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From complex to real analytic geometry

Abstract. In this survey paper we look at the emergence of a good no-
tion of real analytic space. Then we consider the global Nullstellensätze
that have been proved both in the complex and in the real case. Finally
we look at relations between a real global Nullstellensatz and Hilbert’s
17th problem for global analytic functions and we give some conclusions.
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This text resumes the talk given by the second author in the Conference in
honour of Giuseppe Tomassini, who was our advisor of master theses in 1971.

Giuseppe Tomassini is a specialist in Complex Analysis, but we deal with
real analytic geometry because at the beginning of his career he worked also in
real analytic geometry, in particular with our common friend, Alberto Tognoli.

The paper is divided in three parts.

Part 1: Emergence of the notion of real analytic space

The theory of real analytic spaces was born in the fifties of the last cen-
tury, when the complex theory was fully developed by people as Oka, Cartan,
Whitney, Bruhat, Grothendieck, Rückert, Remmert, etc.

Complex analysis is the study of holomorphic functions and their zero sets.
A central notion is the one of analytic space, in particular of a Stein space.

Among the most important results in this setting are Cartan’s theorems A and
B for coherent sheafs on Stein spaces.

The passage from C to R in the theory of analytic spaces quickly presented
some criticism. Cartan remarked that taking the same definition for real ana-
lytic spaces as in the complex case, the resulting cathegory had a lot of patho-
logical examples: for instance the structural sheaf is not coherent in general, so
that theorems A and B cannot hold true. Also there is not a clear notion of irre-
ducible components and irreducible objects may have not constant dimension,
as already appears in real algebraic geometry.
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In this situation, for instance Grothendieck said: L’intérêt des espaces analy-
tiques, lorsque k n’est pas algébriquement clos, est d’ailleurs douteux. (See [Gr])

Cartan did not agree. Even if he found the worst examples, see [BC1],
[BC2], he tried to find what were the obstructions to get a good cathegory.

He remarked that a lot of bad examples were constructed using the local
nature of the definition.

“. . . la seule notion de sous-ensemble analytique réel (d’une variété
analytique-réelle V ) qui ne conduise pas à des propriétés pathologiques
doit se référer à l’espace complexe ambiant: il faut considérer les sous-
ensembles fermés E de V tels qu’il existe une complexification W de
V et un sous-ensemble analytique-complexe E′ de W , de manière que
E = W ∩ E′. On démontre que ce sont aussi les sous-ensembles de
V qui peuvent être définis globalement par un nombre fini d’équations
analytiques. La notion de sous-ensemble analytique-réel a ainsi un car-
actère essentiellement global, contrairement à ce qui avait lieu pour les
sous-ensembles analytiques-complexes.” (see [C3]).

Cartan uses complex notions to describe real pathologies: for instance he
defines the complexification of a germ of real analytic space Vx at a point x ∈ R

n

and proves that Vx is coherent if and only if the complexification of Vx induces
the complexification of Vy on points y close to x.

Also Cartan proved that Theorems A and B are preserved by taking direct
limits in the sense that if a closed set X ⊂ R

n has a fundamental system of
Stein neighbourhoods in C

n then Theorems A and B hold true for X.

All these considerations led Cartan to the following characterization of what
a good cathegory of real analytic sets in R

n should be.

For a real analytic subset X ⊂ R
n the following sentences are equivalent.

1. The set X is the zero set of finitely many real analytic functions.

2. There is a coherent ideal subsheaf of ORn whose zero set is X.

3. There is an open neighbourhood Ω of Rn in C
n and a closed subspace

Y ⊂ Ω such that Y ∩R
n = X.

Since R
n has a fundamental system of Stein neighbourhoods in C

n and
complex analytic sets in a Stein open set do the same, for real analytic subsets
of Rn having the properties above Theorems A and B hold true. See [C2].

Bruhat and Whitney extend the notion of complexification to analytic man-
ifolds and introduce the name C-analytic for analytic subsets of a real analytic
manifold M induced by intersection with M of an analytic subset of the com-
plexification of M . Finally Tognoli extended the notion of complexification of
a real analytic space admitting a coherent structure, in analogy with condition
2 of Cartan. See [WB], [T].

Tognoli distinguished 3 types of real analytic spaces: the coherent ones,
whose reduced structure is coherent, the ones carrying one (or several) coher-
ent structure (for instance Whitney and Cartan umbrellas) and the ones not
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admitting any coherent structure (wild examples of Cartan, Bruhat-Cartan,
etc, see [BC1], [BC2] ).

This way emerges the first idea: globality. A good real analytic space is the
zero set of finitely many global equations in a suitable ambient space.

R ema r k 1. 1) An important difference between the complex and the real
case is that while the algebra of holomorphic functions on an open set of Cn

is closed in the algebra of continuous complex valued functions with respect
to the compact open topology, the algebra of real analytic functions is dense
in the algebra of continuous functions both in the compact open and in the
stronger Whitney topology (Whitney theorem). This implies on the one side
that approximation is a standard trick in real analytic geometry, on the other
side in a limit process to get an analytic result one has to make the limit process
in C, and then go back to R.

2) Note that in 1958 Grauert (see [Gra]) proved that a Stein manifold is
analytically isomorphic to a closed complex submanifold of C

2n+1, where n
is the complex dimension of the manifold. This implies that a real analytic
manifold M admits a proper analytic injective map f : M → R

2n+1 which has
maximum rank n at all points of M .

Part 2. Global Nullstellensätze

Looking at global rings of analytic functions, some difficulties appear even
in the complex setting. Take as an example a theorem as the Nullstellensatz.

The algebra A = H0(X,OX ) of holomorphic functions on a Stein space does
not have good algebraic properties: it is not noetherian, nor factorial. Moreover
there are in A proper prime ideals with empty zero set. For such ideals cannot
be true a Nullstellensatz similar to the one by Hilbert in the polynomial case.

Forster in [Fo], 1964, proved a Nullstellensatz for A using the fact that A
becomes a Frechet space when endowed with the compact open topology, so
that one can define closed ideals. A characterization by Cartan says that an
ideal a ⊂ A is closed if and only if a = H0(X, aOX ).

First of all Forster proves that for a closed primary ideal Hilbert’s Nullstel-
lensatz holds true.

T h e o r em 1. Let q be a closed primary ideal in A. Then V (q) �= ∅ and
I(V (q)) = {f ∈ A : f vanishes on the zero set of q} =

√
q. Moreover there is a

positive integer n such that
√
q
n ⊂ q.

Also he proves that a closed ideal admits a primary decomposition, similar
to the one in noetherian rings, with the same good properties, even if in general
this decomposition is not finite, but only locally finite, that is, the zero sets of
these closed primary ideals are a locally finite family.

The second result of Forster can be resumed in this way

Th e o r em 2. Let a be a closed ideal in A. Then a =
⋂

i

qi where all qi

are closed primary ideals, the decomposition is irredundant and the prime ideals
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pi =
√
qi are pairwise distinct. Let ni be the smallest positive integer such that

p
ni

i ⊂ qi. Then I(V (a)) =
√
a if and only if the sequence {ni} is bounded.

Rema r k 2. Note that in Forster’s result there is a numerical function that
controls whether Nullstellensatz holds true or not, namely the exponent ni.

A similar primary decomposition was found by P. de Bartolomeis for satu-
rated ideals in the algebra of global analytic functions on a C-analytic space.
Here we call saturated an ideal a such that a = H0(X, aO) (see [dB1]).

To find results in the real case one has to wait till 1970 when Risler proved
a Nullstellensatz for real polynomials, namely.

T h e o r em 3. Consider the algebra A = R[x1, . . . , xn] and let a ⊂ A be an

ideal. Then I(V (a)) = r
√
a = {f ∈ a : f2m +

∑

i

a2i ∈ a} 1.

Risler proved a completely analogous result for the algebra of real convergent
power series. For both results see [R2].

Now we come to a global real Nullstellensatz (see [ABF2]) where, besides
globality, positivity comes out.

First we tried to find the same result as Risler without success. We had to
find another way.

In the real setting the classical �Lojasievicz inequality compares the local
behaviour of two analytic functions f and g such that V (f) ⊂ V (g). More
precisely.

T h e o r em 4. Let K be a compact set in R
n and f, g be analytic functions

such that V (f) ∩K ⊂ V (g) ∩K. Then there are an integer k and a constant c
such that |gk| ≤ c|f | on K.

The first step is to extend this result to a global situation. The main idea
is that the integer k should work in a neighbourhood of the zero set of f minus
a closed analytic subset where the multiplicity of f increases. In fact we get.

T h e o r em 5 (see [ABS]). Let f, g be analytic on R
n and such that V (f) ⊂

V (g). Then for each compact set K ⊂ R
n there are a positive integer k and an

analytic function h not vanishing on K such that |gk · h| ≤ |f | on R
n.

This result allowed us to have a Nullstellensatz considering another radical.
Namely, take a saturated ideal a, consider its convex hull

b = {f : ∃h ∈ a such that |f | ≤ |h|},

then take its radical
√
b. This is a real radical ideal and it is easy to prove that

it contains the real radical r
√
a. This ideal is called �Lojasiewicz radical of a and

denoted as �L√a. It is a natural candidate to be I(V (a)) because its elements
vanish on the zero set of a. In fact we prove

1An ideal a ⊂ A is a real ideal if a2

1 + · · ·+ a
2

k ∈ a implies ai ∈ a for each i = 1, . . . , k. If a
is a real ideal then it is radical and r

√
a = a.
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Th e o r em 6. Let a be a saturated ideal in O(Rn). Then I(V (a)) is the

saturation of �L√a.

The idea of the proof is the following. Let g be a function vanishing on
the zero set of the ideal a. If we are able to find a function f ∈ a whose zero
set is the zero set of a (for instance if a is a principal ideal), we are reduced
to compare the zero set of g with the one of f and we can apply the global
�Lojasiewicz inequality. So, we get that for all x ∈ R

n the germ gx belongs to
the stalk of the ideal sheaf generated by the �Lojasiewicz radical of the ideal a,
hence g belongs to its saturation and we are done.

If a is finitely generated we can take as f the sum of squares of the generators
of a. If a has countably many generators, say f1, f2, . . ., we can find a suitable

sequence of analytic functions ai in such a way that the series
∑

i

a2i f
2
i converges

to an analytic function f . Of course if a is not saturated f does not belong
to a but it belongs to its saturation. This is the reason why we consider only
saturated ideals. And that’s all.

Part 3. Relations between real Nullstellensatz and Hilbert’s 17th

problem

At this point a natural question is whether the real radical and the �Lojasie-
wicz radical of an ideal a coincide or not.

Here it is where Hilbert’s 17th problem enters in our scene. In other words,
as positivity is expressed as convexity in �Lojasiewicz inequality, here we want
to express positivity in terms of sums of squares.

Let us recall what Hilbert’s 17th problem asks for.

P r o b l em . Let p ∈ R[x1, . . . , xn] be a polynomial which is ≥ 0 at any
point x ∈ R

n. Is p a sum of squares of polynomials or at least a sum of squares
in the field of rational functions R(x1, . . . , xn)?

Of course the same question can be asked in any ring of real functions on R
n.

In 1927 Artin gave a positive answer in the field of rational functions. Later
the same result was proved for the ring of germs of meromorphic functions in
n variables. ( [Ar], [Las]).

For global analytic functions the answer is known only in some particular
cases, depending on the zero set of the function. See for instance [BKS] for a
discrete zero set, [Jw] and [Rz] for a compact zero set, [ABFR] when the zero
set is a countable union of disjoint compact sets, [ABF1] for further reductions.

In any case the better result one can expect is with denominators, that is
with meromorphic functions.

What we are able to prove is the following.

T h e o r em 7. Let a ⊂ O(Rn) be a saturated ideal and let X be its zero set.
Assume that any positive semidefinite analytic function having X as its zero

set is a sum of squares of meromorphic functions. Then �L√a = r
√
a
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We give a sketch of the proof in the case a is saturated, prime and real.
Indeed, the case a saturated and real reduces easily to the previous case and
the general case of a saturated ideal follows considering its real radical.

Consider the sheaf of ideals aORn generated by a. There is an invariant open
Stein neighbourhood Ω of Rn in C

n to which this sheaf extends to a coherent
sheaf of ideals I. For all x ∈ R

n one has by construction Ix = aORn,x ⊗ C.
Since a is prime and real, one can prove that the ideal p = H0(Ω,I) is a closed
prime ideal.

Assume by contradiction that there is g ∈ �L√a \ a. Then, after shrinking Ω
if necessary, g extends to a holomorphic function G on Ω and G /∈ p because
g /∈ a.

Hence if we denote by Z the zero set of p, by Forster’s Nullstellensatz, G
does not vanish on Z and this implies there is a real point x0 ∈ R

n such that
G does not vanish on Zx0

, that is Zx0
is not included in V (G)x0

.

Next, since a is saturated, there is f ∈ a, which we may assume to be
positive semidefinite, such that V (f) = V (a). Since g vanishes on V (f) and
{x0} is compact, there is a positive integer m and a function h such that h(x0) �=
0 and f0 = f − h2g2m ≥ 0. Taking f1 = f − h21g

2m instead of f0, where

h1 =
h

√

1 + h2g2m
, it is easy to check that V (f1) = V (f) = V (a) = X. So

we can assume that f1 is a sum of squares of meromorphic functions, that is

b2(f−h21g
2m) =

∑

a2i . Since f ∈ a this implies b2h21g
2m+

∑

a2i ∈ a. We could

conclude g ∈ r
√
a if we had b /∈ a because h1, which does not vanish on x0, does

not belong to a . Indeed, assume b /∈ a. Then, bh1g
m ∈ a implies gm ∈ a, and

finally g ∈ a because a is prime.

So, we need to modify b in order to ensure it does not belong to a. To do
this we use that Zx0

is not included in V (G)x0
. Note that if F1 is a holomorphic

extension of f1 again Zx0
is not included in V (F1)x0

. Indeed, assume F1 vanishes
on Zx0

, since F ∈ p and H1(x0) �= 0, we deduce

Zx0
⊂ V (F )x0

∩ V (F1))x0
= V (F − F1)x0

= V (H2
1G

2m)x0
= V (G)x0

,

which is a contradiction.

Now, we have two holomorphic functions B and F1 and a complex analytic
set Z whose germ at x0 is not included in V (F1)x0

.

In this situation we prove that there exists an analytic diffeomorphism
ϕ : Rn → R

n such that

1. f1 ◦ ϕ = uf1 for some positive unit u ∈ O(Rn).

2. If B1 is a holomorphic extension of b1 = b ◦ ϕ then Zx0
is not included in

V (B1)x0
.

Next, take a positive unit v ∈ O(Rn) such that v2 = u−1. Finally

b21f = b21h
2
1g

2m + b21f1 = b21h
2
1g

2m +
k

∑

i=1

(ai ◦ ϕ)2.
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Now, b21f ∈ a while b21h
2
1 /∈ a because Zx0

is not included in their complex zero
set, hence g belongs to the real radical of a which is a, as required.

We think that, as the representation of positive semidefinite polynomials as
sums of squares is a central point in real algebraic geometry, a similar repre-
sentation for positive semidefinite analytic functions would be a central point
in real analytic geometry: but this is still an open problem.
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[T] A. Tognoli, Proprietà globali degli spazi analitici reali, Ann. Mat. Pura
Appl. (4) 75 (1967), 143–218.

[WB] H. Whitney and F. Bruhat, Quelques propiétés fondamentales des en-
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