 ν0 = 0

is (as a consequence of Einstein’s equations) involutive on (an open subset
of) M × R. Then (by the real Frobenius theorem together with existence of
isothermal coordinates on a Riemann surface) one may show that

Γµ0 ν0 = hdζ

for some real function h and some complex function ζ such that dζ ∧ dζ �= 0.
The projection of ζ on M gives a first CR function u1. To obtain a second CR
function u2 (such that du1∧du2 �= 0) one assumes (again cf. [42]) that, besides
from the existence of a Lorentzian metric g satisfying Einstein’s equations

(1) R22 = 0, R24 = 0, R44 = 0,
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[where g is derived, from the given strictly pseudoconvex CR structure T1,0(M)
together with a vector field N ∈ X(M ×R) tangent to the R term, by a lifting
procedure that we describe in § 2.6.1] there also exits a nonvanishing Maxwell
field F = F + i ∗ F i.e.

(2) dF = 0, d ∗ F = 0,

which is both null (i.e. F ∧ F = 0) and aligned with the congruence N (i.e.
F = f η ∧ θ1). One uses in an essential manner 1) the fact that the field
equations Ric(g) = Λ g split (as a consequence of the choice of coframe {Θµ})
into three types of equations, which are (1) above and (3)-(4) below

(3) R12 = Λ, R34 = Λ,

(4) R33 = R23 = 0,

and 2) a beautiful result by I. Robinson (cf. [69]) producing null anti-selfdual
2-forms F = f η∧θ1 which satisfy Maxwell’s equations (2) if and only if Lf = 0
(where L is Lewy’s operator). See also the survey by A. Trautman, [83].

By a result of J. M. Lee (cf. [53]) the Fefferman metric Fη is never Einstein,
hence it may not be used to produce CR functions along the scheme in [42].
However the same choice of special coframe {Θµ} as in [42] proved effective in
the mathematical analysis of the gravitational field equations on C(H1) in the
presence of the matter distribution described by the energy-momentum tensor
Ric(Fη0)− 1

2 Scal(Fη0)Fη0 (cf. E. Barletta et al., [14]). On the other hand the
properties of the Fefferman metric Fη are certainly related to the embeddability
of the given CR manifold M , since for M to embed so should Fefferman’s space
(C(M), Fη), yielding constrains on the Pontrjagin forms of Fη . Indeed, by a
result of the authors (cf. [10]) if η0 =

i
2(∂−∂)|z|2 then (C(S2n+1), Fη0) admits

a conformal embedding in the semi-Euclidean space R
2n+4
2 (e.g. implying the

vanishing of the first Pontrjagin form of Fη0).
The paper is organized as follows. In Sections § 2.1 to § 2.5 we collect a few

basic notions and facts in CR and pseudohermitian geometry. We follow the
exposition in [31] and [13]. Section § 2.6 is devoted to a lifting procedure, due
to I. Robinson and A. Trautman (cf. [71]) and A. Trautman (cf. [83]), of a
strictly pseudoconvex CR structure T1,0(M) to a Lorentzian metric g on M×R

and to showing that the Fefferman metric of the Heisenberg group (H1 , η0)
is locally a particular instance of such g. In Sections § 2 up to § 4 we review
elements of flag and optical geometry. In Sections § 5.1 to § 5.2 we exhibit
the main finding by G. Sparling (cf. [77]) and C. R. Graham ( [40]) that every
Lorentzian manifold (M, g) admitting a null Killing vector field N ∈ X(M) with
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N ⌋W = 0 and N ⌋C = 0 carries a natural f -structure with two complemented
frames (J, N, V, θ, σ) where J = ∇N .

The concept of an f -structure (here J3 + J = 0) is the classical one in K.
Yano (cf. [85]) yet none of the results by D. E. Blair and G. D. Ludden and K.
Yano (cf. [20]) apply, in part because of the lack of compactness, but mainly
because the work [20] is a priori confined to Riemannian geometry. Recovering
results from [17]– [19], [20], [24], [39], from the realm of Riemannian geometry
to that of Lorentzian geometry is certainly desirable, and perhaps feasible, but
an open problem as yet. Nonetheless we believe that the cultural identifica-
tion of the studies in [77] and [40] as work on the geometry of f -structures on
Lorentzian manifolds will prompt new developments of the field. For instance,
the very explicit calculations in classical tensor notation, as performed in Sec-
tions § 5.1 to § 5.2 (by following [40]), may provide an answer to the question
“what is a Finslerian CR structure?” For previous attempts in this direction
one may see [29].

Graham-Sparling construction is paralleled to Robinson-Trautman
construction in Section § 5.3.3 and recognized as a particular instance of the
latter. In Section § 7 we follow work by M. Arminjon and F. Reifler ( [7]) and
N. Kamran and R.G. McLenaghan (cf. [46]) to respectively show how Dirac’s
equation in quantum mechanics may be formulated on a curved space-time (as
generalizing the classical formulation on Minkowski space) and indicate an in-
stance where the occurrence of two independent null Killing vector fields Na,
a ∈ {1, 2}, allows for separation of variables in the massive charged Dirac equa-
tion on a curved space-time M. The background Lorentzian metric needed
in [46] belongs to the class defined by formula (15) (in our Section § 2.6.1) and,
under appropriate assumptions, the shear free null geodesic congruences deter-
mined by Na give rise to two strictly pseudoconvex CR structures T1,0(Ma) on
the orbit spaces Ma = M/Na. While the role played by CR geometry versus

physics of radiative Einstein and Maxwell fields is well explained in [42], in
a language accessible to the more mathematics oriented reader, the relevance
of the CR structures T1,0(Ma) in devising separation of variables for Dirac’s
equation is not fully understood, and their further investigation is proposed as
an open problem.

2 - CR structures

2.1 - Tangential Cauchy-Riemann equations

Let M be a (2n + 1)-dimensional C∞ manifold. An almost CR structure

of CR dimension n is a complex rank n subbundle T1,0(M) ⊂ T (M)⊗ C such
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that

(5) T1,0(M) ∩ T0,1(M) = (0),

where T0,1(M) = T1,0(M) and an overbar denotes complex conjugation. An
almost CR structure is (formally) integrable if

(6) Z,W ∈ C∞
(

U, T1,0(M)
)

=⇒ [Z,W ] ∈ C∞
(

U, T1,0(M)
)

for any open subset U ⊂ M . An integrable almost CR structure T1,0(M)
is a CR structure and a pair (M,T1,0(M)) consisting of a manifold M and
an (almost) CR structure of CR dimension n is an (almost) CR manifold, of
CR dimension n. The tangential Cauchy-Riemann operator is the first order
differential operator

∂b : C
1
(

M,C
)

→ C
(

T0,1(M)∗
)

,
(

∂bu
)

Z = Z(u),

for any C1 function u : M → C and any Z ∈ T1,0(M). The tangential C-R

equations are

(7) ∂bu = 0

and a C1 solution u to (7) is a CR function. Let CRk(M) be the space of all
CR functions of class Ck (k ∈ N ∪ {∞, ω}). Given an (almost) CR manifold
(M, T1,0(M)) its Levi distribution is

H(M) = Re
{

T1,0(M)⊕ T0,1(M)
}

.

The Levi distribution carries the complex structure

J : H(M) → H(M), J
(

Z + Z
)

= i
(

Z − Z
)

, Z ∈ T1,0(M).

The conormal bundle is the real line subbundle H(M)⊥ ⊂ T ∗(M) given by

H(M)⊥x = {ω ∈ T ∗

x (M) : Ker(ω) ⊃ H(M)x}, x ∈ M.

A pseudohermitian structure on M is a globally defined, nowhere zero, cross
section η ∈ C∞

(

H(M)⊥
)

. Pseudohermitian structures are merely differential 1-
forms η ∈ Ω1(M) such that Ker(η) = H(M). When M is orientable (which will
be assumed through the paper) the conormal bundle is trivial (i.e. H(M)⊥ ≈
M × R, a vector bundle isomorphism) hence pseudohermitian structures do
exist. The Levi form is

Gη(X,Y ) = (dη)(X,JY ), X, Y ∈ H(M).
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A CR manifold (M,T1,0(M)) is nondegenerate (respectively strictly pseudocon-

vex) if the Levi form Gη is nondegenerate (respectively positive-definite) for
some pseudohermitian structure η. If M is nondegenerate then every pseudo-
hermitian structure η is a contact form i.e. η ∧ (dη)n is a volume form on M .
A CR manifold is Levi flat if Gη = 0 for some η, and thus for all. Equivalently
the Levi distribution is completely integrable.

T h e o r em 2.1 (T. Levi-Civita, [55]). Every Levi flat CR manifold

(M,T1,0(M)) of CR dimension n carries a codimension one foliation F by

complex n-dimensional manifolds such that T (F) = H(M).

Theorem 2.1 is an immediate corollary of the classical Frobenius theorem [on
the integrability of involutive Pffafian systems, such as H(M)] together with
Newlander-Nirenberg theorem (on the integrability of almost complex struc-
tures with vanishing Nijenhuis torsion). Newlander-Nirenberg theorem was un-
known at the time [55] was written (a direct proof to Theorem 2.1 is provided
in [55]). The local defining submersions (cf. e.g. [59], p. 15) of the foliation F
in Theorem 2.1 are real valued CR functions. Therefore the (obvious) analogy
between holomorphic functions (on complex manifolds) and CR functions (on
CR manifolds) is confined to the nondegenerate case (where any real valued
CR function may be shown to be constant).

Given two (almost) CR manifolds (M,T1,0(M)) and (N,T1,0(N)) a CR iso-

morphism is a C∞ diffeomorphism F : M → N such that (dxF )T1,0(M)x =
TF (x)(N) for any x ∈ M . This is equivalent to F preserving the Levi distribu-
tions (dxF )H(M)x = H(N)F (x) and commuting with the complex structures
(dxF ) ◦ JM,x = JN,F (x) ◦ (dxF ) for any x ∈ M . A C∞ diffeomorphism of M
preserving H(M) is customarily referred to as a contact transfomation (even
though M may not be a contact manifold).

2.2 - Real hypersurfaces

Examples of (almost) CR manifolds appear as real hypersurfaces of (almost)
complex manifolds. For instance let M ⊂ C

n+1 be a real hypersurfce and let
T1,0(M) be defined by

(8) T1,0(M)x =
[

Tx(M)⊗R C
]

∩ T 1,0
(

C
n+1

)

x
, x ∈ M,

where T 1,0(Cn+1) =
{

X−i JX : X ∈ T (Cn+1)
}

(i =
√
−1) is the holomorphic

tangent bundle over Cn+1 (the span of {∂/∂zj : 1 ≤ j ≤ n+1}) and J denotes
the complex structure on C

n+1. Then T1,0(M) is a CR structure on M , of CR
dimension n, induced on M by the complex structure of Cn+1. The integrability
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of T1,0(M) is inherited by (8) from the integrability property of the complex
structure J . If Ω ⊂ C

n+1 is an open set, f : Ω → C is a holomorphic function,
and u = f ◦ ι is the trace of f on U = Ω∩M , then u ∈ CR∞(U). In particular
smooth boundaries of domains Ω ⊂ C

n+1 are real hypersurfaces and hence
CR manifolds, with the induced CR structure (8). For instance the sphere
S2n+1 = ∂Bn+1, as the boundary of the unit ball Bn+1 = {z ∈ C

n+1 : |z| < 1},
and the Heisenberg group Hn = C

n × R as F (ζ, t) =
(

ζ, t + i|ζ|2
)

is a C∞

diffeomorphism Hn ≈ ∂Sn+1 onto the boundary of the Siegel domain Sn+1 =
{

z ∈ C
n+1 : Im(zn+1) >

∑n
α=1

∣

∣zα
∣

∣

2}
.

Let Ω ⊂ C
n+1 be a bounded domain. By a classical result of C. Fefferman

(cf. [32]) if M = ∂Ω is a C∞ real hypersurface in C
n+1 whose induced CR

structure (8) is strictly pseudoconvex, then every biholomorphic transforma-
tion Φ ∈ Hol(Ω) extends smoothly to the boundary and its boundary values
F = Φ|∂Ω : M → M is a CR isomorphism, and in particular a contact trans-
formation. Let K(z, ζ) be the Bergman kernel of Ω (cf. e.g. S. Bergman, [16]).
The Bergman metric is the Kählerian metric on Ω given by

g
jk

=
∂2 logK(z, z)

∂zj ∂zk
, 1 ≤ j, k ≤ n+ 1.

Let ω = i ∂∂ logK(z, z) be the corresponding symplectic structure of the Kähle-
rian manifold (Ω, g). Every biholomorphic transformation of Ω is an isometry of
(Ω, g) i.e. Hol(Ω) ⊂ Isom(Ω, g) (cf. e.g. S. Helgason, [41]). As each Φ ∈ Hol(Ω)
preserves the complex structure on Ω to start with, one also has Φ∗ω = ω i.e.
Φ is a symplectomorphism. Conversely, if Φ : Ω → Ω is a symplectomorphism
of (Ω, ω) which is not a biholomorphism (so that Fefferman’s theorem doesn’t
apply) yet Φ extends smoothly to the boundary, then, by a result of A. Korány
and H.M. Reimann (cf. [51]) the boundary values F of Φ is a contact trans-
formation of (∂Ω, H(∂Ω)) in itself. The proof in [51] relies on Fefferman’s
asymptotic expansion of the Bergman kernel (cf. [32]) as well as the proof of
Fefferman’s theorem, so the assumption of strict pseudoconvexity on M = ∂Ω
should be in force.

As a typical approach in complex analysis of functions of several complex
variables, when building the induced CR structure T1,0(M) one disregards all
geometric structures on C

n+1, except for its complex structure J . An alterna-
tive “metric” approach to the same CR structure is however available, and typ-
ical in differential geometry [of submanifolds of (almost) Hermitian manifolds].
Precisely let g0 be the natural flat Kähler metric of Cn+1 and let g = ι∗g0 be the
induced metric, or first fundamental form of the given immersion ι : M ⊂ C

n+1.
Let us assume that M is orientable and choose a globally defined unit normal
field ν on M

g0
(

ν , ν
)

= 1, g0
(

X , ν
)

= 0, X ∈ X(M).
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Then ξ = −Jν is tangent to M and η(X) = g(X, ξ) is a differential 1-form on
M . Moreover H(M) = Ker(η) ⊂ T (M) is a distribution of hyperplanes and the
restriction of J to H(M) is H(M)-valued. Consequently J : H(M) → H(M)
is a complex structure on H(M) i.e. J2X = −X for any X ∈ H(M). Let

JC be the C-linear extension of J to H(M) ⊗ C. Then
(

JC
)2
V = −V for any

V ∈ H(M)⊗ C hence Spec
(

JC
)

= {±i}. Finally T1,0(M) = Eigen
(

JC , i
)

.
It should be observed, within the same class of examples, that J : H(M) →

H(M) may be extended to a rank 2n tensor field φ of type (1, 1) on M given
by

φ(ξ) = 0, φ(X) = JX, X ∈ H(M)

followed by linear extension to the whole of T (M) = H(M) ⊕ Rξ. Then the
synthetic object (φ, ξ, η, g) is an almost contact metric structure on M (in the
sense of D.E. Blair, [17]).

2.3 - Contact Riemannian manifolds

The last observation in Section § 2.2 suggests that the same construction
may be performed on any contact Riemannian manifold

(

M, (φ, ξ, η, g)
)

. Here
M is a (2n+ 1)-dimensional manifold, not necessarily embedded in some com-
plex manifold, φ : T (M) → T (M) is a vector bundle endomorphism, ξ ∈ X(M)
is a tangent vector field, η ∈ Ω1(M) is a differential 1-form, and g is a Rieman-
nian metric on M , obeying to the following axioms

φ2 = −I + η ⊗ ξ, φ(ξ) = 0, η ◦ φ = 0,

g(φX , φY ) = g(X,Y )− η(X) η(Y ),

dη = Φ, Φ(X,Y ) = g(X, φY ).

Then φ descends to a complex structure J : Ker(η) → Ker(η) and

(9) T1,0(M) = Eigen
(

JC, i
)

⊂ Ker(η)⊗ C

is an almost CR structure on M yet T1,0(M) is integrable if and only if Q = 0
where Q is the Tanno tensor i.e.

Qjk
i = ∇kφ

i
j + ηj φ

i
k − ηk ∇jξ

i + ξi∇jηk .

Cf. S. Tanno, [79]. The first to consider the almost CR structure (9) was S.
Ianuş (cf. [44]) who also gave a sufficient condition for its integrability: if the
contact Riemannian structure (φ, ξ, η, g) is normal i.e. [φ , φ] + 2(dη) ⊗ ξ = 0,
then (9) is integrable. The characterisation above (in terms of the vanishing of
the Tanno tensor) is however a finding by the authors (cf. [12]).
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2.4 - Tangent sphere bundle

In this section we give another example of an (almost) CR structure, related
to the geometry of the tangent bundle of a given m-dimensional Riemannian
manifold (N,h). Let Sm−1 → U(N) → N be the tangent sphere bundle i.e.
U(N)p = {v ∈ Tp(N) : hp(v, v) = 1} for any p ∈ N . Let Π : T (N) → N be the
projection. For every local coordinate system (U, xi) on N let

(

Π−1(U), xi, yi
)

be the induced local coordinates on T (N) and L = yi (∂/∂xi)Π the Liouville

vector (a section in the pullback bundle Π−1T (N) → T (N)). Here XΠ ∈
X(T (M)) [the natural lift of X ∈ X(N)] is given by XΠ

v = XΠ(v) for any

v ∈ T (N). Let hΠ = Π−1h and ∇Π = Π−1∇ be respectively the pullbacks by Π
of the Riemannian metric h and of its Levi-Civita connection ∇ [respectively a
Riemannian bundle metric and a connection in the pullback bundle Π−1T (N)].
For each v ∈ T (N) let Nv consist of all w ∈ Tv(T (M)) such that

(

∇Π
WL

)

v
= 0

where W ∈ X(T (N)) is an arbitrary C∞ extension of w i.e. Wv = w. Then N

is a nonlinear connection on N i.e. a C∞ distribution on T (N) such that

(10) Tv(T (N)) = Nv ⊕Ker(dvΠ), v ∈ T (N).

If W ∈ X(T (N)) then Π∗W ∈ C∞
(

Π−1TN
)

is given by
(

Π∗W
)

v
= (dvΠ)Wv

for any v ∈ T (N). Let γ : Π−1T (N) → T (T (N)) be the vertical lift i.e. locally
γv
(

∂/∂xi
)

Π(v)
=

(

∂/∂yi
)

v
for any v ∈ Π−1(U). Then γ is Ker(dΠ)-valued and

gives a vector bundle isomorphism Π−1T (N) ≈ Ker(dΠ). Let K : T (T (N)) →
Π−1T (N) be the Dombowski map i.e. K = γ−1 ◦ V where V : T (T (N)) →
Ker(dΠ) is the natural projection [associated to the decomposition (10)]. The
total space T (N) of the tangent bundle carries the Riemannian metric g given
by

g(A,B) = hΠ
(

Π∗A , Π∗B
)

+ hΠ
(

KA , KB
)

, A,B ∈ X(T (N)),

[the Sasaki metric of (N,h)]. If

N i
j : Π

−1(U) → R, N i
j =

{

i
jk

}

yk ,
δ

δxi
=

∂

∂xi
+N j

i

∂

∂yj
,

then
{

δ/δxi : 1 ≤ i ≤ m
}

is a local frame in N → T (N), defined on the open
set Π−1(U). Let β : Π−1T (N) → N be the horizontal lift i.e. the vector bundle
isomorphism locally given by

βv

(

∂

∂xi

)

Π(v)

=

(

δ

δxi

)

v

, v ∈ Π−1(U).

The total space T (N) of the tangent bundle also carries the natural almost
complex structure J given by

JγX = βX, JβX = −γX, X ∈ C∞
(

Π−1TN
)

,
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compatible to the Sasaki metric g so that (T (N), g, J
)

is an almost Hermitian
manifold. The almost complex structure J is integrable if and only if (N,h)
is locally Euclidean (cf. P. Dombrowski, [28]). The total space M = U(N)
of the tangent sphere bundle is an orientable real hypersurface in T (N). Let
T1,0(M) be the almost CR structure induced by (g, J) on M = U(N). While
in general T1,0(M) fails to be integrable, for any space form N = Nm(1) [any
Riemannian manifold N of constant sectional curvature 1] T1,0

(

U
(

Nm(1)
))

is
a strictly pseudoconvex CR structure (cf. the authors, [9]).

2.5 - Pseudohermitian geometry

Let M be a (2n+1)-dimensional orientable nondegenerate CR manifold M ,
of CR dimension n, and let η be a pseudohermitian structure on M , and hence
a contact form. Let ξ ∈ X(M) be the Reeb vector of (M,η) i.e. the nowhere
zero tangent vector field ξ, transverse to the Levi distribution, determined by
η(ξ) = 1 and ξ ⌋ dη = 0. The Webster metric is the semi-Riemannian metric gη
on M given by

gη(X,Y ) = Gη(X,Y ), gη(X, ξ) = 0, gη(ξ, ξ) = 1,

for any X,Y ∈ H(M). By a result of S.M. Webster (cf. [84]) and N. Tanaka
(cf. [78]) there is a unique linear connection ∇ on M [the Tanaka-Webster

connection of (M,η)] such that i) the Levi distribution H(M) is parallel with
respect to ∇, ii) ∇gη = 0, ∇J = 0, and iii) the torsion T∇ of ∇ satisfies

T∇(Z,W ) = 0, T∇(Z,W ) = 2 iGη(Z,W ) ξ, τ ◦ J + J ◦ τ = 0,

for any Z,W ∈ T1,0(M), where τ(X) = T∇(ξ,X) for any X ∈ X(M) [τ is
the pseudohermitian torsion of ∇]. Given a local frame {Tµ : 1 ≤ µ ≤ n} ⊂
C∞(U, T1,0(M)) we set

g
αβ

= Gη

(

Tα , Tβ

)

,
[

gµν
]

=
[

gµν
]

−1
.

Then

(11) dη = 2 i g
αβ

θα ∧ θβ .

Let R∇ be the curvature tensor field of ∇ and let us set

RC
D
ABTD = R∇

(

TA , TB

)

TC .

As to the range of indices the conventions are

A,B,C, · · · ∈ {0, 1, · · · , n, 1, · · · , n}, T0 = ξ, α, β, γ, · · · ∈ {1, · · · , n}.
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The pseudohermitian Ricci tensor and pseudohermitian scalar curvature are

Rµν = Rα
α
µν , R = gµνRµν .

An adapted coframe consists of complex valued 1-forms {θµ : 1 ≤ µ ≤ n} such
that

θµ
(

Tν

)

= δµν , θµ
(

Tν

)

= 0, θµ
(

ξ
)

= 0.

For all local calculations one also sets

∇Tβ = ωα
β Tα , ωα

β = Γα
Aβ θ

A , θ0 = η, θα = θα ,

so that ωα
β and ΓA

BC are respectively the connection 1-forms and the connection
coefficients [with respect to the local frame {TA} in T (M)⊗C]. Let us consider
the (locally defined) differential 2-forms

Πβ
α = dωβ

α − ωγ
α ∧ ωβ

γ , Ωβ
α = Πβ

α − 2 i θα ∧ τβ + 2 i τα ∧ θβ ,

where

τα = Aα

β
θβ , τα = τα , τα = g

αβ
τβ , τ

(

T
β

)

= Aα

β
Tα , θα = g

αβ
θβ .

By a result of S.M. Webster (cf. [84])

(12) Ωβ
α = Rα

β
λµ θ

λ ∧ θµ +W β
αλ θ

λ ∧ η −W β
αλ

θλ ∧ η

(compare to (1.90) in [31], p. 55) where

W β
αλ = gβσ ∇σAαλ , W β

αλ = gβσ ∇αAλσ .

Covariant derivatives are meant with respect to the Tanaka-Webster connection
∇ of (M,η). A contact form η on M is pseudo-Einstein if the pseudohermitian
Ricci tensor is proportional to the Levi form i.e.

(13) Rµν =
R

n
gµν .

Cf. J.M. Lee, [54]. Odd dimensional spheres S2n+1 ⊂ C
n+1, (total spaces of)

tangent sphere bundles U
(

Nm(1)
)

over Riemannian space forms Nm(1), nonde-
generate 3-dimensional CR manifolds [for which the pseudo-Einstein condition
(13) is trivially satisfied] are examples of strictly pseudoconvex CR manifolds
admitting (globally defined) pseudo-Einstein contact forms.

L emma 2.1. For any 3-dimensional orientable nondegenerate CR manifold

M its CR structure T1,0(M) is a trivial complex line bundle.
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P r o o f. The Tanaka-Webster connection ∇ of (M,η) parallelizes H(M)
and J hence it descends to a connection in the vector bundle T1,0(M). Therefore
one may use the curvature of ∇ in order to compute characteristic forms of
T1,0(M) (cf. [47], Vol. II, pp. 307-308). Indeed the first Chern class of T1,0(M)
is represented by

γ1 = − 1

2πi

{

Rλµ θ
λ ∧ θµ +Wα

αλ θ
λ ∧ η −Wα

αµ θ
µ ∧ η

}

i.e. c1
(

T1,0(M)
)

=
[

γ1
]

∈ H2(M,C). Compare to [31], p. 298. For any
pseudo-Einstein contact form η

Wα
αλ = − i

2n
Rλ , Wα

αµ =
i

2n
Rµ ,

where Rα = Tα(R). Hence (for n = 1)

−2π i γ1 = Rg11 θ
1 ∧ θ1 − i

2
R1 θ

1 ∧ η − i

2
R1 θ

1 ∧ η

= Rg11 θ
1 ∧ θ1 − i

2
(dR) ∧ η =

1

2i
R dη +

1

2i
(dR) ∧ η

so that γ1 = (1/4π) d
(

Rη
)

. This is exact, hence c1
(

T1,0(M)
)

= 0. Finally, a
complex line bundle over an oriented manifold is trivial if and only if its first
Chern class vanishes. �

2.6 - CR geometry versus Lorentzian geometry

2.6.1 - Radiative gravitational fields

Let (M, T1,0(M)) be an orientable nondegenerate 3-dimensional CR man-
ifold (of CR dimension n = 1). Let η be a pseudohermitian structure on M .
Let ξ ∈ X(M) be the Reeb vector of (M,η). By Lemma 2.1 the complex line
bundle T1,0(M) is trivial [i.e. T1,0(M) ≈ M × C, a complex vector bundle iso-
morphism]. Given a (globally defined) cross section σ : M → T1,0(M) we set
as customary T1,x = σ(x) for any x ∈ M . Let θ1 be the complex 1-form on M
determined by

θ1
(

T1

)

= 1, θ1
(

T1

)

= 0, θ1
(

ξ
)

= 0,

where T1 = T 1 i.e. {θ1} is an adapted coframe. Let M = M × R and let
π : M → M be the projection. Let us consider the tangent vector field

(14) N = ρ
∂

∂t
, ρ ∈ C∞

(

M, R \ {0}
)

,
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where t : M → R is the projection. Given a pseudohermitian structure η on
M , a C∞ section σ : M → T1,0(M), and C∞ functions

P : M → R \ {0}, H : M → R, W : M → C,

we consider the (0, 2)-tensor field g = g
(

η, σ, P, H, W
)

on M defined by

(15) g = 2P 2
{

(

π∗θ1
)

⊙
(

π∗θ1
)

+
(

π∗η
)

⊙
(

1

ρ
dt+W π∗θ1 +W π∗θ1 +H π∗η

)}

where θ1 = θ1. Compare to (1.5) in [42], p. 3135. As it turns out g ∈ Lor(M)
and solutions of the form (15) to (a class of) gravitational field equations are
known to describe gravitational radiation, cf. I. Robinson and A. Trautman,
[71]– [72], R.K. Sachs, [73]– [74], and A. Trautman, [82].

To consider the family of Lorentzian metrics (15) we followed the work by
C.D. Hill and J. Lewandowski and P. Nurowski (cf. [42]). The basic properties
of the metrics (15) are also described in [42], pp. 3135–3137, yet avoiding the
language of flag and optical structures (cf. I. Robinson and A. Trautman, [71]).
The construction in [42] is more general [it includes Levi flat CR manifolds
(M, T1,0(M))] yet only the case of a nondegenerate CR structure is of interest
for the present paper. The notations and conventions in Theorem 2.2 below
are made precise in Sections § 2-§ 3 where we also review the basic facts about
flag and optical geometries, and their adapted Lorentzian metrics.

Given a metric g ∈ Lor(M) and a tangent vector field k ∈ X(M) let g(k) =
k♭ ∈ Ω1(M) be the differential 1-form given by

k♭(X) = g(k,X), X ∈ X(M).

The o r em 2.2. Let K ⊂ T (M) and L ⊂ T ∗(M) be the real line subbundles

given by

Kx = RNx , Lx = R g(N)x , x ∈ M,

where N ∈ X(M) is given by (14) and g = g
(

η, σ, P, H, W
)

∈ Lor(M) is the

Lorentzian metric associated to the data
(

η, σ, P, H, W
)

as in (15). Then

i) (K, L) is a flag structure on M .

ii) g ∈ A i.e. g is adapted to (K, L).

Moreover let B ⊂ A be the class mod R such that g ∈ B and let us set E =
Ker(L)/K. Let φ : E → E be the complex structure given by

(16) φx

(

u+Kx

)

= Jπ(x)(dxπ)u, u ∈ Ker(L)x , x ∈ M.
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Let GL(1,C) → O → M be the orientation of E determined by φ. Then

iii)
(

(K, L), B, O
)

is an optical structure on M.

iv) If g′ = g
(

η′ , σ′ , P ′ , H ′ , W ′
)

then g′ ∈ B.

P r o o f. i) Follows from g(N,N) = 0.

ii) For arbitrary sections k ∈ C∞(K) and λ ∈ C∞(L) there exist functions
κ, γ ∈ C∞(M, R) such that k = κN and λ = γ g(N). By the very definitions
(14)–(15) one has g(N) = P 2 π∗η. Hence g(k) ∧ λ = 0 i.e. g ∈ A. Q.e.d.

iii) Let λ ∈ C∞(L) so that [by Lemma 3.1 in § 2]

Ex = Ker(λx)/Kx , x ∈ M.

As λ = γ P 2 π∗η, for each u ∈ Ker(λx) one has (dxπ)u ∈ Ker(ηx) = H(M)x.
Hence there is a natural vector bundle epimorphism E → H(M) so that J [the
complex structure on the Levi distribution H(M)] lifts to a complex structure
φ on E [given by (16)].

iv) Let g′ = g
(

η′ , σ′ , P ′ , H ′ , W ′
)

be the Lorentzian metric on M deter-
mined by the data

(

η′ , σ′ , P ′ , H ′ , W ′
)

. Let us set T ′

1,x = σ′(x) for any x ∈ M.
As both η and η′ are nowhere zero C∞ sections of the same real line bundle
[the conormal bundle H(M)⊥ → M ] there is f ∈ C∞

(

M, R \ {0}
)

such that
η′ = f η. Then the Reeb vector ξ′ of (M, η′) is related to ξ by

(17) ξ′ =
1

f

(

ξ +
1

2if
f1 T1 −

1

2if
f1 T1

)

,

f1 = g11 f1 , f1 = T1(f), g11 = 1/g11 , g11 = gη
(

T1 , T1

)

.

Let {θ′1} be the adapted frame of T1,0(M)∗ determined by

θ′
1(
T ′

1

)

= 1, θ′
1(
T1

)

= 0, θ′
1(
ξ′
)

= 0.

If T ′

1 = (1/h)T1 for some h ∈ C∞
(

M, R \ {0}
)

then [by (17)]

(18) θ′
1
= h θ1 + p η, p ≡ ihf1

2f
.

Next, substitution from (18) into

g′ = 2P ′2
{

(

π∗θ′
1)⊙

(

π∗θ′
1)

+
(

π∗η′
)

⊙
(

1

ρ
dt+W ′ π∗θ′

1
+W ′ π∗θ′

1
+H ′ π∗η′

)}
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leads to

(19) g′ = α2 g + g(N)⊙ ϕ

where α = |h|P ′/P and

ϕ =
2P ′2

ρP 2

(

f − |h|2
)

dt

+
2hP ′2

P 2

(

p+ f W ′ − hW
)

π∗θ1 +
2hP ′2

P 2

(

p+ f W ′ − hW
)

π∗θ1

+
2P ′2

P 2

(

|p|2 + f pW ′ + f pW ′ + f2H ′ − |h|2 H
)

π∗η.

As a consequence of (19) for every λ = γ g(N) ∈ C∞(L)

g′ = α2 g + µ⊙ λ, µ ≡ 1

γ
ϕ,

so that [by Proposition 4.3 in § 2] g′ is equivalent to g modR. Q.e.d. �

2.6.2 - Fefferman type metrics

Let (M, T1,0(M)) be a strictly pseudoconvex (2n+1)-dimensional CR man-
ifold, of CR dimension n. A complex valued differential p-form ω ∈ Ωp(M) is
of type (p, 0) if T0,1(M) ⌋ω = 0. Let Λp,0(M) → M be the relevant bundle and
let us set K(M) = Λn+1,0(M) (the canonical line bundle). Sections in K(M)
are top degree forms of type (p, 0) i.e. p = n + 1. There is a natural action
of R+ = GL+(1,R) (the positive reals) on K(M) \ {zero section} so that the
quotient space

C(M) =
[

K(M) \ {zero section}
]

/R+

is the total space of a principal circle bundle S1 → C(M)
π→ M (the canonical

circle bundle). Let η be a positively oriented contact form on M and Gη the
corresponding Levi form. If ξ is the Reeb vector of (M,η) then we extend Gη

to a (degenerate) bilinear form G̃η defined on the whole of T (M) by requiring
that

G̃η(X,Y ) = Gη(X,Y ), G̃η(V, ξ) = 0,

for any X,Y ∈ H(M) and V ∈ T (M). Next let Fη be the (0, 2)-tensor field on
M = C(M) defined by

(20) Fη = π∗G̃η + 2
(

π∗η
)

⊙ σ,
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(21) σ =
1

n+ 2

{

ds+ π∗

(

i ωµ
µ − i

2
gµν dgµν −

R

4(n + 1)
η

)}

,

where s is a local fibre coordinate onM. Then Fη ∈ Lor(M) [Fη is the Fefferman

metric of (M,η)] (cf. [31], p. 128) whose restricted conformal class {eu◦π Fη :
u ∈ C∞(M,R)} is a CR invariant. By a result of C.R. Graham (cf. [40]) σ is
a connection 1-form in the principal bundle S1 → M → M . Let X↑ ∈ X(M)
be the horizontal lift of X ∈ X(M) with respect to σ i.e.

X↑

p ∈ Ker
(

σp
)

, (dpπ)X
↑

p = Xπ(p) , p ∈ M.

Let N ∈ X(M) be the tangent to the S1 action. The vector field ξ↑−N is time-
like, hence the Lorentzian manifold (M, Fη) is time-oriented. In particular, if
M is 3-dimensional then

(

M, Fη , ξ
↑ − N

)

is a space-time. The Heisenberg
group M = H1 = C × R is customarily endowed with the pseudohermitian
structure

η0 = dt+ i
(

z dz − z dz
)

whose corresponding Reeb vector is ξ0 = ∂/∂t. Let us set

L =
∂

∂z
− i z

∂

∂t

[the (unsolvable) Lewy operator ] so that T1 = L is a (globally defined) frame in
T1,0(H1) and θ1 = dz is an adapted coframe. If g11 = Gη0

(

T1 , T1

)

then g11 = 1
hence the 1-form σ = σ0 given by (21) reads

σ0 =
1

3
ds.

Assume the local fibre coordinate s is chosen such that N = (3/2) ∂/∂s. Hence
σ0(N) = 1/2 and (20) for η = η0 becomes

(22) Fθ0 = 2

{

(

π∗θ1
)

⊙
(

π∗θ1
)

+
1

3

(

π∗η0
)

⊙ ds

}

.

As H1 ≈ ∂S2 (a CR isomorphism, cf. Section § 2.2) the canonical circle bundle
is trivial i.e. C(H1) ≈ H1 × S1 (a principal bundle isomoprhism). Since

C(H1)x =
{[

λ
(

η0 ∧ θ1
)

x

]

: λ ∈ C \ {0}
}

, x ∈ H1 ,

an explicit principal bundle isomorphism F : C(H1) → H1 × S1 is given by

F
([

λ
(

η0 ∧ θ1
)

x

])

=

(

x,
λ

|λ|

)

.
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For every γ0 ∈ R let us set U(γ0) =
{

eiγ : |γ − γ0| < π
}

and let us consider
the parametrization ψγ0 :

(

γ0 − π, γ0 + π
)

→ S1 given by ψ(γ) = eiγ . Next let
us cover S1 by the local charts ϕγ0 = ψ−1

γ0
: U(γ0) →

(

γ0 − π, γ0 + π
)

. The
local fibre coordinate in (21) is

s : F−1
(

H1 × U(γ0)
)

→ R, s
([

λ(η0 ∧ θ1)x
])

= ϕγ0

(

λ

|λ|

)

.

Next let us consider the map

f = F−1 ◦
(

1H1
× ψγ0

)

: H1 ×
(

γ0 − π, γ0 + π
)

→ C(H1)

(a C∞ diffeomorphism on the image). As a consequence of (22) the Lorentzian
metric g = f∗Fη0 belongs to the Robinson-Trautmann class (15).

By a result of C.R. Graham (cf. [40]) the Fefferman metric Fη of an arbi-
trary strictly pseudoconvex CR manifold M satisfies

i) N is null i.e. Fη(N,N) = 0 and Np �= 0 for any p ∈ C(M).

ii) LNFη = 0.

iii) RicFη(N,N) = 2n.

iv) N ⌋W = 0 and N ⌋C = 0.

Compare to Theorem 2.1 in [40], p. 856. Here W and C are respectively
the Weyl and Cotton tensor fields of (C(M), Fη) [cf. our § 5.1 below]. By
a Fefferman type metric we mean a Lorentzian metric g on some (2n + 2)-
dimensional manifold M which may be organized as the total space of a circle
bundle S1 → M → M over a strictly pseudoconvex CR manifold such that
(M, g) is conformally isometric to

(

C(M), Fη). By an unpublished result of
G. Sparling (cf. [77]) the properties (i)-(iv) provide a local characterization
of Fefferman type metrics, and a globally defined conformal isometry may be
produced provided a certain cohomology class in H1(M,S1) (discovered by
C.R. Graham, cf. [40], p. 872) vanishes.

3 - Flag structures and adapted Lorentzian metrics

Let M be a 4-dimensional C∞ manifold. A pair (K, L) of real line sub-
bundles K ⊂ T (M) and L ⊂ T ∗(M) is a flag structure on M if α(u) = 0 for
any α ∈ Lx and u ∈ Kx and x ∈ M. Let Lor(M) be the set of all Lorentzian
metrics on M. A Lorentzian metric g ∈ Lor(M) is adapted to the flag structure
(K, L) if g(N) ∧ λ = 0 for any N ∈ C∞(K) and λ ∈ C∞(L). We shall need
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L emma 3.1. Let (K,L) be a flag structure and g ∈ Lor(M) an adapted

metric. Then for every x ∈ M the line Kx is null i.e. gx(u, u) = 0 for any

u ∈ Kx. Moreover for any λ ∈ C∞(L)

(23) Ker
[

λ(x)
]

= K⊥

x

where K⊥

x =
{

v ∈ Tx(M) : gx(u, v) = 0, u ∈ Kx

}

. In particular the bundle
⋃

x∈MKer
[

λ(x)
]

doesn’t depend upon the choice of λ ∈ C∞(L).

Cf. I. Robinson and A. Trautman, [71], p. 318. A differential p-form
F ∈ Ωp(M) with p ∈ {1, 2, 3} is adapted to the flag structure (K, L) if

N ⌋F = 0, λ ∧ F = 0,

for any N ∈ C∞(K) and λ ∈ C∞(L). If g is an adapted metric then g(N) is an
adapted 1-form. If (K, L) is a flag structure then L is invariant with respect
to K if λ ∧ LNλ = 0 for any N ∈ C∞(K) and λ ∈ C∞(L), where LN denotes
the Lie derivative. The invariance property is described by

Th e o r em 3.1. Let (K, L) be a flag structure on M. The following state-

ments are equivalent

i) L is invariant with respect to K.

ii) λ ∧ dλ is adapted to (K, L) for every λ ∈ C∞(L).

iii) For every N ∈ C∞(K) and any x ∈ M the curves Cx(t) = ϕN
t (x) are

null geodesics with respect to any metric g ∈ Lor(M) adapted to (K, L).

iv) If F ∈ Ω2(M) is adapted then λ ∧ F = 0 for any λ ∈ C∞(L).

Cf. I. Robinson and A. Trautman, [70]. Here {ϕN
t }

|t|<ǫ is the local 1-
parameter group of local transformations generated byN ∈ X(M). A flag struc-
ture (K, L) possessing one of the equivalent properties (i)-(iv) is referred to as a
geodesic flag structure. By Lemma 3.1 the notation Ker(L) =

⋃

x∈MKer
[

λ(x)
]

[with λ ∈ C∞(M)] is legitimate. The distribution Ker(L) is integrable if
λ ∧ dλ = 0 for any λ ∈ C∞(L).

P r o p o s i t i o n 3.1. If Ker(L) is integrable then (K, L) is geodesic.

Cf. I. Robinson and A. Trautman, [71], p. 319. According to the termi-
nology adopted in theoretical physics, given a geodesic flag structure (K, L),
an adapted metric g ∈ Lor(M), and a vector field N ∈ C∞(K), the family of
orbits of N [consisting of null geodesics of g, by (iii) in Theorem 3.1] is referred
to as a congruence of null geodesics on M. The congruence in question is said
to be twisting if Ker(L) is not integrable.
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4 - Optical structures

Let (K, L) be a flag structure and let A ⊂ Lor(M) be the set of all
Lorentzian metrics adapted to (K, L). Given g ∈ Lor(M) let ∗g : Ωp(M) →
Ω4−p(M) be the corresponding Hodge operator.

P r o p o s i t i o n 4.1. If g ∈ A and F ∈ Ωp(M) is an adapted p-form (p ∈
{1, 2, 3}) then ∗g F ∈ Ω4−p(M) is an adapted (4− p)-form.

Cf. I. Robinson and A. Trautman, [71], p. 319. Let F ∈ Ω2(M) be an
adapted 2-form such that Fx �= 0 for any x ∈ M. Let us consider the relation
R ⊂ A×A given by

R =
{(

g, g′
)

∈ A×A : ∗g F = ∗g′ F
}

.

Then R is an equivalence relation on A. The definition of R doesn’t depend
upon the choice of (nowhere vanishing, adapted) 2-from F , as a consequence of
dim(M) = 4. An optical structure is a synthetic object

{

(K, L), B, O
}

consisting of a flag structure (K, L), an equivalence class B ∈ A/R, and an
orientation O of the real rank 2 vector bundle E = Ker(L)/K → M. The given
orientation of E = Ker(L)/K → M is a principal subbundleG → O → M of the
principal bundle GL(2,R) → L

(

E
)

→ M of all frames (R-linear isomorphisms)
u : R2 → Ex with x ∈ M, where G ⊂ GL+(2,R) (a Lie subgroup).

P r o p o s i t i o n 4.2. The data (B, O) is equivalent to the prescription of a

complex structure on Ker(L)/K i.e. an endomorphism

J : E → E, J2 = −I.

We take into account

L emma 4.1. Let g ∈ B and let ĝ be given by

ĝx
(

û , v̂
)

= gx(u, v),

û = u+Kx , v̂ = v +Kx , u, v ∈ Ker(L)x .

Then ĝ is a Riemannian bundle metric on E = Ker(L)/K → M.
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By Lemma 4.1 the metric ĝ gives rise to a principal subbundle O(2) →
O(E, ĝ) → M of GL(2,R) → L(E) → M i.e. each u ∈ O(E, ĝ)x is a frame
u ∈ L(E)x such that

ĝx
(

u(ej) , u(ek)
)

= δjk , 1 ≤ j, k ≤ 2,

where {e1 , e2} ⊂ R
2 is the canonical linear basis. We may then outline the

construction of J in Proposition 4.2 as follows. For every x ∈ M and u ∈
Ox ∩O

(

E, ĝ
)

x
we consider

(24) Jx : Ex → Ex ,

(25) Jx
(

u(e1)
)

= u(e2), Jx
(

u(e2)
)

= −u(e1).

To build Jx one only uses frames at x adapted to GL+(2,R) ∩ O(2) → O ∩
O(E, ĝ) → M so that Jx is well defined. Indeed let Ju

x be a new temporary
name for the map (24)–(25). If v ∈ Ox∩O

(

E, ĝ
)

x
is another frame then v = ua

for some a ∈ GL+(2,R) ∩O(2) i.e.

v(ek) = ajk u(ej), a =
[

ajk
]

, a−1 = aT , det(a) = 1.

Then
Ju

x

(

v(ek)
)

= aj
k
Ju

x

(

u(ej)
)

= a1k u(e2)− a2k u(e1)

=
[

a1k (a
−1)j2 − a2k (a

−1)j1
]

v(ej) =

2
∑

j=1

[

a1k a
2
j − a2k a

1
j

]

v(ej)

and

a11 a
2
j − a21 a

1
j =

{

0 if j = 1,

det(a) if j = 2,
, a12 a

2
j − a22 a

1
j =

{

− det(a) if j = 1,

0 if j = 2,

hence Ju

x = Jv

x . Q.e.d.

Let
(

(K, L), B, O
)

be an optical structure on M. By Proposition 4.2 the
vector bundle E = Ker(L)/K may be organized as a complex line bundle over
M, in a natural manner.

P r o p o s i t i o n 4.3. Let
(

(K, L), B, O
)

be an optical structure on M and

let g ∈ B and g′ ∈ A. The following statements are equivalent

i) g′ ∈ B.

ii) For any λ ∈ C∞(L) there exist a C∞ function ρ : M → (0,+∞) and a

differential 1-form µ ∈ Ω1(M) such that

(26) g′ = ρ g + 2µ⊙ λ.
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Cf. [71], pp. 319–320. Let M and M
′ be two 4-dimensional manifolds

equipped with the optical structures
(

(K, L), B, O
)

and
(

(K ′, L′), B′, O′
)

.
A C∞ diffeomorphism f : M → M

′ is an isomorphism of optical structures if

f∗B′ = B, f∗L′ = L, (dxf)Kx = K ′

f(x) , x ∈ M,

and the vector bundle morphism f∗ : K → f−1K ′ descends to an orientation
preserving vector bundle morphism

f̂∗ : E → f−1E′ , E = Ker(L)/K, E′ = Ker(L′)/K ′ .

Orientations O and O′ are principal subbundles

GL+(2,R) → O →֒ L(E) ← GL(2,R)
↓ ↓
M M

f ↓ ↓ f
M

′
M

′

↑ ↑
GL+(2,R) → O′ →֒ L(E′) ← GL(2,R)

The pair
(

f̂∗ , f
)

induces a principal bundle morphism

L(f) : L(E) → f−1L(E′), L(f)x u = u′ ∈ L(E′)f(x) , x ∈ M,

u : R2 → Ex , u′ : R2 → E′

f(x) , u′ =
(

f̂∗
)

x
◦ u .

Then the “orientation preserving” condition above is L(f)
(

O
)

= f−1O′.
Given a 4-dimensional manifold M it is customary to define an optical

structure on M by fixing a Lorentzian metric g ∈ Lor(M) and a null vector
field N ∈ X(M) and setting

Kx = RNx , Lx = RN ♭
x , x ∈ M,

where ♭ : X(M) → Ω1(M) is the musical isomorphism associated to g. Then
specifying an orientation of Ker(L)/K gives an optical structure on M.

Let
(

(K, L), B, O
)

be an optical structure on M and let g ∈ B be an
adapted Lorentzian metric. Let us consider Maxwell’s equations

(27) dF = 0, d ∗g F = 0,

where solutions F ∈ Ω2(M) are to be looked for among 2-forms F adapted to
(K, L).
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P r o p o s i t i o n 4.4. Let F be a solution to Maxwell’s equations (27). Then

(28) LNF = 0, LN ∗g F = 0,

for any N ∈ C∞(K).

Cf. [71], p. 320. In particular both F and ∗gF are invariant by the flow of
N i.e.

(

ϕN
t

)

∗

F = F,
(

ϕN
t

)

∗
(

∗g F
)

= ∗gF.

By the second of these relations, together with the properties of the Hodge star

∗gF =
(

ϕN
t

)

∗
(

∗g F
)

= ∗(
ϕN
t

)∗
g
F .

Provided that F is a nowhere vanishing solution, this means that the metrics
g and

(

ϕN
t

)

∗

g are equivalent (mod R). Hence each ϕN
t is an optical automor-

phism. In particular L is invariant with respect to K hence the flag structure
(K, L) is geodesic.

P r o p o s i t i o n 4.5. Let
(

(K, L), B, O
)

be an optical structure and let

N ∈ C∞(K) and g ∈ B. The following statements are equivalent

i)
(

g ,
(

ϕN
t

)

∗

g
)

∈ R for every t.

ii) For every λ ∈ C∞(L) there exist a C∞ function σ : M → R and a 1-form
ν ∈ Ω1(M) such that

(29) LNg = σ g + 2 ν ⊙ λ .

Cf. [71], p. 320. An optical structure satisfying one of the equivalent re-
quirements (i)–(ii) in Proposition 4.5 is said to be shear-free. We close the
section by recalling a result by H. Bateman, [15] (emphasising the importance
of optical structures)

T h e o r em 4.1. An optical isomorphism maps any adapted solution F to

Maxwell’s equations into another adapted solution.

The modern formulation of Bateman’s theorem (within optical geometry)
is due to A. Trautman, [81].
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5 - CR structures associated to shear-free optical structures

5.1 - Curvature properties

Let M be a real m-dimensional C∞ manifold and let g ∈ Lor(M) be a
Lorentzian manifold. Let (U, xi) be a local coordinate system on M and let gij
be the local components of g with respect to (U, xi). Let ∇ be the Levi-Civita
connection of (M, g) and let R∇ be the curvature tensor field of ∇ i.e.

R∇(X,Y ) =
[

∇X , ∇Y

]

−∇[X,Y ] .

We adopt the following convention as to the local components of R∇

(30) Rk
ℓ
ij ∂ℓ = R∇ (∂i , ∂j) ∂k

where ∂i is short for ∂/∂xi. Given a tangent vector field V ∈ X(M) let ∇iV
j

be the local components of the covariant derivative ∇V i.e.

∇∂iV =
(

∇iV
j
)

∂j .

Given a (1, 1)-tensor field J one denotes by Ji
j and ∇iJj

k respectively the local
components of J and ∇J i.e.

J∂i = Ji
j ∂j ,

(

∇∂iJ
)

∂j =
(

∇iJj
k
)

∂k .

The second order covariant derivative ∇∇V of a tangent vector field V is the
(first order) covariant derivative of the (1, 1)-tensor field J = ∇V [whose local
components are Ji

j = ∇iV
j ]. Its local components are denoted by ∇i∇jV

k i.e.

(

∇i∇jV
k
)

∂k =
(

∇∂i∇V
)

∂j .

The convention (30) was chosen such that

∇i∇jV
k −∇j∇iV

k = V ℓRℓ
k
ij .

The Ricci curvature of ∇ is

Ric∇
(

X , Y
)

= trace
{

V �→ R∇
(

V, Y
)

X
}

and we set Rij = Ric∇(∂i , ∂j) so that

Rij = Ri
k
kj = gkℓ Riℓkj .

The scalar curvature is R = gijRij. We shall need the Weyl and Cotton tensor

fields
Wijkℓ = Rijkℓ − Ljk giℓ − Liℓ gjk + Ljℓ gik + Lik gjℓ ,
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Cjkℓ = ∇ℓLjk −∇kLjℓ ,

where

Ljk =
1

m− 2

[

Rjk −
R

2(m− 1)
gjk

]

.

We shall need the following

L emma 5.1 (C.R. Graham, [40]). Let (M, g) be a (2n + 2)-dimensional

Lorentzian manifold admiting a tangent vector field N ∈ X(M) which is both

null (i.e. g(N,N) = 0) and Killing (i.e. LNg = 0). If N ⌋W = 0 and N ⌋C = 0
then Ric∇(N,N) is a constant.

Throughout it is tacitly assumed that Nx �= 0 for any x ∈ M. Indeed, by a
result of M. Sáncez (cf. [75]) if K ∈ X(M) is a non-spacelike [i.e. g(K,K) ≤ 0
everywhere on M] Killing vector field with Kx0

= 0 for some x0 ∈ M then
K = 0 everywhere. It should be also observed that the assumptions in Lemma
5.1 are conformally invariant.

We give a proof of Lemma 5.1 by following the calculations in [40], pp. 860–
862. Let ni be the local components of N with respect to (U, xi) i.e. N = ni ∂i.
Here m = 2n+ 2 hence the tensor field Ljk is given by

Ljk =
1

2n

[

Rjk −
R

2(2n + 1)
gjk

]

.

Let us contract with njnk and use gjkn
jnk = 0. We obtain

Ljkn
jnk =

1

2n
Rjkn

jnk

or

(31) D = 2nLjkn
jnk

where we have set D = Ric∇(N,N) ∈ C∞(M). We also adopt the notation

νi = Lijn
j

so that equation (31) becomes

(32) D = 2n νkn
k .

We claim that

(33) ∇jni = −∇inj
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where ∇inj = gjk ∇in
k. Equation (33) is the local expression of the Killing

condition LNg = 0. Indeed (by ∇g = 0)

0 =
(

LNg
)

(X,Y ) = N(g(X,Y ))− g(LNX,Y )− g(X,LNY )

= g(∇NX,Y ) + g(X,∇NY )− g([N,X], Y )− g(X, [N,Y ])

or (by T∇ = 0)

(34) g(∇XN,Y ) + g(X,∇Y N) = 0.

Next (34) for X = ∂i and Y = ∂j gives

0 = g(∇∂iN, ∂j) + g(∂i,∇∂jN) =
(

∇in
k
)

gkj + gik
(

∇jn
k
)

yielding (33). This proves the claim. Starting from g(N,N) = 0 one has (by
∇Xg = 0)

0 = X(g(N,N)) = 2g(∇XN,N)

yielding (for X = ∂i)

0 = g
(

∇∂iN,N) =
(

∇in
j
)

nk gjk

or

(35) nk ∇ink = 0.

Let us contract with nj in ∇inj +∇jni = 0 and use (35). We obtain

(36) nj ∇jni = 0.

The following property of Killing vector fields will be needed in the sequel

(37) ∇k∇j ni = −Rijkℓ n
ℓ .

Cf. [40], p. 861. C.R. Graham attributes (37) to [47] (cf. Proposition 2.6,
p. 235). However i) the quoted result in [47] is stated solely for Riemannian
metrics and ii) (37) is but a corollary of Proposition 2.6 (in [47], p. 235) i.e.
(37) is not explicitly reported there. Nevertheless the generalization (from
Riemannian to Lorentzian geometry) of the result in [47] [and the proof of (37)
as a corollary to that] is straightforward. Next let us contract with nℓ in

Wijkℓ = Rijkℓ −
(

Ljk giℓ + Liℓ gjk − Ljℓ gik − Lik gjℓ
)

and take into account that Wijkℓ n
ℓ = 0 (by N ⌋W = 0). We obtain

(38) 0 = Rijkℓ n
ℓ − Ljk ni − Liℓ n

ℓ gjk + Ljℓ n
ℓ gik + Lik nj

where ni = giℓ n
ℓ. Let us substitute from (37) into (38) so that to obtain

(39) ∇k∇jni = −Ljk ni − νi gjk + νj gik + Lik nj .

Compare to (3.2) in [40], p. 861. Moreover we shall need
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L emma 5.2. (C. R. Graham, [40]) The following identities hold

(40)
(

∇jni

) (

∇knj
)

= −nj ∇k∇jni = −δki n
j νj + νk ni + νi n

k .

Compare to (3.3) in [40], p. 861. The first identity in (40) follows by taking
the covariant derivative of the product nj ∇jni and making use of (36) i.e.

(

∇jni

) (

∇knj
)

= gkℓ
(

∇jni

) (

∇ℓn
j
)

= gkℓ
[

∇ℓ

(

nj ∇jni

)

− nj ∇ℓ∇jni

]

= −nj ∇k∇jni .

To prove the second identity in (40) one conducts the following calculation

nj ∇k∇jni = gkℓ nj ∇ℓ∇jni =

[by (39) with k = ℓ]

= gkℓ nj [−Ljℓ ni − νi gjℓ + νj giℓ + Liℓ nj] =

[as njnj = 0]
= gkℓ

[

−νℓ ni − νi nℓ + nj νj giℓ
]

or
nj ∇k∇jni = −νk ni − νi n

k + δki n
j νj .

Q.e.d.

Let us contract i and k in
(

∇jni

) (

∇knj
)

and use (40) in Lemma 5.2. We
obtain

(

∇jni

) (

∇inj
)

= −(2n+ 2)njνj + νi ni + νi n
i

or

(41)
(

∇jni

) (

∇inj
)

= −2n nj νj .

Let us substitute from (32)–(33) into (41). We obtain

(42) D =
(

∇jni

)(

∇jni
)

.

Compare to (3.4) in [40], p. 861. Next let us differentiate in (42) with respect
to xℓ. As D is a scalar field ∂D/∂xℓ = ∇ℓD hence [by (42)]

∂D

∂xℓ
= ∇ℓ

[(

∇jni

)(

∇jni
)]

=
(

∇ℓ∇jni

)(

∇jni
)

+
(

∇jni

)(

∇ℓ∇jni
)
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and the last term is

(

∇jni

)(

∇ℓ∇jni
)

= gir gjs
(

∇snr
)(

∇ℓ∇jni
)

=
(

∇snr
)(

∇ℓ∇snr

)

hence

(43)
∂D

∂xℓ
= 2

(

∇ℓ∇jni

)(

∇jni
)

.

Let us replace ∇ℓ∇jni from (39) [with k = ℓ] into (43)

∂D

∂xℓ
= 2

(

∇jni
)

[−Ljℓ ni − νi gjℓ + νj giℓ + Liℓ nj] =

[by taking into account the identities (35) i.e.
(

∇jni
)

ni = 0 and (36) i.e.
(

∇jni
)

nj = 0]

= 2
(

∇jni
)

[νj giℓ − νi gjℓ]

or [as ∇jni is skew symmetric]

(44)
∂D

∂xℓ
= −4 νi∇ℓn

i .

At this point we also differentiate in (31) with respect to xℓ so that

∂D

∂xℓ
= ∇ℓD = 2n ∇ℓ

(

Ljk n
j nk

)

=

[as Ljk is symmetric]

= 2n nj nk ∇ℓ Ljk + 4n Ljk n
k ∇ℓ n

j

or

(45)
∂D

∂xℓ
= 2n nj nk ∇ℓ Ljk + 4n νj ∇ℓn

j .

Now let us replace νj ∇ℓn
j from (44) into (45) so that to obtain

∂D

∂xℓ
= 2n nj nk ∇ℓ Ljk − n

∂D

∂xℓ

or

(46)
∂D

∂xℓ
=

2n

n+ 1
nj nk ∇ℓ Ljk .

Next let us contract by nj in Cjkℓ = ∇ℓLjk −∇kLjℓ and use Cjkℓ n
j = 0. We

obtain
0 = nj∇ℓLjk − nj ∇kLjℓ .
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Let us contract again by nk

0 = nj nk ∇ℓLjk − nj nk ∇kLjℓ .

Hence

nj nk ∇ℓLjk = nj nk ∇kLjℓ = nk ∇k

(

nj Ljℓ

)

− nk Ljℓ∇kn
j

or [by (36) i.e. nk ∇kn
j = 0]

(47) nj nk ∇ℓLjk = nk ∇k νℓ .

Let us substitute nj nk ∇ℓLjk from (47) into (46). We obtain

(48)
∂D

∂xℓ
=

2n

n+ 1
nk ∇k νℓ .

Summing up [by (43) and (48), as ∇ℓ ni is skew symmetric]

(49)
∂D

∂xℓ
=

2n

n+ 1
nk ∇kνℓ = 4 νi∇inℓ .

Compare to (3.5) in [40], p. 861. Next

∇jνj = gjk ∇kνj =

[by taking the covariant derivative of νj = Ljℓ n
ℓ]

= gjk ∇k

(

Ljℓ n
ℓ
)

= gjk
[

nℓ∇kLjℓ + Ljℓ∇kn
ℓ
]

= nℓ∇j Ljℓ + Ljℓ∇j nℓ

or [by Ljℓ∇j nℓ = 0, as a contraction of the symmetric tensor field Ljℓ by the
skew symmetric tensor field ∇j nℓ]

(50) ∇jνj = nℓ∇j Ljℓ .

We claim that the right hand term in (50) vanishes i.e.

L emma 5.3 (C.R. Graham, [40]).

(51) ∇j νj = 0.
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P r o o f. Relation (51) is a consequence of the curvature properties of
(M, g). We start from the second Bianchi identity

(52)
∑

XY Z

(

∇XR
)

(Y,Z) = 0

where
∑

XY Z is the cyclic sum over X, Y, Z. We adopt the following convention
as to local calculations

(

∇∂iR
)

(∂j , ∂k)∂ℓ =
(

∇i Rℓ
s
jk

)

∂s .

Then (52) for X = ∂i, Y = ∂j and Z = ∂k reads

∇iRℓ
s
jk +∇j Rℓ

s
ki +∇k Rℓ

s
ij = 0

or [by contraction with grs]

(53) ∇i Rℓrjk +∇j Rℓrki +∇k Rℓrij = 0.

We shall also make use of the symmetries of the Riemann-Christoffel tensor

(54) Rℓrjk = −Rℓrkj , Rℓrjk = −Rrℓjk , Rℓrjk = Rjkℓr .

Next let us contract with grk in (53) so that to obtain [by (54)]

−∇iRℓj +∇j Rℓi +∇k Rℓ
k
ij = 0.

Contracting once more with gℓj yields

(55) −∇iR+∇j R
j
i +∇k R

jk
ij = 0

and

Rjk
ij = gjr Rr

k
ij = gjr gksRrsij = gjr gksRsrji = gksRsi = Rk

i

so that (55) becomes

(56)
∂R

∂xi
= 2∇j Rji .

Taking the covariant derivative of Ljk and using ∇ℓ gjk = 0 we obtain

∇ℓ Ljk =
1

2n

[

∇ℓRjk −
1

2(2n + 1)

∂R

∂xℓ
gjk

]
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hence [by contracting with gjℓ]

(57) ∇j Ljk =
1

4n

[

∇j Rjk −
1

2(2n + 1)

∂R

∂xk

]

.

Let us replace ∂R/∂xk from (56) into (57). This yields

(58) ∇j Ljk =
1

2(2n + 1)

∂R

∂xk
.

Let us contract by nk in (58). The resulting identity, together with (50), may
be written

(59) ∇jνj = nk ∇j Ljk =
1

2(2n + 1)
nk ∂R

∂xk
.

On the other hand the fact that N is Killing (LNg = 0) yields N(R) = 0 i.e.
locally nk (∂R/∂xk) = 0. Then Lemma 5.3 follows from (59). Q.e.d. �

The formula (40) in Lemma 5.3

(

∇jni

)(

∇knj
)

= −
(

νjn
j
)

δki + νi n
k + νk ni

may now be used together with D = 2n νj n
j to yield

(

∇jni

)(

∇knj
)

= − 1

2n
δki D + νi n

k + νk ni .

Let us apply the covariant derivative ∇ℓ so that to obtain

(

∇ℓ∇jni

)(

∇knj
)

+
(

∇jni

)(

∇ℓ∇knj
)

= − 1

2n
δki ∇ℓD +

(

∇ℓνi
)

nk + νi ∇ℓ n
k +

(

∇ℓ ν
k
)

ni + νk ∇ℓ ni .

Next let us contract k and ℓ

(60)
(

∇k∇jni

)(

∇knj
)

+
(

∇j ni

)(

∇k∇knj
)

= − 1

2n
∇iD +

(

∇kνi
)

nk +
(

∇kν
k
)

ni + νk ∇kni

and use

∇kν
k = 0, νk ∇kni =

1

4
∇iD,

(

∇kνi
)

nk =
n+ 1

2n
∇iD ,
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to substitute into (60). This yields

(61)
(

∇k∇jni

)(

∇knj
)

+
(

∇j ni

)(

∇k∇knj
)

=
3

4
∇iD.

On the other hand we may invoke (39)

∇k∇jni = −Ljk ni − νi gjk + νj gik + Lik nj

contract with gjk

∇k∇kni = −Lk
k ni − (2n + 2) νi + νi + Lik n

k

followed by contraction with gij

(62) ∇k∇knj = −(2n + 1)νj + Lj
k n

k − Lk
k n

j .

Moreover, let us use (39) and (62) to conduct the following calculation
(

∇k∇jni

)(

∇knj
)

+
(

∇jni

)(

∇k∇knj
)

=
[

νj gik − νi gjk + Lik nj − Ljk ni

]

∇knj

+
(

∇jni

)

[

−(2n+ 1) νj + Lj
k n

k − Lk
k n

j
]

= νj ∇in
j − νi∇jn

j + Lik nj ∇knj − ni Ljk ∇knj

−(2n+ 1)
(

∇jni

)

νj +
(

∇jni

)

Lj
k n

k − Lk
k n

j ∇jni .

The last expression greatly simplifies by observing that ∇jn
j = 0 (as ∇inj is

skew-symmetric) nj ∇knj = 0 [by (35)] Ljk ∇knj = 0 (as a contraction of a
symmetric tensor with an skew-symmetric tensor) nj ∇jni = 0 [by (36)] and
Lj

k n
k = νj (by the very definition of νi). In the end

(

∇k∇jni

)(

∇knj
)

+
(

∇jni

)(

∇k∇knj
)

= νj ∇in
j − (2n+ 1)

(

∇jni

)

νj + νj ∇jni =

(once again because ∇inj is skew)

= −(2n + 1)
(

∇jni

)

νj =

[as νj ∇jni =
1

4
∇iD by (44)]

= −2n+ 1

4
∇iD.

Summing up

(63)
(

∇k∇jni

)(

∇knj
)

+
(

∇jni

)(

∇k∇knj
)

= −2n+ 1

4

∂D

∂xi
.

Finally we may substitute from (63) into (61) to obtain ∂D/∂xi = 0 so that D
is locally constant, and then constant (M is tacitly assumed to be connected).
Lemma 5.1 is proved.
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5.2 - f -Structures

Let M be a real (2n + s)-dimensional C∞ manifold. An f -structure on
M is a (1, 1)-tensor field f of rank 2n such that f3 + f = 0. An f -structure
with s complemented frames is a synthetic object

(

f,
{

ξa , ηa : 1 ≤ a ≤ s
})

consisting of an f -structure and s vector fields ξa ∈ X(M) and s differential
1-forms ηa ∈ Ω1(M) such that

(64) f
(

ξa
)

= 0, ηa
(

ξb
)

= δab , ηa ◦ f = 0, f2 = −I + ηa ⊗ ξa .

An f -structure with s complemented frames is normal if

(65)
[

f , f
]

+ (dηa)⊗ ξa = 0.

As a consequence of (65) the structure vector fields ξa commute (i.e. [ξa , ξb] =
0). A Riemannian metric g on M is compatible to the f -structure

(

f,
{

ξa , ηa :
1 ≤ a ≤ s

})

if

g(fX, fY ) = g(X,Y )−
s

∑

a=1

ηa(X) ηa(Y )

for any X,Y ∈ X(M). Given a compatible Riemannian metric g, let us consider
the differential 2-form

Ω(X,Y ) = g(X, fY ).

A K-structure is a normal f -structure with Ω closed (i.e. dΩ = 0). A theory
of f -structures with complemented frames, in the presence of a compatible
Riemannian metric g, was built by D. E. Blair (cf. [18] – [19]) and D. E. Blair
and G.D. Ludden and K. Yano (cf. [20]) though confined to the case of a
compact manifold M. A prototypical result is

T h e o r em 5.1 (D. E. Blair et al., [20]). Let M be a (2n + s)-dimensional

compact, connected manifold with a regular normal f -structure. Then M is

the bundle space of a principal toroidal bundle over a complex n-dimensional

manifold N. If in addition M is a K-manifold then N is a Kähler manifold.

The theory of f -structures wasn’t new2 and the papers [18] – [20] certainly
build on previous work by S. I. Goldberg (cf. [37]), S. I. Goldberg and K. Yano
(cf. [39]), and A. Morimoto (cf. [60]).

Recovering the results by D. E. Blair and collaborators (cf. op. cit.) to
f -structures in the presence of a Lorentzian metric g, compatible to the given

2Perhaps the first to explicitly introduce the notion of a f -structure in differential geometry
practice was K. Yano, [85]. Cf. also K. Yano and S. Ishihara, [86]. Previous to that, credit
ought to be given to S. S. Chern, [24].
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f -structure in an appropriate manner, is an open problem. To motivate the
necessity of an attempt one has the discovery by G. Sparling (cf. [77]) and
C. R. Graham (cf. [40]) that a (2n+2)-dimensional Lorentzian manifold (M, g)
admitting a null Killing vector field N such that N ⌋W = 0 and N ⌋C = 0
carries a natural f -structure (J, N, V, θ, σ) with two complemented frames
to which g is compatible in the sense that

g(JX, JY ) = g(X,Y )− 2
(

θ ⊙ σ
)

(X,Y )

for any X,Y ∈ X(M). As (by Lemma 5.1) Ric(N,N) is constant we may
normalise N such that Ric(N,N) = 2n and then

(66) νj n
j = 1.

Let V ∈ X(M) and θ, σ ∈ Ω1(M) be the tangent vector field and differential
1-forms on M locally given by

V = νi ∂i , θ = ni dx
i , σ = νi dx

i .

Next let J : T (M) → T (M) be the (1, 1)-tensor field defined by

JX = ∇XN, X ∈ X(M).

If J∂j = J i
j ∂i then J i

j = ∇jn
i. For further use let us set

H = Ker(θ) ∩Ker(σ).

We collect a few properties of J in the following

P r o p o s i t i o n 5.1 (C.R. Graham, [40]).

i) JV = 0 and JN = 0.

ii) θ ◦ J = 0 and σ ◦ J = 0 i.e. Range(J) ⊂ H.

iii) J2 = −I + θ ⊗ V + σ ⊗N .

iv) J2 = −I on H.

P r o o f. i) By (44) and Lemma 5.1

JV = νj
(

∇jn
i
)

∂i =
1

4

∂D

∂xi
= 0.

Similarly [by (36)]
JN = nj

(

∇jn
i
)

∂i = 0.

ii) By (35) and (44)

θ
(

J∂j
)

=
(

∇jn
i
)

ni = 0, σ
(

J ∂j
)

=
(

∇jn
i
)

νi = 0.
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iii) One has
J2∂j =

(

∇jn
k
)(

∇kn
i
)

∂i

and [by (40)]
(

∇jn
k
)(

∇kn
i
)

= gir gjs
(

∇knr

)(

∇snk
)

= gir gjs
[

− νℓ n
ℓ δsr + νr n

s + νs nr

]

= −νℓ n
ℓ δij + νi nj + νj n

i

hence (by νℓ n
ℓ = 1)

J2∂j =
(

− δij + νi nj + νj n
i
)

∂i .

Q.e.d.

iv) Follows from (ii)–(iii). �

As a consequence of Proposition 5.1

(67) T (M) = H ⊕ RN ⊕ RV

and the f -structure J respects the decomposition (67) i.e. J annihilates N and
V and determines a complex structure on H.

L emma 5.4. V is null i.e. g(V, V ) = 0.

P r o o f. As JV = 0 and θ(V ) = 1 one has [by (iii) in Proposition 5.1]

0 = J2V = −V + θ(V )V + σ(V )N = σ(V )N

hence (as Nx �= 0 for any x ∈ M)

0 = σ(V ) = νiν
i = g(V, V ).

Q.e.d. �

Let us set for further use

Ω(X,Y ) = g(X,JY ), X, Y ∈ X(M).

L emma 5.5. Ω = −dθ.

P r o o f. One has

(dθ)(∂i , ∂j) =
1

2

{

∂i
(

θ ∂j
)

− ∂j
(

θ ∂i
)}

=
1

2

(

∇inj −∇jni

)

= ∇inj

as ∇inj is skew. On the other hand

g
(

J∂i , ∂j
)

=
(

∇in
k
)

gkj = ∇inj
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so that

(68) g(JX, Y ) = (dθ)(X,Y ).

Q.e.d. �

For further use let us define Gθ by setting

Gθ(X,Y ) = (dθ)(X,JY )

for any X,Y ∈ X(M).

L emma 5.6. For any X,Y ∈ X(M)

(69) g(JX, JY ) = g(X,Y )− θ(X)σ(Y )− θ(Y )σ(X),

g = Gθ + 2 θ ⊙ σ .

In particular the bilinear form Gθ is positive definite on H.

P r o o f. First of all note that

(70) θ(X) = g(X,N), σ(X) = g(X,V ).

Moreover
g(JX, JY ) = [by replacing Y �→ JY in (68)]

= (dθ)(X,JY ) = −(dθ)(JY,X) =

[by replacing X �→ JY and Y �→ X in (68)]

= g(Y,X) − θ(Y ) g(X,V )− σ(Y ) g(N,X)

followed by use of (70). Q.e.d.

Next [by (69)]

g(X,Y ) = g(JX, JY ) + 2(θ ⊙ σ)(X,Y ) =

[by (68)]
= (dθ)(X,JY ) + 2(θ ⊙ σ)(X,Y )

yielding the second statement in Lemma 5.6. Finally, as the decomposition
T (M) = H ⊕ RN ⊕ RV is orthogonal with respect to g and g has signature
(2n + 1, 1) it must be that Gθ has signature (2n, 0) so it is positive definite
on H. Q.e.d. �
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As N is everywhere nonzero it determines a codimension 3 foliation F of M
whose leaves are the maximal integral curves of N . Let ν(F) = T (M)/T (F)
be the transverse bundle and π : T (M) → ν(F) the canonical projection. Let

Ω0
B(F)

dB−→ Ω1
B(F)

dB−→ Ω2
B(F)

dB−→ Ω3
B(F)

be the basic complex of (M,F). Cf. e.g. Ph. Tondeur, [80], p. 119. Let us set
XF = C∞

(

T (F)
)

. Elements f ∈ Ω0
B(F) are basic functions i.e. C∞ functions

f : M → R such that X(f) = 0 for any X ∈ XF . An element ω ∈ Ωk
B(F)

is a basic k-form (1 ≤ k ≤ 3) i.e. a differential k-form ω ∈ Ωk(M) such that
X ⌋ω = 0 and X ⌋ dω = 0 (equivalently3 X ⌋ω = 0 and LXω = 0) for any
X ∈ XF . The following result holds (compare to [40], p. 864)

L emma 5.7. i) θ(N) = 0 and N ⌋ dθ = 0 hence θ is a basic 1-form i.e.

θ ∈ Ω1
B(F).

ii) One has

LNg = 0, LNJ = 0, LNΩ = 0, LNσ = 0,

hence g, J , Ω and σ are invariant under sliding along the leaves of F .

P r o o f. i) Locally θ(N) = nin
i = g(N,N) = 0 and [by (68) and JN = 0]

(dθ)(N, X) = g(JN,X) = 0.

ii) LNg = 0 by our assumption that N is Killing. Moreover (by the very
definition of the Lie derivative)

g
(

(LNJ)X,Y ) =
(

LNdθ
)

(X,Y )−
(

LNg
)

(JX, Y ) = 0

for any X,Y ∈ X(M). Yet g is nondegenerate hence
(

LNJ
)

X = 0. Similarly

(

LNΩ
)

(X,Y ) =
(

LNg
)

(X,JY ) + g
(

X, (LNJ)Y
)

= 0.

To prove the last statement in (ii) of Lemma 5.7 we first observe that

(71) [N,V ] = 0.

Indeed

[N,V ] =

(

ni ∂ν
j

∂xi
− νi

∂nj

∂xi

)

∂j =

(as ∇ is torsion-free)

=
(

ni∇iν
j − νi∇in

j
)

∂j = 0

3By Cartan’s formula LX = iX ◦ d+ d ◦ iX .
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because of ni∇iν
j = 0 [a consequence of (49) and D = constant] and νi∇in

j =
0 [following from (44) and the fact that ∇inj is skew]. Finally

(

LNσ
)

X = N
(

σX
)

− σ
(

LNX
)

= [by (70)]

= N
(

g(X,V )
)

− g
(

LNX,V
)

= [by LNg = 0 and (71)]

= g
(

X , LNV
)

= 0.

Q.e.d. �

Recall that N ⌋σ = 1 so that (despite LNσ = 0) σ is not a basic 1-form on
(M, F).

By Proposition 5.1 the restriction of J : T (M) → T (M) to H is H-valued
and J : H → H is a complex structure along H. Let JC be the C-linear
extension of J to H⊗C. Then J2X = −X for any X ∈ H yields

(

JC
)2
Z = −Z

for any Z ∈ H ⊗ C so that Spec
(

JC
)

= {±i} (with i =
√
−1). Let

H1,0 = Eigen
(

JC; i
)

, H0,1 = Eigen
(

JC; −i
)

,

be the corresponding eigenbundles. It may be shown that

Th e o r em 5.2. Let (M, g) be a (2n+ 2)-dimensional Lorentzian manifold

admitting a nowhere zero null Killing vector field N such that N ⌋W = 0 and

N ⌋C = 0. Let F be the foliation tangent to N and π : T (M) → ν(F) the

projection. Then

i) H = πH1,0 ⊂ ν(F)⊗ C is a transverse CR structure on (M, F).

ii) If the leaf space O = M/F is an orbifold then H1,0 projects on a CR

structure T1,0(O) ⊂ T (O)⊗ C.

For a discussion of foliations with a transverse CR structure one may see the
authors [10]. CR structures on orbifolds (or V -manifolds, cf. I. Satake, [76])
were studied by I. Masamune et al., [30]. We do not prove Theorem 5.2 here
and only report on the particular case considered by C.R. Graham (cf. [40])
where N is regular (in the sense of R. S. Palais, [64]) so that the leaf space
M = M/F is a C∞ manifold. To start with we recall a few elements of R. S.
Palais theory (cf. op. cit.). Let M be a m-dimensional C∞ manifold. A local
coordinate system χ =

(

x1 , · · · , xm
)

: U → R
m is cubical, of breath 2a, centered

at x0 ∈ U , if χ(x0) = 0 and

χ(U) =
{(

t1 , · · · , tm
)

∈ R
m :

∣

∣tj
∣

∣ < a, 1 ≤ j ≤ m
}

.

Let 1 ≤ p ≤ m− 1 and t =
(

tp+1 , · · · , tm
)

∈ R
m−p such that

∣

∣tj
∣

∣ < a for any
1 ≤ j ≤ m− p. The set

Σt = {x ∈ U : xp+j(x) = tp+j , 1 ≤ j ≤ m− p}
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is a p-dimensional slice of (U,χ). A tangent vector field N ∈ X(M) is regular

if there is a C∞ atlas A such that every local chart (U, xi) ∈ A is cubical and
the intersection of U with each maximal integral curve of N is a 1-dimensional
slice of (U, xi). We recall the following

Th e o r em 5.3 (R. S. Palais, [64]). If N is regular then the leaf space M/N
admits a C∞ manifold structure such that the projection Π : M → M/N is a

C∞ map.

Next we recall a few elements of Boothby-Wang theory (cf. [23]). By Propo-
sition 1.5 in [47], p. 13, for each point x0 ∈ M there is an open neighborhood
U ⊂ M of x0, a positive number ǫ > 0, and a local 1-parameter group of local
transformations ϕt : U → M, |t| < ǫ, inducing N i.e.

dCx

dt
(0) = Nx , x ∈ U, Cx(t) = ϕt(x), |t| < ǫ.

The local 1-parameter group {ϕt}|t|<ǫ is generated by N and N is complete if it
generates a global 1-parameter group of transformations ϕt : M → M, t ∈ R.
Compactness of M implies completeness of N . The tangent vector field N is
closed if Cx is a closed curve for any x ∈ M. The period function λN : M → R

of a closed regular vector field N is defined by

λN (x) = inf
{

t > 0 : ϕt(x) = x
}

, x ∈ M.

As a consequence of regularity λN (x) > 0 for every x ∈ M. By a result in [23]
the period function is smooth i.e. λN ∈ C∞(M,R). The relevance of the period
function is emphasised by

Th e o r em 5.4 (A. Morimoto, [60]). Let (φ, ξ, η) be a normal almost

contact structure on M whose structure vector ξ is closed and regular, and has

a constant period function λξ. Then there exist a complex manifold N and a

C∞ map Π : M → N such that

i) M is the total space of a principal circle bundle S1 → M
Π→ N.

ii) η is a connection 1-form on M.

iii) ξ is a vertical vector field i.e. ξ ∈ Ker(dΠ).

5.3 - CR structures

5.3.1 - Graham-Sparling construction

W. M. Boothby’s results (cf. op. cit.) do not apply to the situation at
hand, as θ is not a contact form and the compactness assumption is dropped,
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in general. Neither does Theorem 5.4 apply, as (J, N, θ) is not an almost
contact structure, to start with. To avoid the abrupt generalization of the
results in [23], [60] and [20] to the realm of Lorentzian geometry, or confine the
discussion to purely local considerations, the approach in [40] only deals with
the case where (M, g) is a (2n+2)-dimensional Lorentzian manifold, admitting
a null Killing vector field N such that N ⌋W = 0, N ⌋C = 0, the leaf space
M = M/N is a (2n + 1)-dimensional C∞ manifold, the canonical projection
π : M → M is C∞ and readily organizes M as the total space of a principal
circle bundle S1 → M

π−→ M whose vertical bundle Ker(dπ) → M is the span
of N i.e. Ker(dπ) = RN . If this is the case then, by the main construction
in [77] and [40], the data (J, N, V, θ, σ) induces a nondegenerate CR structure
on M . It is our purpose in the present section to recall Sparling’s construction
of an almost CR structure T1,0(M) ⊂ T (M) ⊗ C [got by projecting (H,J) on
M ] and prove its integrability.

Let p ∈ M and u ∈ Tp(M). Let x ∈ π−1(p). As M is a principal S1-bundle
over M , its projection π is a C∞ submersion, so there is v ∈ Tx(M) such that
(dxπ)v = u. Next we define η ∈ Ω1(M) by setting

ηp(u) = θx(v).

The definition of ηp(u) doesn’t depend upon the choice of x and v. Indeed if
y ∈ π−1(p) and w ∈ Ty(M) with (dyπ)w = u then there is a unique a ∈ S1 such
that y = x · a and π ◦Ra = π thus yielding

(dyπ)w = u = (dxπ)v = (dyπ) ◦ (dxRa)v

hence w = v + λNy for some λ ∈ R. Finally N ⌋ θ = 0 implies θx(v) = θy(w).
Q.e.d.

Let us set H(M) = Ker(η) and define JM : H(M) → H(M) by

JM, pu = (dxπ)Jxv ,

p ∈ M, x ∈ π−1(p), u ∈ Tp(M), v ∈ (dxπ)
−1(u).

Similar to the above JM,pu is well defined because of JN = 0. Next J2 = −I
on H yields J2

M = −IM on H(M), where IM is the identical transformation of
H(M). We set as customary

T1,0(M) = Eigen
(

JC
M , i

)

⊂ H(M)⊗ C.

P r o p o s i t i o n 5.2 (C.R. Graham, [40]). T1,0(M) is a strictly pseudocon-

vex CR structure on M , of CR dimension n.
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P r o o f. If we set T0,1(M) = Eigen
(

JC
M , −i

)

then T0,1(M) = T1,0(M)
where an overbar denotes complex conjugation. Hence

T1,0(M) ∩ T0,1(M) = (0)

i.e. T1,0(M) is an almost CR structure on M . To prove integrability

Z,W ∈ C∞(T1,0(M)) =⇒ [Z,W ] ∈ C∞(T1,0(M))

we ought to compute the Nijenhuis tensor field of J

NJ(X,Y ) = [JX, JY ] + J2[X,Y ]− J
{

[JX, Y ] + [X,JY ]
}

,

X, Y ∈ X(M).

Locally

Njk
i = Jℓ

j ∇ℓJ
i
k − Jℓ

k ∇ℓJ
i
j − J i

ℓ∇jJ
ℓ
k + J i

ℓ∇kJ
ℓ
j

=
(

∇jn
ℓ
)

∇ℓ∇kn
i −

(

∇kn
ℓ
)

∇ℓ∇jn
i

−
(

∇ℓn
i
)

∇j∇jn
ℓ +

(

∇ℓn
i
)

∇k∇jn
ℓ .

Let us substitute the covariant derivatives of N = ni ∂i from (39) and observe
the cancellation of terms. We obtain

(72) Njk
i = 2νi∇knj +

(

Ljk ∇kn
ℓ − Lkℓ∇jn

ℓ
)

ni

+
(

Lℓ
k ∇ℓn

i−Li
ℓ∇kn

ℓ
)

nj +
(

Li
ℓ∇jn

ℓ−Lℓ
j ∇ℓn

i
)

nk .

L emma 5.8. If θ(X) = θ(Y ) = 0 then NJ(X,Y ) ∈ Span
{

N, V
}

.

P r o o f. Let us contract with XjY k in (72) and use njX
j = nkY

k = 0. We
obtain

NJ(X,Y ) = 2 {(∇Y θ)X} V +
{

L
(

X, ∇Y N
)

− L
(

∇XN, Y
)}

N.

Q.e.d. �

L emma 5.9.

[

C∞
(

T1,0(M)
)

, C∞
(

T1,0(M)
)]

⊂ C∞
(

H(M)⊗ C
)

.
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P r o o f. Let X,Y ∈ C∞(H(M)) and let X̃, Ỹ ∈ C∞(H) be respectively
lifts of X and Y i.e.

(dxπ)X̃x = Xπ(x) , (dxπ)Ỹx = Yπ(x) , x ∈ M.

The identities

(dθ̃)(JX̃, JỸ ) = (dθ)(X̃, Ỹ ), (dθ)(JX̃, Ỹ ) = −(dθ)(X̃, JỸ ),

yield

(dη)(JMX, JMY ) = (dη)(X,Y ), (dη)(JMX,Y ) = −(dη)(X,JMY ),

so that
(dη)(X − iJMX, Y − iJMY ) = 0.

Hence [as η(X − iJMX) = η(Y − iJMY ) = 0]

0 = (dη)(X − iJMX, Y − iJMY ) = −1

2
η
(

[X − iJX, Y − iJMY ]
)

i.e. [X − iJX, Y − iJMY ] ∈ Ker(η) ⊗ C = H(M)⊗ C. Q.e.d. �

Let us set
Z̃ =

[

X̃ − iJX̃ , Ỹ − iJỸ
]

so that Z̃ is a lift of Z =
[

X − iJMX , Y − iJMY
]

. Then

Z̃ + i J Z̃ =

=
[

X̃ , Ỹ
]

−
[

JX̃ , JỸ
]

+ J
[

JX̃ , Ỹ
]

+ J
[

X̃ , JỸ
]

+ i
{

J
[

X̃ , Ỹ
]

− J
[

JX̃ , JỸ
]

−
[

JX̃ , Ỹ
]

−
[

X̃ , JỸ
]

}

=

[by J2 = −I + θ ⊗ V + σ ⊗N and J3 + J = 0]

=
(

− J2 + θ ⊗ V + σ ⊗N
)[

X̃ , Ỹ
]

−
[

JX̃ , JỸ
]

+ J
[

JX̃ , Ỹ
]

+ J
[

X̃ , JỸ
]

+ i
{

−J3
[

X̃ , Ỹ
]

− J
[

JX̃ , JỸ
]

+
(

J2 − θ ⊗ V − σ ⊗N
)

(

[

JX̃ , Ỹ
]

+
[

X̃ , JỸ
]

)}

or [by the very definition of NJ ]

(73) Z̃ + i JZ̃ = −NJ

(

X̃ , Ỹ
)

− i J NJ

(

X̃ , Ỹ
)
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+ θ
([

X̃ , Ỹ
]

− i
[

JX̃ , Ỹ
]

− i
[

X̃ , JỸ
])

V

+σ
([

X̃ , Ỹ
]

− i
[

JX̃ , Ỹ
]

− i
[

X̃ , JỸ
])

N.

Yet X̃, Ỹ ∈ H hence θ(X̃) = θ(Ỹ ) = 0 yielding (by Lemma 5.8) NJ

(

X̃ , Ỹ
)

∈
RN ⊕RV . Together with (73) this yields

(74) Z̃ + iJZ̃ ∈ CN ⊕ CV.

Previously one has shown that LNV = [N,V ] = 0 so that V projects on M i.e.
there is a tangent vector field T ∈ X(M) such that

(dxπ)V = Tπ(x) , x ∈ M.

Then (74) yields

(75) Z + iJMZ ∈ CT

i.e. Z + iJMZ = fT for some C∞ function f : M → C. On the other hand (by
Lemma 5.9) Z ∈ H(M)⊗ C [and H(M) = Ker(η)] hence

0 = η
(

Z + iJMZ
)

= f η(T ) = f

(as η(T )π(x) = θ(V )x = 1). It follows that Z + iJMZ = 0 hence Z ∈ T1,0(M)
or

[

X − iJMX , Y − iJMY
]

∈ T1,0(M).

Q.e.d. Finally the Levi form

Gη(X,Y ) = (dη)(X,JMY ), X, Y ∈ H(M),

is positive definite because Gθ is positive definite on H (cf. Lemma 5.6 above).
Q.e.d. �

5.3.2 - Robinson-Trautman construction

Let M be a 4-dimensional (i.e. n = 1) manifold and (K,L) a flag structure
on M. Let us assume that (K,L) is geodesic, so that [by Theorem 3.1] every
section N ∈ C∞

(

K0
)

is a null Killing vector field with respect to any adapted
metric g ∈ A ⊂ Lor(M). Here K0 = K \ {zero section}. Moreover, we assume
there is a section N ∈ C∞

(

K0
)

which is a regular vector field, in the sense
of R. Palais (cf. [64] and our Section § 5.2). Then [by Theorem 5.3] the leaf
space M = M/N may be organized as a C∞ manifold such that the canonical
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projection π : M → M is a C∞ submersion. As (K,L) is geodesic, L is
invariant with respect to K so that λ ∧ LNλ = 0 for any λ ∈ C∞(L) and then
L is invariant with respect to the flow {ϕN

t }
|t|<ǫ generated by N . Consequently

L ⊂ T ∗(M) projects on a line bundle LN ⊂ T ∗(M) such that for any section
λ ∈ C∞(LN ) the pullback of λ by π is a section in L i.e. π∗λ ∈ C∞(L). Given
λ ∈ C∞(LN ) is a nowhere zero section in LN we set as customary

Ker(LN )p = Ker
(

λp

)

, p ∈ M,

so that Ker(LN ) → M is a rank 2 subbundle of T (M) → M [which doesn’t
depend upon the choice of λ].

Let now
(

(K,L), J
)

be a shear free optical structure, based on the flag
structure (K,L). Here J : E → E is a complex structure on E = Ker(L)/K.
As J is invariant with respect to the flow {ϕN

t }|t|<ǫ it projects onto a complex
structure JM : Ker(LN ) → Ker(LN ) hence T1,0(M) = {X−iJMX : X ∈ T (M)}
is a CR structure on M .

5.3.3 - Graham-Sparling and Robinson-Trautman constructions com-

pared

We may parallel the Graham-Sparling and Robinson-Trautman construc-
tions, as follows. Let M be a 4-dimensional manifold. Let g ∈ Lor(M) be a
Lorentzian metric on M and let N ∈ X(M) be a nowhere zero Killing vec-
tor field on (M, g) i.e. LNg = 0. Next, let us assume that N is null [i.e.
g(N,N) = 0] and that N ⌋W = 0 and N ⌋C = 0 where W are respectively the
Weyl and Cotton tensor fields of (M, g). This is of course the starting data in
the Graham-Sparling construction (with n = 1). Let θ ∈ Ω1(M) be defined by

(76) θ(X) = g(X,N), X ∈ X(M),

and let us consider the line subbundles

K ⊂ T (M), L ⊂ T ∗(M),

Kx =
{

aNx : a ∈ R
}

, Lx =
{

a θx : a ∈ R
}

, x ∈ M.

As θ(N) = 0 the pair (K,L) is a flag structure on M. By the very definition
(76) one has N ♭ = θ hence trivially N ♭∧θ = 0 i.e. g is adapted to (K,L). If k ∈
C∞(K) and λ ∈ C∞(L) then k = ρN and λ = fθ for some ρ, f ∈ C∞(M,R)
so that

Lkλ = LρNλ = ρLNλ,

LNλ = LN

(

fθ
)

= N(f) θ + f LNθ,
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λ ∧ Lkλ = f2 θ ∧ LNθ,

and LNθ = 0 [as θ ∈ Ω1
B(F), cf. Section § 5.2]. Then λ ∧ Lkλ = 0, or L is

invariant with respect to K i.e. the flag structure (K,L) is geodesic. Also

λ ∧ dλ = f2 θ ∧ dθ

hence Ker(L) isn’t integrable. That is, the congruence by null curves defined
by the flow is twisting. Let J : T (M) → T (M) be the (1, 1)-tensor field defined
by

(77) JX = ∇XN, X ∈ X(M).

Then [by Proposition 5.1] J is an f -structure on M and (J, N, V, θ, σ) is an
f -structure with two complemented frames. Next let us consider the real rank 2
bundle E = Ker(L)/K. As θ ◦ J = 0 the bundle morphism J is Ker(L)-valued.
Also, as JN = 0 the endomorphism J : Ker(L) → Ker(L) descends to a vector
bundle morphism J : E → E with J2 = −I i.e. a complex structure on E.
Therefore

{

(K, L), J
}

is an optical structure on M. Let B ⊂ A be the class
(mod R) of g (which makes sense because g is already adapted). Also let O be
the natural orientation of E determined by the complex structure J : E → E so
that the optical structure

{

(K,L), J
}

may also be thought of as the synthetic
object

{

(K,L), B, O
}

. Let λ = f θ ∈ C∞(L) be an arbitrary nowhere zero
section [hence f(x) �= 0 for any x ∈ M]. Then for any k = ρN ∈ C∞(K)

Lkg = 2 ν ⊙ λ

which is (29) with σ = 0 (and ν = f−1 dρ). Thus the optical structure
{

(K,L), J
}

is shear-free.

Finally, let us assume now that the given null Killing vector is also regular
(in the sense of R. Palais) so that M = M/N is a manifold and π : M → M
is C∞. Then L projects (by the invariance of L with respect to K) on a line
bundle LN ⊂ T ∗(M) and (by JN = 0, LNJ = 0) J : E → E projects on a
complex structure J : Ker(LN ) → Ker(LN ) leading to the CR structure on M
arising from the Robinson-Trautman construction. Therefore, aside from being
confined to the case of 4-dimensional manifolds M, the Robinson-Trautman is
more general in the sense that it associates a CR structure on the orbit space
M = M/N to any complex structure J : Ker(L)/K → Ker(L)/L (provided
that J is invariant by the flow of N) rather than to the particular complex
structure (77) alone.
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6 - Petrov classification

6.1 - Petrov classification

Petrov’s classification (also known as the Petrov-Pirani-Penrose classifica-

tion) as discovered by A. Z. Petrov (cf. [66]) and F. Pirani (cf. [67]) introduces
six types

(78) I, II, D, III, N, O,

for the Weyl tensor Wµνσρ(x) at a point x ∈ M of the given space-time. The
Weyl tensor is algebraically general at x if it is of Petrov type I at x, while in the
remaining cases the Weyl tensor is algebraically special. Rather than providing
the definition of the Petrov classes (78) we recall their description due to L.
Bel and R. Debever (cf. e.g. M. Ortaggio, [63]). Let W ∗

µνσρ be the dual of the
Weyl tensor (cf. e.g. M.N. Novello and J. Duarte De Oliveira, [62]). Let T
be one of the types (78). If Wµνσρ is of type T at x we write W ∈ Tx. Then
(cf. [63])

W ∈ Nx ⇐⇒











∃nµ (∂µ)x ∈ Tx(M) \ {0}
gµν(x)n

µnν = 0,

Wµνσρ(x)n
ρ = 0.

If W �∈ Nx then

W ∈ IIIx ⇐⇒























∃nµ (∂µ)x ∈ Tx(M) \ {0}
gµν(x)n

µnν = 0,

Wµνσρ(x)n
νnρ = 0,

W ∗

µνσρ(x)n
νnρ = 0.

Moreover

W ∈ IIx ⇐⇒



































∃ nµ (∂µ)x ∈ Tx(M) \ {0}
∃ α, β ∈ R \ {0}
gµν(x)n

µnν = 0,

Wµνσρ(x)n
νnρ = αnµnσ ,

W ∗

µνσρ(x)n
νnρ = β νµnσ .
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W ∈ Dx ⇐⇒



































































∃ nµ (∂µ)x , n
′µ(∂µ)x ∈ Tx(M) \ {0}

∃ α, β, γ, δ ∈ R \ {0}
nµ (∂µ)x , n

′µ(∂µ)x linearly independent

gµν(x)n
µnν = 0, gµν(x)n

′µn′ν = 0,

Wµνσρ(x)n
νnρ = αnµnσ ,

W ∗

µνσρ(x)n
νnρ = β nµnσ ,

Wµνσρ(x)n
′νn′ρ = γ n′

µn
′

σ ,
W ∗

µνσρ(x)n
′νn′ρ = δ n′

µn
′

σ .

W ∈ Ox ⇐⇒ Wµνσρ(x) = 0.

The result (obtained independently) in [66] and [67] is that the Weyl tensor
of a given Lorentzian metric falls (at a point x) in one of the six classes (78).
The proof is a linear algebra inspection of the spectrum of the mapping v′µν =
Wµνσρ(x)v

σρ on 2-vectors [i.e. on (2, 0)-tensor fields at a point x] determined
by the Weyl tensor at x.

6.2 - Goldberg-Sachs theorem

For our needs in Section § 6 we recall the Goldberg-Sachs theorem according
to which a vacuum solution of the Einstein field equations admits a shearfree
null geodesic congruence if and only if the Weyl tensor is algebraically spe-
cial (cf. J.N. Goldberg and R.K. Sachs, [38]). It should be mentioned that
Goldberg-Sachs theorem doesn’t include linearized gravity: by a result of S.
Dain and O.M. Moreschi (cf. [25]) there exist solutions to linearized Einstein
field equations admitting a shearfree null geodesic congruence which aren’t al-
gebraically special.

7 - Dirac equation and shearfree geodesic null congruences

7.1 - Dirac equation on a curved space-time

The classical4 Dirac equation is

(79) γµ ∂µΨ = − imc

�
Ψ.

4That is the four component wave equation as discovered by P. Dirac himself, cf. [27].
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The conserved probability current is

(80) Jµ = cΨ+ AγµΨ.

An early study of (79)–(80) in a Minkowski space-time was performed by W.
Pauli (cf. [65]) and W. Kofink (cf. [50]). In this context, if M =

(

R
4 , g0

)

is
the 4-dimensional Minkowski space-time5

g0 =

3
∑

µ=0

ǫµ dx
µ ⊗ dxµ , ǫ0 = 1 = −ǫj , j ∈ {1, 2, 3},

then the Dirac field Ψ, governed by equation (79), is a function Ψ : M → C
4

and we set ∂µΨ = ∂Ψ/∂xµ. The Dirac gamma matrices γµ act6 on Ψ and
satisfy the anticommutation formula

(81) γµγν + γνγµ = 2 ηµν I4

where
[

ηµν
]

=
[

ηµν
]

−1
, ηµν = ǫµ δµν , I4 =

[

δµν
]

.

Also m, c and � denote respectively mass, speed of light and Planck’s constant,
while Ψ+ is the complex conjugate transpose of Ψ and A is the hermitizing

matrix (for the Dirac gamma matrices γµ) i.e.

(82) A = A+ ,
(

γµ
)+

= AγµA−1 .

The similarity transformation (or spin-base transformation) is

(83) Ψ̃ = S−1Ψ, γ̃µ = S−1 γµ S, Ã = S+AS,

where S is a constant 4× 4 matrix with complex entries. Equations (79)–(82)
are invariant under any similarity transformation (83).

To generalize Dirac’s equation to an arbitrary space-time, in a manner con-
sistent with its Minkowski space-time version, one replaces the ordinary partials
∂µ by covariant derivatives Dµ = ∂µ +Γµ where Γµ are 4× 4 complex matrices
(the spin connection matrices) acting on the Dirac field Ψ. Also Minkowski
4-space is replaced by an arbitrary 4-dimensional Lorentzian manifold (M, g)
so that the Minkowski metric g0 = ηµν dx

µ ⊗ dxν is replaced by an arbitrary

5The reader should be warned that through section § 7 we switch from signature convention
(− + ++) [for a given Lorentzian metric] to convention (+ − −−). A unified presentation
is of course desirable yet, since we give no proofs, we wish to respect the conventions in the
sources (such as [46]) quoted through § 7.

6That is γµ are 4× 4 matrices with complex entries.
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Lorentzian metric g = gµν dx
µ ⊗ xν on M i.e. one replaces ηµν by gµν in the

anticommutation formula (81) for the Dirac gamma matrices

(84) γµγν + γνγµ = 2 gµν I4 .

It is customary (cf. e.g. M. Arminjon and F. Reifler, [7]) to additionally request
that g00 > 0 and that the 3× 3 matrix

[

gjk
]

be negative definite. While these
are considered to be mild restrictions imposed on g, satisfied by most space-
times appearing in mathematical practice, they notably do not hold for Gödel’s
(cf. [36]) space-time.

One further generalizes Dirac’s equation by allowing the coefficient matrices
(γµ , A) to be functions of the space-time point x ∈ M. Moreover, to get the
right invariance properties of equation (79) one adds to (83) the transformation
law of the spin connection matrices Γµ under similarity transformations (asso-
ciated to matrices S which are also allowed to be functions of the space-time
point)

(85) Γ̃µ = S−1
(

∂µ + Γµ

)

S

so that covariant derivatives transform as D̃µ = S−1 Dµ S. According to the
terminology adopted in [7] the transformations given by (83) and (85) are re-
ferred to as local similarity transformations of the first kind. Local similarity
transformations of the second kind are defined by adding to (83) the transfor-
mation law

(86) Γ̃µ = Γµ

instead of (85). For transformations of the form (83) and (86) one has D̃µ = Dµ.
Two Dirac equations are (classically) equivalent if there is a local similarity
transformation of any of the two kinds above which maps solutions to one
equation into solutions of the other.

The Dirac Lagrangian is

(87) L
(

xµ, Ψ, ∂µΨ
)

≡
√
−G

i�c

2

[

Ψ+Aγµ(DµΨ)− (DµΨ)+AγµΨ+
2mc

�
iΨ+AΨ

]

with G = det[ gµν ]. The Euler-Lagrange equations of the variational principle

δ

∫

L
(

xµ, Ψ, ∂µΨ
)

d4x = 0

are

(88) γµDµΨ+
1

2
A−1Dµ

(

Aγµ
)

Ψ = − imc

�
Ψ
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where
DµΨ ≡ ∂µΨ+ ΓµΨ,

Dµγ
ν ≡ ∇µγ

ν + Γµγ
ν − γνΓµ ,

DµA ≡ ∂µA− Γ+
µA−AΓµ ,

and ∇µ is the covariant derivative with respect to the Levi-Civita connection
of gµν i.e.

∇µΨ ≡ ∂µΨ,

∇µγ
ν ≡ ∂µγ

ν +

{

ν
ρµ

}

γρ ,

∇µA ≡ ∂µA,

where

{

ν
ρµ

}

are the Christoffel symbols of gµν . Equation (88) is the (gener-

alized ) Dirac equation. According to the terminology adopted by M. Arminjon
and F. Reifler (cf. [5]) the class QRD-0 consists of the generalized Dirac equa-
tions (88) with Γ = 0 where Γ ≡ γµΓµ is the contracted spin connection matrix.
Dirac equations in the class QRD-0 read

(89) γµ ∂µΨ+
1

2
A−1∇µ

(

Aγµ
)

Ψ = − imc

�
Ψ.

If ∇µ

(

Aγµ
)

= 0 then (89) takes the normal form

(90) γµ ∂µΨ = − imc

�
Ψ.

We recall

T h e o r em 7.1 (M. Arminjon and F. Reifler, [7]). Let (U, xµ) be a local

coordinate system on a space-time (M, g) such that g00(x) > 0 and the matrix

[ gjk(x)]1≤jk≤3 is positive definite, for any x ∈ U . Then for any choice of C∞

coefficient fields (γµ , A) and any choice of covariant derivatives Dµ = ∂µ +Γµ

acting on C∞ Dirac fields Ψ defined on U , there exist a C∞ local similarity

transformation S of the first kind and a C∞ local similarity transformation T
of the second kind such that Ψ �−→ (TS)−1Ψ transforms the generalized Dirac

equation (88) with coefficient fields (γµ , A, Γµ) into an equivalent normal Dirac

equation (90) of class QRD-0, in some open neighborhood of each point x0 ∈ U .

By Theorem 7.1 one may think of normal QRD-0 equations (90) as canonical
forms for the (generalized) Dirac equations (88), in an open neighborhood of
each point of the given space-time. The proof of Theorem 7.1 relies on the
theory of linear hyperbolic PDEs (cf. e.g. R. Geroch, [34]).
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7.2 - Separation of variables for Dirac equation

The successful treatment of the relativistic hydrogen atom problem (cf.
P.A.M. Dirac, [27]) relies on the fact that Dirac’s equation on Minkowski
space can be solved by separation of variables (in spherical coordinates). The
purpose of this section is to review the basic geometric structure needed to
study the separability properties of the massive charged Dirac equation on a
curved space-time

HDΨ = 0,

(91) HDΨ ≡
[

i γµ (Dµ − i e Aµ)−
√
2me I

]

Ψ,

where {γµ} is a set of Dirac matrices associated to a Lorentzian metric gµν , and
Dµ denotes covariant differentiation with respect to a connection (cf. e.g. A.
Lichnerowicz, [56]) on four-spinors corresponding to the choice of γµ and to the
Levi-Civita connection of gµν , and where A = Aµ dx

µ is a differential 1-form.
We follow the work by N. Kamran and R. G. McLenaghan (cf. [46]) and argue
that the needed geometric background is a space-time admitting a 2-parameter
abelian orthogonally transitive isometry group and a pair of shearfree geodesic
null congruences. Precisely we consider the class of Lorentzian metrics g of the
form

(92) g = 2
(

Θ1 ⊙Θ2 −Θ3 ⊙Θ4
)

where

(93) Θ1 =

∣

∣Z(w, x)
∣

∣

1/2

√
2T (w, x)

{

f W (w)

Z(w, x)
[ǫ1 du+m(x) dv] +

1

g2 W (w)
dw

}

,

(94) Θ2 =

∣

∣Z(w, x)
∣

∣

1/2

√
2T (w, x)

{

W (w)

Z(w, x)
[ǫ1 du+m(x) dv]− f

g2 W (w)
dw

}

,

(95) Θ3 =

∣

∣Z(w, x)
∣

∣

1/2

√
2T (w, x)

{

X(x)

Z(w, x)
[ǫ2 du+ p(w) dv] − i

X(x)
dx

}

,

(96) Θ4 = Θ3 ,

and

(97) A =
T (w, x)

√
2
∣

∣Z(w, x)
∣

∣

1/2

{

H(w)

g2 W (w)

(

f θ1 + θ2
)

+
G(x)

X(x)

(

θ3 + θ4
)

}

,
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(98) Z(w, x) = ǫ1 p(w) − ǫ2m(x), g =
1√
2

(

1 + f2
)1/2

.

Here ǫ1 , ǫ2 , f ∈ R are constants with
(

ǫ1, ǫ2
)

�= (0, 0). Also
(

xµ
)

≡
(

u, v, w, x
)

.
All functions involved are real valued.

By a result of R. Debever (cf. [26]) the class of Lorentzian metrics (92)
consists precisely of all Lorentzian metrics that admit

i) a 2-dimensional abelian group of local isometries acting orthogonally and
transitively,

ii) two shear-free congruences of null geodesics.

Let D be the class of all solutions to Einstein’s vacuum and electrovac field
equations with cosmological constant

(99) Rµν −
1

2
Rgµν + Λ gµν = Fµρ Fν

ρ − 1

4
gµν Fσρ F

σρ ,

(100) ∇νFµν = 0, ∇[σFµν] = 0, Fµν = 2∇[µAν] ,

[where we have set as customary

∇[σFµν] ≡ ∇σFµν +∇νFσµ +∇µFνσ ,

∇[µAν] ≡ ∇µAν −∇νAµ ,

and we allow for the cosmological constant and the electromagnetic tensor field
to vanish i.e. we allow for Λ = 0 and Fµν = 0] that satisfy the following
requirements

(H1) The Weyl tensor is everywhere of Petrov type D,

(H2) If the Maxwell tensor Fµν is nonzero then it is nonsingular and its
principal null directions are aligned with the repeated principal null directions
of the Weyl tensor,

(H3) The assumptions in the generalized Goldberg-Sachs theorem are sat-
isfied, insuring that the null congruences associated to the principal directions
of the Weyl tensor are geodesic and shearfree.

T h e o r em 7.2. For every (g, F ) ∈ D and every point x0 ∈ M there is a

local coordinate system (U, xµ),
(

xµ
)

≡
(

u, v, w, x
)

, and a local frame {Θa :
1 ≤ a ≤ 4} ⊂ C∞(U, T ∗(M) ⊗ C) of complex valued null 1-forms such that

x0 ∈ U and

g = 2
(

Θ1 ⊙Θ2 −Θ3 ⊙Θ4
)

,

F = B(w, x)
(

Θ1 ∧Θ2 −Θ3 ∧Θ4
)

,

for some complex valued C∞ function B(w, x), where the 1-forms Θa and the

real vector potential A are respectively given by (93)–(96) and (97)–(98).
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The result is due to R. Debever and N. Kamran and R. G. MacLenaghan (cf.
Theorem 1 in [46], p. 1020). Theorem 7.2 is the reason for which separability
properties of Dirac’s equation HDΨ = 0 are studied for solutions (g, F ) ∈ D to
equations (99)–(100). Equations (99)–(100) were solved by the same authors,
producing the general solution expressed in terms of the tetrad {Θa} and the
local coordinates (u, v, w, x) in Theorem 7.2. We recall

T h e o r em 7.3 (N. Kamran and R.G. MacLenaghan, [46]).

Let (g, F ) ∈ D. The following statements are equivalent

1) The Dirac equation (91) admits a solution of the form

(101) Ψ = ei(αu+β v) T 3/2 Z−1/4













eiB R1(x)S2(w)

eiB R2(x)S1(w)

e−iB R1(x)S1(w)

e−iB R2(x)S2(w)













where α, β ∈ R are arbitrary constants and where

(102) dB =
1

4Z

�

ǫ1 m
′(x) dw + ǫ2 p

′(w) dx
�

.

2) i) The Petrov type D condition (H1) is satisfied.

ii) There exist real valued functions h(w) and g(x) such that

(103) Z1/2 T−1 e2 iB = h(w) + i g(x).

It should be emphasized that under the requirement (H1) the equation
(102) possesses solutions B. The relevance of the CR manifolds Ma (a ∈ {1, 2})
associated to the two shearfree null geodesic congruences [such as springing from
assumptions (H1)–(H3) above] is as yet unclear. The detailed analysis of the CR
and pseudohermitian geometry of Ma is missing in the present mathematical
physics literature.

Ac k n ow l e d gm en t s. The second named author expresses his gratitude
to C. D. Hill for discussions (during the meeting Cauchy-Riemann manifolds

and Partial Differential Equations, 8th Edition, Levico Terme, June 3-8, 2018)
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tivity Theory.
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