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1 - Introduction

In this paper we focus our attention on the existence of positive solutions to the
following nonhomogeneous sublinear-superlinear fractional Laplacian problem

(1.1)

{
(−∆)su+ |u|r−2u = |u|q−2u+ f in R

N ,

u ∈ Hs(RN ) ∩ Lq(RN ),

with s ∈ (0, 1), N > 2s, 1 < q < 2 ≤ r < 2*s , where 2*s =
2N

N − 2s
is the

fractional critical exponent, and f is a perturbative term that satisfies

(f) f ∈ L
q

q−1 (RN ) ∩ L
2*s

2*s −1 (RN ) and f > 0 a.e. in R
N .

The nonlocal operator (−∆)s appearing in (1.1) is the well-known fractional
Laplacian operator which is defined for any u : RN →R smooth enough by

(−∆)su(x) = cN,sP.V.

∫

RN

u(x)− u(y)

|x− y|N+2s
dy,
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where

cN,s =




�

RN

1− cos(x1)

|x|N+2s
dx




−1

.

We can also give the definition of fractional Laplacian by means of Fourier
transform

F((−∆)su)(k) = |k|2sF(u)(k), k ∈ R
N ,

for any u belonging to the Schwarz class S(RN ). For more details on the frac-
tional Laplacian we refer the interested reader to [21,34].

One of the main reasons to face with problem (1.1) comes from the study of
standing wave solutions, that is solutions of the form ψ(t, x) = e−ıctu(x) where
c is a constant, to the nonlinear time-dependent fractional Schrödinger equation

ı
∂ψ

∂t
= (−∆)sψ + V (x)ψ − g(x, |ψ|), (t, x) ∈ R× R

N ,(1.2)

where V is an external potential and g is a suitable nonlinearity. Equation
(1.2) has been introduced by Laskin in [31,32] due to its relevance in fractional
quantum mechanics in the study of particles on stochastic fields modeled by
Lévy processes; see [19] for more details. When s = 1, eq. (1.1) reduces to a
classical nonlinear Schrödinger equation of the form

−∆u+ V (x)u = g(x, u) in R
N ,(1.3)

which has been extensively studied in the last twenty years by many authors; see
[3,11,13,26,37] and the references therein for some existence and multiplicity
results under different assumptions on the potential V and the nonlinearity g.
In particular, a great interest [1,2,10,12,15,17,30,41,42] has been devoted
to the study of (1.3) when g(x, u) = f(x, u) + h(x) and h �≡ 0 is a suitable
integrable function. In this case, (1.3) does not admit the trivial solution and
its study is rather tricky. Indeed, while there are some general methods to study
the analogue of (1.3) in bounded domains (see [9,36,39,40]), these arguments
break down in the whole space due to the lack of the compactness of Sobolev
embedding, and then a more delicate investigation is needed to obtain existence
and multiplicity results.

Coming back to the fractional setting, we would like to point out that re-
cently a remarkable attention has been devoted to the study of fractional Schrö-
dinger equations. Indeed, several existence and multiplicity results have been
established. For instance, Felmer, Quaas and Tan [24] (see also [22]) studied
the existence and symmetry of positive solutions to (−∆)su+ u = f(u), when
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f has subcritical growth and satisfies the Ambrosetti-Rabinowitz condition.
Dávila, del Pino and Wei [20] proved the existence of standing-wave solutions
to a fractional nonlinear Schrödinger equation by using the Lyapunov-Schmidt
reduction method. Figueiredo and Siciliano [25] obtained a multiplicity result
for a fractional Schrödinger equation via Ljusternick-Schnirelmann and Morse
theory. Ambrosio [7] considered the existence of positive solutions for a frac-
tional Schrödinger equation under the assumption that the nonlinearity is either
asymptotically linear or superlinear at infinity.

Differently from the local case, only few papers considered fractional Schrö-
dinger equations in presence of a perturbative term. For instance, Pucci, Xiang
and Zhang [35] investigated the existence of multiple solutions for a nonho-
mogeneous fractional p-Laplacian equation of Schrödinger-Kirchhoff type in-
volving a nonlinearity satisfying the Ambrosetti-Rabinowitz condition, a pos-

itive potential V satisfying suitable assumptions, and in presence of a L
p

p−1 -
perturbation term; see also [6,27] and the references therein for some interest-
ing results involving (−∆)sp. Ambrosio and Hajaiej [8] proved the existence of
at least two positive solutions to the following fractional Schrödinger equation
(−∆)su+ u = k(x)f(u) + h(x), provided that |h|2 is sufficiently small. In [28]
the author studied the existence and uniqueness of a positive solution for a
sublinear fractional equation with a L2-perturbation term; see also [29] for a
multiplicity result for this kind of problems. We also mention [4, 18, 38] for
some multiplicity results for nonhomogeneous fractional problems in bounded
domains, whose techniques are not adaptable in our situation due to the un-
boundedness of the domain.

Motivated by the above results, in this paper we aim to continue the study
started in [28,29] related to nonhomogeneous fractional problems. In this paper,
we deal with sublinear-superlinear nonlinearities. Our main result can be stated
as follows:

Th e o r em 1.1. Assume that (f) holds true. Then, problem (1.1) has a

positive weak solution u ∈ Hs(RN )∩Lq(RN ) that converges to zero in Hs(RN )∩
Lq(RN ) as |f |

L
q

q−1 (RN )
tends to zero.

Problem (1.1) involves the fractional Laplacian (−∆)s, with 0 < s < 1,
which is a nonlocal operator. To study these kind of problems many authors
used the Caffarelli-Silvestre [14] extension method which permits to transform
(1.1) into a local degenerate elliptic equation in one more dimension with a
nonlinear Neumann boundary condition. Anyway, in this paper we prefer to
investigate (1.1) directly in Hs(RN ) via suitable variational methods, in order
to resemble some arguments developed to study the case s = 1. Clearly, a more
accurate inspection will be needed with respect to the classical case and some
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ideas contained in [28,29] will play a fundamental role to achieve the desired
result. In order to investigate the existence of positive solutions for (1.1) we
will combine a minimization argument, Nehari manifold and the fibering map
methods [23], and the concentration-compactness by Lions [33].

The paper is organized as follows. In Section 2 we give some preliminary
results and we develop our variational arguments. Section 3 is devoted to the
proof of the main result of this work.

2 - Preliminary

2.1 - Fractional Sobolev spaces

In this section, we give some basic properties of the fractional Sobolev spaces
that will be used in this paper.

Let 1 ≤ p ≤ ∞ and A ⊂ R
N . We denote by |u|Lp(A) the Lp(A)-norm of a

function u : RN →R belonging to Lp(A). When A = R
N , we simply write |u|p.

For any s ∈ (0, 1) we define Ds,2(RN ) as the completion of the C∞
c (RN )-

functions under the norm

[u]2s =

∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy,

and we denote by Hs(RN ) the Sobolev space defined by

Hs(RN ) =

{
u ∈ L2(RN ) :

|u(x) − u(y)|

|x− y|
N+2s

2

∈ L2(R2N )

}

endowed with the natural norm

�u�2Hs(RN ) = [u]2s + |u|22.

We recall the following embeddings of the fractional Sobolev spaces into
Lebesgue spaces.

Th e o r em 2.1 ( [21]). Let s ∈ (0, 1) and N > 2s. Then there exists a sharp

constant S∗ > 0 such that for any u ∈ Ds,2(RN )

|u|2
2*s

≤ S−1
∗ [u]2s.

Moreover Hs(RN ) is continuously embedded in Lt(RN ) for any t ∈ [2, 2*s ] and

compactly in Lt
loc(R

N ) for any t ∈ [1, 2*s ).
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L emma 2.1 ([24]). Let N > 2s and r ∈ [2, 2*s ). If {un}n∈N is a bounded

sequence in Hs(RN ) and if

lim
n→∞

sup
y∈RN

∫

BR(y)

|un|
rdx = 0

where R > 0, then un → 0 in Lt(RN ) for all t ∈ (2, 2*s ).

Now we introduce the space E := Hs(RN )∩Lq(RN ) endowed with the norm

�u� := �u�E = [u]s + |u|q.

The functional associated with (1.1) is given by

I(u) =
1

2
[u]2s +

1

r
|u|rr −

1

q
|u|qq −

∫

RN

fu dx.

It is easy to see that I ∈ C1(E,R) and its differential I ′ is given by

�I ′(u), ϕ� =

∫∫

R2N

(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|N+2s
dxdy +

∫

RN

|u|r−2uϕdx

−

∫

RN

|u|q−2uϕdx−

∫

RN

fϕdx,

for any u, ϕ ∈ E. Clearly, the solutions to (1.1) correspond to critical points of
I in E.

2.2 - Minimization argument

Before considering (1.1), we investigate the following homogeneous problem

(2.1)

{
(−∆)su+ |u|r−2u = |u|q−2u in R

N

u ∈ Hs(RN ) ∩ Lq(RN ).

Then, we can see that

L emma 2.2. Problem (2.1) only possesses the trivial solution in E.

P r o o f. Let u be a weak solution to (2.1). Using the Pohozaev identity for
the fractional Laplacian [5,16] and recalling that 1 < q < 2, we can see that

(
N − 2s

2N
−

1

q

)
[u]2s +

(
1

r
−

1

q

)
|u|rr = 0,
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which implies that u = 0. �

From now on, we will consider (1.1) looking for critical points of I . Since I
is not bounded below on E, we introduce a suitable open set of E. Take α > 1
and define

Nα :=
{
u ∈ E : [u]2s + |u|rr − α|u|qq > 0 and �I ′(u), u� = 0

}
.

For any u ∈ E \{0}, we introduce the fibering map hu : [0,+∞)→R as follows:

hu(t) := I(tu).

Then we can prove that

L emma 2.3. Nα �= ∅.

P r o o f. Let T be the unique root of the equation

(2.2) [Tu]2s + |Tu|rr − α|Tu|qq = 0.

Let ψ ∈ C∞
c (RN ) such that ψ ≥ 0 and ψ �≡ 0. Let σ > 0 be a constant and

consider the function u(x) = ψ(σ(x− x0)). Then we have

[u]2s =
1

σN−2s
[ψ]2s and |u|tt =

1

σN
|ψ|tt with t ∈ {q, r}.(2.3)

Taking into account that f > 0 a.e. in R
N , there exists x0 ∈ R

N such that
f(x0) > 0, therefore

∫

RN

fu dx =
1

σN

∫

RN

f
(
x0 +

x

σ

)
ψ(x) dx ≥ 0.

Moreover, there exists a positive R independent of σ such that

∫

RN

f
(
x0 +

x

σ

)
ψ(x) dx ≥ R and

∫

RN

fu dx >
R

σN
for σ large enough.(2.4)

Putting together (2.2) and (2.3), and taking into account that 1 < q < 2 ≤ r <
2*s , we deduce that T ∈ (0, 1] and

T <

(
α|ψ|qq

σ2s[ψ]2s + |ψ|rr

) 1
r−q

.(2.5)
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In the light of the definition of hu and gathering (2.4) and (2.5) we can infer

h′u(T ) = �I ′(Tu), u� = T [u]2s + T r−1|u|rr − T q−1|u|qq −

∫

RN

fu dx

= (α− 1)T q−1|u|qq −

∫

RN

fu dx < 0.

Now, since h′u(0) < 0 and h′u(t)→+∞ as t→∞, we deduce that there exists
a minimum tu > T of hu(t), that is �I ′(tuu), u� = 0. Combining the fact that
tu > T and the definition of T we get

[tuu]
2
s + |tuu|

r
r > α|tuu|

q
q.

This implies that v := tuu ∈ Nα. �

Since we are looking for critical points of I, we need the following result.

L emma 2.4. Let {un}n∈N ⊂ E be such that �I ′(un), un� = 0 for any n ∈ N

and {I(un)}n∈N is bounded. Then {un}n∈N is bounded in E.

P r o o f. Using Hölder and Young inequality we can infer

C̃ ≥
1

q
�I ′(un), un� − I(un)

=

(
1

q
−

1

2

)
[un]

2
s +

(
1

q
−

1

r

)
|un|

r
r −

(
1

q
− 1

) ∫

RN

fun dx

≥

(
1

q
−

1

2

)
[un]

2
s +

(
1

q
−

1

r

)
|un|

r
r −

(
1

q
− 1

)(
1−

1

r

)
|f |

r

r−1
r

r−1

−

(
1

q
− 1

)
1

r
|un|

r
r

=

(
1

q
−

1

2

)
[un]

2
s +

1

q

(
1−

1

r

)
|un|

r
r −

(
1

q
− 1

)(
1−

1

r

)
|f |

r

r−1
r

r−1

which gives the boundedness of {un}n∈N in Hs(RN ) and also in Lr(RN ).
Now, combining �I ′(un), un� = 0 and the definition of I(un) we get

1

2
[un]

2
s +

r − 1

r
|un|

r
r + I(un) =

(
1−

1

q

)
|un|

q
q,

and taking into account that {un}n∈N is bounded in Hs(RN ) and in Lr(RN ),
and that {I(un)}n∈N is bounded, we deduce the thesis. �
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Now, let Nα be the closure of Nα, and set

(2.6) c := inf
u∈Nα

I(u).

L emma 2.5. −∞ < c < 0.

P r o o f. Taking v = tuu ∈ Nα (as in Lemma 2.3) and using the fact that
tu is a minimum for hu, we can infer

c ≤ I(v) = hu(tu) < hu(0) = 0,

that is c < 0. Now we prove that c > −∞.
Assume by contradiction that there exists a sequence {un}n∈N ⊂ Nα such

that I(un) → −∞. Taking into account that �I ′(un), un� = 0 and 1 < q < 2 ≤
r, we get

I(un) = I(un)− �I ′(un), un�

= −
1

2
[un]

2
s +

(
1

r
− 1

)
|un|

r
r +

(
1−

1

q

)
|un|

q
q

≥ −
1

2
[un]

2
s +

(
1

r
− 1

)
|un|

r
r

thus [un]
2
s + |un|

r
r →+∞. Exploiting again �I ′(un), un� = 0 and un ∈ Nα we

have

1 =
[un]

2
s + |un|

r
r

[un]2s + |un|rr
=

|un|
q
q +

∫

RN

fun dx

[un]2s + |un|rr
≤

1

α
+

∫

RN

fun dx

[un]2s + |un|rr
.(2.7)

Now, we distinguish two cases. If [un]s→∞, then using the Hölder inequality
and Theorem (2.1) we have

∫

RN

fun dx

[un]2s + |un|rr
≤

|f |
2*s

2*s −1

|un|2*s

[un]2s
≤

|f |
2*s

2*s −1

S
1
2
∗ [un]s

→ 0 as n→∞.

Let us assume |un|r →∞. Observing that from f ∈ L
q

q−1 (RN ) ∩ L
2*s

2*s −1 (RN ) it

follows that f ∈ L
r

r−1 (RN ), we can apply the Hölder inequality to infer
∫

RN

fun dx

[un]2s + |un|rr
≤ |f | r

r−1
|un|

1−r
r → 0 as n→∞.
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Therefore, taking the limit as n → ∞ in (2.7) we deduce that α ≤ 1, and this
leads to a contradiction. �

In the next lemma we show that inf
u∈Nα

I(u) = inf
u∈Nα

I(u) for some α > 1.

L emma 2.6. Let α = 1 + ε, with ε > 0 sufficiently small. Then we have

c = inf
u∈Nα

I(u).

P r o o f. Let {un}n∈N ⊂ Nα be a sequence such that I(un)→ c, �I ′(un), un�
= 0 and

[un]
2
s + |un|

r
r − α|un|

q
q = 0.

Clearly, since {un}n∈N is bounded in E we can find M > 0 such that |un|
q
q < M

for any n ∈ N. Let us note that

I(un) = I(un)− �I ′(un), un� = −
1

2
[un]

2
s +

(
1

r
− 1

)
|un|

r
r +

(
1−

1

q

)
|un|

q
q

=

(
1

r
−

1

2

)
|un|

r
r +

(
1−

1

q
−

α

2

)
|un|

q
q

≥ −

(
1

q
−

α

r
+ α− 1

)
|un|

q
q

≥ −

(
1

q
−

α

r
+ α− 1

)
M,

where
1

q
−

α

r
+ α− 1 > 0.

Now, let η ∈ C∞
c (RN ) be such that

M < [η]2s + |η|rr < |η|qq and

∫

RN

fη dx > 0.(2.8)

We can see that h′η(0) < 0, h′η(1) < 0 and h′η(t)→+∞ as t→∞, thus there
exists T1 > 1 such that h′η(T1) = 0 and v := T1η ∈ Nα. In particular, it follows
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from (2.8) that |v|qq > M . Now,

I(v) = −
1

2
[v]2s +

(
1

r
− 1

)
|v|rr +

(
1−

1

q

)
|v|qq

<

(
1

r
−

1

2

)
|v|rr +

(
1−

1

q
−

α

2

)
|v|qq

< −

(
1

q
+

α

2
− 1

)
M

≤ −

(
1

q
−

α

r
+ α− 1

)
M ≤ I(un),

and taking into account that Nα ⊂ Nα, we have

c = inf
u∈Nα

I(u) ≤ inf
u∈Nα

I(u) ≤ I(v) < c,

which gives a contradiction. Therefore un ∈ Nα for any n ∈ N. �

3 - Proof of Theorem 1.1

Applying Ekeland’s variational principle to (2.6), we deduce the existence
of two sequences {un}n∈N ⊂ Nα and {λn}n∈N ⊂ R such that

I(un)→ c and I ′(un)− λn J
′(un)→ 0 in E

′

where

J (un) = [un]
2
s + |un|

r
r − |un|

q
q −

∫

RN

fun dx.

Similarly to Lemma 3.5 in [28] it is possible to prove the following.

L emma 3.1. Let α be fixed as in Lemma 2.6. Then, any (PS)-sequence

{un}n∈N at level c for I restricted to Nα is a (PS)-sequence for I on E.

Now we are ready to prove the following result.

T h e o r em 3.1. Under the same assumptions of Theorem 1.1, problem (1.1)
admits a positive solution u ∈ Nα with I(u) = c and

[u]2s + |u|rr − α|u|qq ≥ 0.(3.1)
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P r o o f. Using Lemma 3.1 we can assume that there exists {un}n∈N ⊂ Nα

with I(un)→ c and �I ′(un), un� = 0. Taking into account Lemma 2.4 we have
that

un ⇀ u in E,

un →u in Lt
loc(R

N ), for any t ∈ [1, 2*s ),

un →u a.e. in R
N .

(3.2)

First, we prove that u is a critical point for I in E. From Lemma 3.1 we
know that {un}n∈N is a (PS)-sequence for I on E. Now, let η ∈ C∞

c (RN ), then
�I ′(un), η�→ 0. From (3.2) we can infer that

∫∫

R2N

(un(x)− un(y))(η(x) − η(y))

|x− y|N+2s
dxdy +

∫

RN

|un|
r−2unη dx

→

∫∫

R2N

(u(x)− u(y))(η(x) − η(y))

|x− y|N+2s
dxdy +

∫

RN

|u|r−2uη dx.

Taking into account that un→u in Lq(supp η), there exist a subsequence, still
denoted by {un}n∈N, and a function h ∈ Lq(RN ) such that |un| ≤ |h| and

|un|
q−2unη→|u|q−2uη a.e. in R

N ,

|un|
q−1|η| ≤ |h|q−1|η| ∈ L1(RN ),

and applying the Dominated Convergence Theorem we can infer that
∫

RN

|un|
q−2unη dx→

∫

RN

|u|q−2uη dx.

Thus we can conclude that �I ′(un), η�→�I ′(u), η� = 0.
Now, we aim to prove that I(u) = c. We know that

�u� ≤ lim inf
n→∞

�un�.(3.3)

In order to show that the equality holds in (3.3), let us suppose by contradiction
that

�u� < lim inf
n→∞

�un�.

Set vn(x) := un(x)−u(x) such that vn ⇀ 0 in E. First, we prove that there
exists an unbounded sequence {yn}n∈N ⊂ R

N such that

(3.4) vn(x+ yn) ⇀ v �= 0 in E .
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Assume by contradiction that for any R > 0

sup
y∈RN

∫

BR(y)

|vn|
q dx→ 0 as n→∞.

Then, by Lemma 2.1 we have that vn→ 0 in Lt(RN ) for all t ∈ [q, 2*s ). Taking
into account that {un}n∈N is a (PS)c-sequence for I, we have that �I ′(un), vn�
→ 0, that is

∫∫

R2N

(un(x)− un(y))(vn(x)− vn(y))

|x− y|N+2s
dxdy +

∫

RN

|un|
r−2unvn dx

−

∫

RN

|un|
q−2unvn dx−

∫

RN

fvn dx→ 0.(3.5)

Recalling that vn ⇀ 0 in E, we have
∫

RN

|un|
q−1|vn| dx ≤ |un|

q−1
q |vn|q ≤ C|vn|q → 0,

and
∫

RN

|f ||vn| dx ≤ |f | q

q−1
|vn|q → 0.

Thus from (3.5) we deduce that
∫∫

R2N

(un(x)− un(y))(vn(x)− vn(y))

|x− y|N+2s
dxdy +

∫

RN

|un|
r−2unvn dx→ 0.(3.6)

Moreover, let us also observe that
∫∫

R2N

(u(x)− u(y))(vn(x)− vn(y))

|x− y|N+2s
dxdy +

∫

RN

|u|r−2uvn dx→ 0.(3.7)

Putting together (3.6) and (3.7) we get
∫∫

R2N

[(un(x)− un(y)) − (u(x) − u(y))](vn(x)− vn(y))

|x− y|N+2s
dxdy

+

∫

RN

(|un|
r−2un − |u|r−2u)vn dx→ 0.
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Being r ≥ 2 we can use the following inequality

Cr|x− y|r ≤ (|x|r−2r − |y|r−2y, x− y) ∀x, y ∈ R
N ,

to deduce that
∫

RN

(|un|
r−2un − |u|r−2u)vn dx ≥ Cr|un − u|rr.

Then, recalling that vn = un − u, we can see that

[un − u]2s + |un − u|rr → 0

that is �un�→�u�, and this gives a contradiction. Thus, there exist R > 0,
β > 0, and a sequence {yn}n∈N ⊂ R

N such that

∫

RN

|vn|
q dx ≥ β > 0,

therefore we have
∫

BR(0)

|vn(x+ yn)|
q dx→

∫

RN

|v|q dx ≥ β > 0,

which gives v �= 0 in E.
Now we prove that {yn}n∈N is not bounded. Assume by contradiction that

{yn}n∈N is bounded. Then, up to a subsequence yn→ y. Let φ ∈ C∞
c (RN ).

Since yn→ y and vn(x) ⇀ 0 in E, it follows that

∫

RN

φ(x− yn)vn(x) dx→ 0(3.8)

and using (3.4) we can infer

∫

RN

φ(x− yn)vn(x) dx =

∫

RN

φ(x)vn(x+ yn) dx→

∫

RN

φ(x)v(x) dx ∀φ ∈ C∞
c (RN ).

(3.9)

Combining (3.8) and (3.9) we deduce that

∫

RN

φ(x)v(x) dx = 0 ∀φ ∈ C∞
c (RN ).
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This gives a contradiction in view of (3.4).
Now, we aim to prove that

(3.10) un(·+ yn) ⇀ v in E .

From the boundedness of {un}n∈N it follows that u(x+ yn) is bounded in E, so
there exists w ∈ E such that u(x+ yn) ⇀ w(x) in E and for all φ ∈ C∞

c (RN ) we
have ∫

RN

u(x+ yn)φ(x) dx→

∫

RN

w(x)φ(x) dx.

Recalling that |yn|→∞ we also have
∫

RN

u(x+ yn)φ(x) dx→ 0,

and combining the previous relations we deduce that
∫

RN

w(x)φ(x) dx = 0,

that implies that w = 0 a.e. in R
N . Thus, (3.10) holds true.

Since {un}n∈N is a (PS)c-sequence for I, we have that �I ′(un), φ(·−yn)�→ 0,
or equivalently

∫∫

R2N

(un(x+ yn)− un(y + yn))(φ(x) − φ(y))

|x− y|N+2s
dxdy

+

∫

RN

|un(x+ yn)|
r−2un(x+ yn)φ(x) dx

−

∫

RN

|un(x+ yn)|
q−2un(x+ yn)φ(x) dx −

∫

RN

f(x)φ(x− yn) dx→ 0.

From (3.10) we can infer
∫∫

R2N

(un(x+ yn)− un(y + yn))(φ(x) − φ(y))

|x− y|N+2s
dxdy

+

∫

RN

|un(x+ yn)|
r−2un(x+ yn)φ(x) dx

→

∫∫

R2N

(v(x)− v(y))(φ(x) − φ(y))

|x− y|N+2s
dxdy +

∫

RN

|v(x)|r−2v(x)φ(x) dx.
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Furthermore,
∫

RN

|un(x+ yn)|
q−2un(x+ yn)φ(x) dx→

∫

RN

|v(x)|q−2v(x)φ(x) dx.

Indeed, since un(x + yn)→ v(x) in Lq(suppφ), there exist a subsequence, still
denoted by un, and a function h ∈ Lq(RN ) such that |un(x + yn)|

q−2 un (x +
yn)φ(x) → |v(x)|q−2 v(x)φ(x) a.e. in R

N and |un (x + yn)|
q−1 |φ(x)| ≤

|h(x)|q−1|φ(x)| ∈ L1(RN ). At this point, applying the Dominated Convergence
Theorem we get the thesis.

Finally, we note that,
∫

RN

f(x)φ(x− yn) dx→ 0.

Gathering the above relations of limit we have
∫∫

R2N

(v(x)− v(y))(φ(x) − φ(y))

|x− y|N+2s
dxdy +

∫

RN

|v(x)|r−2v(x)φ(x) dx

−

∫

RN

|v(x)|q−2v(x)φ(x) dx = 0,

that is v is a weak solution to (2.1), and from Lemma 2.2 we deduce that v = 0
a.e. in R

N . This gives a contradiction. Hence we have that the equality holds
in (3.3), and, up to a subsequence we can infer that �u� = limn→∞ �un�. Now,

|u|q ≤ lim inf
n→∞

|un|q ≤ lim sup
n→∞

|un|q

≤ lim sup
n→∞

([un]s + |un|q)− lim inf
n→∞

[un]s

≤ ([u]s + |u|q)− lim inf
n→∞

[un]
2
s ≤ |u|q,

therefore un→u in Lq(RN ).
On the other hand �u� = limn→∞ �un�, so

∫∫

R2N

|un(x)− un(y)|
2

|x− y|N+2s
dxdy→

∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

Applying the Brezis-Lieb Lemma we can infer that

[un − u]2s = [un]
2
s − [u]2s + on(1),
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thus [un − u]s → 0 and we can conclude that un→u in E. Let us also note that

by interpolation we can also see that |un − u|rr ≤ |un − u|rαq |un − u|
r(1−α)
2∗s

→ 0
in view of (3.2). Finally,

∫

RN

fun dx→

∫

RN

fu dx,

therefore I(un)→I(u) = c as n→∞.
Our aim is to prove that u is a nonnegative weak solution to (1.1). Indeed,

let us consider the function h|u|(t). We can see that h′|u|(0) < 0 and h′|u|(t)→∞

as t→∞, thus there exists t|u| > 0 such that h′|u|(t|u|) = 0 and h|u|(t|u|) =

inft≥0 h|u|(t). Now,

h′|u|(1) =

∫

RN

f(u− |u|) dx ≤ 0.

If by contradiction h′|u|(1) < 0, then t|u| > 1 which together with (3.1) implies

that t|u||u| ∈ Nα. Hence we have

c ≤ I(t|u||u|) = h|u|(t|u|) < h|u|(1) = I(|u|) ≤ I(u) = c,

which is a contradiction. Therefore h′|u|(1) = 0 and

∫

RN

f(u− |u|) dx = 0. Using

the fact that f > 0 a.e. in R
N , we can infer that u = |u| a.e. in R

N , and
applying the maximum principle we get that u is a positive solution to (1.1).

It remains to prove that (3.1) holds true. Combining the boundedness of
{un}n∈N ⊂ E and �I ′(un), un� = 0, we have

∫

RN

fun dx = [un]
2
s + |un|

r
r − |un|

q
q > (α− 1) |un|

q
q

and using (3.2) we can infer that
∫

RN

fu dx ≥ (α− 1) lim inf
n→∞

|un|
q
q ≥ (α− 1) |u|qq.

Therefore we can conclude that

[u]2s + |u|rr − |u|qq =

∫

RN

fu dx ≥ (α− 1) |u|qq.

�

Finally, we deal with the continuity of solutions in the perturbation param-
eter f at 0.
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Th e o r em 3.2. Under the assumptions of Theorem 1.1, let uf be the solu-

tion of (1.1) given by Lemma 3.1. If f → 0 in L
q

q−1 (RN ), then uf → 0 in E.

P r o o f. Let {fn}n∈N be a sequence such that |fn| q

q−1
→ 0 and let ufn be a

solution to (1.1) given by Lemma 3.1. Taking into account that ufn ∈ Nα, we
can infer that

|ufn |
q
q +

∫

RN

fnufn dx = [ufn ]
2
s + |ufn |

r
r ≥ α|ufn |

q
q,(3.11)

and recalling that ufn is positive, we deduce

(α− 1)|ufn |
q
q ≤ |fn| q

q−1
|ufn |

q
q,

that is |ufn |q → 0 as |fn| q

q−1
→ 0. Combining this and (3.11) it follows that

ufn → 0 in E. �
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