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Multiple sequences of entire solutions

for critical polyharmonic equations

Abstract. In this paper we study the critical polyharmonic equation
in Rd. By exploiting some algebraic–theoretical arguments developed
in [2,13,20], we prove the existence of a finite number ζd of sequences
of infinitely many finite energy nodal solutions which are unbounded
in the classical higher order Sobolev space Dm,2(Rd), associated to the
polyharmonic operator (−∆)m, with m ∈ N. Taking into account the
recent results contained in [20], an explicit expression of ζd is given in
terms of the number of unrestricted partitions of the Euclidean dimen-
sion d, given by the celebrated Rademacher formula. Furthermore, the
asymptotic behavior of the number ζd obtained here is a direct conse-
quence of the classical Hardy–Ramanujan analyis based on the circle
method. The main multiplicity result represents a more precise form of
Theorem 1.1 of [2] for polyharmonic problems settled in higher dimen-
sional Euclidean spaces. Finally, an explicit numerical comparison with
Theorem 4.8 of [20] is presented.
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1 - Introduction

Since the appearance of the celebrated paper of W.Y. Ding [7] on the confor-
mally invariant scalar field equation in R

d, concerning the existence of infinitely
many conformally inequivalent changing sign solutions, with finite energy, the
method of pulling back the problem into the unit sphere S

d of Rd+1 by means
of a stereographic projection and then into its variational formulation has been
having a large use in literature for different problems, involving critical nonlin-
earities in the sense of Sobolev.

For instance, inspired by [7], T. Bartsch, M. Schneider, and T. Weth in [2]
prove for the critical polyharmonic equation

(1.1)





(−∆)mu = |u|2
∗

m−2u in R
d, u ∈ Dm,2(Rd),

d > 2m, 2∗m =
2d

d− 2m
,

the existence of a sequence of infinitely many finite energy nodal solutions
which are unbounded in the Sobolev space Dm,2(Rd). After a careful analysis
of suitable subgroups of the orthogonal group O(d + 1), in [2] the authors
obtain crucial compact Sobolev embeddings, which are essential in order to use
variational methods. More recently, A. Maalaoui and V. Martino in [18] and
A. Maalaoui, V. Martino, and G. Tralli in [19], motivated again by the original
paper of Ding, establish the existence of changing sign solutions for the Yamabe
problem on the Heisenberg group H

d. Finally, for the sake of completeness,
we cite the paper [14], in which A. Kristály proves a more general multiplicity
existence theorem of changing sign solutions for the fractional Yamabe problem
on the Heisenberg group H

d via a nonlocal version of the Ding–Hebey–Vaugon
compactness result on the Cauchy–Riemann unit sphere S2d+1 and an algebraic
theoretical approach on suitable subgroups of the unitary group U(d+ 1).

In this spirit, starting from the pioneristic paper [2] and encouraged by
a wide interest on the current literature on polyharmonic problems, in the
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present paper we prove that equation (1.1) admits at least a finite number ζd of
sequences of infinitely many finite energy nodal solutions which are unbounded
in the Sobolev space Dm,2(Rd). More precisely we study (1.1) from the point of
view of the O(d+1) symmetry theory, as in [2,13,20]. This approach presents
new and challenging features in the higher–order case. The main result of the
paper is

T h e o r em 1.1. Let m and d be two positive integers, with d > 2m. Set

ζd = max{1, sd, κd}, where

(1.2)

sd =

�
0 if either d = 3 or d = 4

[d/2] + (−1)d+1 − 1 if d ≥ 5,

κd =





0 if d = 4

p

�
d+ 1

4

�
if d = 4n− 1

p

�
d− 4

4

�
if d = 4n+ 4

p

�
d− 1

4

�
if d = 4n+ 1

p

�
d− 2

4

�
if d = 4n+ 2,

( for some n ∈ N)

and p : N → N denotes the unrestricted partition function.

Then, the critical polyharmonic equation (1.1) admits al least ζd sequences

of infinitely many finite energy nodal weak solutions, which are unbounded in

Dm,2(Rd) and mutually symmetrically distinct. Moreover, the constructed weak

solutions are of class C2m(Rd) and classical.

The tables below show the behavior of the key numbers sd, κd and ζd as
d increases in N. The main properties of the unrestricted partition function
n �→ p(n) show rigorously that sd < κd for d ≥ 29, by (1.2) and the fact that
p(n) > 2n for all n ≥ 7, see Table 3 of Section 2.

Table 1. 3 ≤ d ≤ 19

d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

sd 0 0 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9

κd 1 0 1 1 2 1 2 2 3 2 3 3 5 3 5 5 7

ζd 1 1 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9
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Table 2. 20 ≤ d ≤ 35

d 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

sd 8 10 9 11 10 12 11 13 12 14 13 15 14 16 15 17

κd 5 7 7 11 7 11 11 15 11 15 15 22 15 22 22 30

ζd 8 10 9 11 10 12 11 15 12 15 15 22 15 22 22 30

As the numerical computations show, there is a natural competition between
the parameters κd and sd due to their analytical definitions. For small di-
mensions, that is when 5 ≤ d ≤ 28 and d �= 27, then sd ≥ κd. Therefore,
Theorem 1.1 gives a number of solutions of (1.1) which is greater or equal to
the one found in [20]. Moreover, for the above dimensions the proof of Theo-
rem 1.1 produces the exact symmetry of each family of solutions, constructed
as in [13].

For the sake of clarity, we present a consequence of Theorem 1.1, when
m = 2, that is when the biharmonic operator in equation (1.1), transformed
into the sphere S

d of Rd+1, reduces to the celebrated Paneitz operator, intro-
duced by Paneitz himself in [22] for smooth Riemannian manifolds. For further
details in this context we refer to [11] and the references therein. Indeed, the
polyharmonic operator Dm on the unit sphere Sd = (Sd, h) of Rd+1 is expressed
by

(1.3) D
m =

m∏

k=1

(
−∆h +

1

4
(d− 2k)(d + 2k − 2)IL2(Sd)

)
,

where ∆h denotes the usual Laplace–Beltrami operator on S
d. In the case

m = 2 the operator D2 has the form

∆2
h − α∆h + a IL2(Sd),

where α = (d2 − 2d− 4)/2 and a = d(d2 − 4)(d− 4)/16. Thus, α > 0 and a > 0
for all d ≥ 5.

C o r o l l a r y 1.2. Let d ≥ 5. Then, the critical Paneitz equation

∆2
hv − α∆hv + a v = |v|2

∗

2−2v in S
d,

admits al least sd = [d/2]+(−1)d+1−1 sequences (v
(i)
k )k of infinitely many finite

energy nodal weak solutions v
(i)
k ∈ H2(Sd), i = 1, . . . , sd, which are unbounded

in H2(Sd) and mutually symmetrically distinct.
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More precisely, for each i the unbounded sequence (v
(i)
k )k lies in the subspace

H2
G

τi
d,i

(Sd) of the Gτi
d,i–invariant functions of H2(Sd), with respect to the action

�⊛i : G
τi
d,i ×H2(Sd) → H2(Sd), (�g, v) �→ �g�⊛iv,

defined pointwise by

(�g�⊛iv)(σ) =

�
v(g−1 · σ), if �g = g ∈ Gd,i

−v(g−1τ−1
i · σ), if �g = τi g ∈ Gτi

d,i \Gd,i, g ∈ Gd,i,

where Gτi
d,i is the compact group of O(d+1) generated by the compact subgroup

Gd,i =





O(i+ 1)×O(d− 2i− 1)×O(i+ 1), if i �=
d− 1

2
,

O(i+ 1)×O(i+ 1), if i =
d− 1

2
,

of O(d+ 1) and by an involution τi : S
d → S

d, with the properties that

τi /∈ Gd,i, τiGd,iτ
−1
i = Gd,i and τ2i = IRd+1

for every i = 1, . . . , sd.

The mutual symmetry difference comes from the fact that H2
G

τi
d,i

(Sd) ∩

H2

G
τj
d,j

(Sd) = {0} for all i, j = 1, . . . , sd, with i �= j.

The paper is organized as follows. Section 2 contains some notations and
useful preliminaries. In Section 3 we discuss the reduction of (1.1) to an equiv-
alent equation on the unit sphere S

d of Rd+1. In the same section, in order
to prove the multiplicity Theorem 1.1, we describe the construction of the sd
subspaces Hm

G
τi
d,i

(Sd) of the Sobolev space Hm(Sd) related to certain subgroups

Gτi
d,i of the orthogonal group O(d+ 1). Some tools, which are useful along the

paper as, for instance, the geometrical profile of the subspaces Hm
G

τi
d,i

(Sd) given

in Proposition 3.6, are also presented. Finally, the last Section 4 is dedicated
to the proof of Theorem 1.1.

2 - Preliminaries

This section is devoted to some notations and preliminary results: the reader
familiar with these topics may skip it.
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2.1 - The main problem in the Euclidean space R
d

The natural solution space of (1.1) is the Beppo Levi higher order space
Dm,2(Rd), d > 2m, which is the completion of C∞

c (Rd), with respect to the
norm � · � induced by the inner product

(2.1) �ϕ,ψ� =





�

Rd

∆kϕ∆kψ dx if m = 2k is even

�

Rd

∇∆kϕ · ∇∆kψ dx if m = 2k + 1 is odd,

for every ϕ, ψ ∈ C∞
c (Rd).

Following [23], we say that a function u ∈ Dm,2(Rd) is a weak solution of
(1.1) if

(2.2) �u, ϕ� =

�

Rd

|u|2
∗

m−2uϕdx

for every ϕ ∈ Dm,2(Rd).

It is known that the only finite energy positive solutions of (1.1) are given
by the family of functions

(2.3) uε,ξ(x) = ε−
d−2m

2 U
�
(x− ξ)/ε

�
, where U(x) = P

d−2m
4m

m,d (1 + |x|2)−
d−2m

2 ,

ε > 0, ξ ∈ R
d and Pm,d = Πm

k=−m(d + 2k). We refer to [3, 10] for further
details. Conversely, if the polyharmonic equation with the nonlinear term f(u)
possesses a positive solution, then d > 2m and f(u) = c |u|2

∗

m−2u, provided
that f is locally Lipschitz in R

+
0 , f ≥ 0 and nondecreasing in R

+
0 , u

−qf(u) is
nonincreasing in R

+, and f(u) = o(uq) as u → ∞, where 1 < q ≤ 2∗m − 1, as
shown in Theorem 1.5 of [27]. See also [4] and references therein.

Finally, we recall that every nontrivial nonnegative solution u ∈ Dm,2(Rd) of
(1.1) is positive in R

d and has the form given in (2.3). See the quoted paper [2]
for additional remarks and comments, as well as [24,25] for related topics.

For historical details and a wide list of recent contributions on semilinear
problems involving the biharmonic or polyharmonic operator as principal part
we refer to the modern excellent monograph [9] and the references therein.
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2.2 - Number of unrestricted partitions

In number theory there are several ways to write an integer n as a sum of
positive integers, when the order of addends is not considered significant. This
is denoted by p(n), and is called the number of unrestricted partitions. Parti-
tions can be graphically visualized with Young diagrams or Ferrers diagrams.
They occur in many branches of mathematics and physics, including the study
of symmetric polynomials, the symmetric group and in group representation
theory in general. A classical and celebrated result due to Hardy and Ramanu-
jan in 1918 is dedicated to the asymptotic behavior of the function p. More
precisely, they showed that

(2.4) p(n) ∼
1

4n
√
3
eπ
√

2n/3 as n → ∞.

Lately, in 1937 Rademacher in a celebrated paper proved that the unrestricted
partition function p(n), for any fixed n ∈ N, has the form

(2.5) p(n) =
1

π
√
2

∞∑

k=1

Ak(n)
√
k φ′(n),

where

φ(x) =

sinh

(
π

k

√
2

3

(
x−

1

24

))

√
x−

1

24

,

as well as

Ak(n) =

k−1∑

h=0
(h,k)=1

e
πi

(

s(h, k) − 2n
h

k

)

and s(h, k) =

k−1∑

j=1

j

k

(
hj

k
−

[
hj

k

]
−

1

2

)
.

As usual, the notation (h, k) = 1 means that the two integers h and k are
co–prime.

For the sake of clarity we present in Table 3 the first 10 values of p(n),
which we have used to prove that sd < κd for d ≥ 29 in the Introduction.

Thanks to (1.2) and (2.4), the number ζd of sequences of solutions in The-
orem 1.1 grows exponentially as d → ∞.
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Table 3. Values of p(n) for 1 ≤ n ≤ 10

n 1 2 3 4 5 6 7 8 9 10

p(n) 1 2 3 5 7 11 15 22 30 42

3 - Reduction to unit sphere S
d of Rd+1

Let Sd →֒ R
d+1 be the Euclidean unit sphere endowed by the induced Rie-

mannian metric h. Consider the following problem

(3.1)




D

mv = |v|2
∗

m−2v in S
d,

v ∈ Hm(Sd), d > 2m,

where D
m is the elliptic differential operator defined in (1.3).

Let Hm(Sd) be the standard higher order Sobolev space Wm,2(Sd), whose
Hilbertian structure is given by the scalar product

(3.2) �v,w�Hm(Sd) =





�

Sd

�
∆k

hv∆
k
hw + vw

�
dσh if m = 2k is even

�

Sd

�
∇h∆

k
hv · ∇h∆

k
hw + vw

�
dσh if m = 2k + 1 is odd

for every v,w ∈ Hm(Sd). We denote by � · �Hm(Sd) the norm induced by the
scalar product in (3.2).

In the case of m = 1, equation (3.1) reduces to

−∆hv +
d(d− 2)

2
v = |v|2

∗

m−2v in S
d.

The search of positive solution is the well known Yamabe problem, which arises
from the conformal geometry. For details we refer to Chapter 7 of the mono-
graph [1].

In order to handle the variational formulation of problem (3.1) we intro-
duce a different Hilbertian norm � · �∗ on the Sobolev space Hm(Sd), which is
equivalent to the norm � ·�Hm(Sd). This equivalence will be more readable if we
express (3.2) in a convenient form given in terms of the Fourier coefficients of
the functions v and w. To this aim, let L2(Sd) be the standard Lebesgue space
of square–summable functions on S

d endowed by the natural inner product

�v,w�L2(Sd) =

�

Sd

v wdσh for every v,w ∈ L2(Sd).
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Clearly, L2(Sd) can be decomposed as direct sum of the orthogonal eigenspaces
connected with the eigenfunctions of −∆h on H1(Sd), that is

(3.3) L2(Sd) =
∞⊕

ℓ=0

Eℓ,

where for every ℓ ∈ N0 the ℓ–th eigenspace Eℓ = Ker(−∆h − λℓIL2(Sd)) is

generated by the ℓ degree orthonormal (real valued) spherical harmonics Y j
ℓ ,

with j = 1, ..., cℓ and

cℓ =

(
ℓ+ d

d

)
−

(
ℓ+ d− 2

d

)
.

More precisely, the ℓ–th graded component of L2(Sd) is generated by harmonic
polynomial maps P : Rd+1 → R restricted to S

d that are homogeneous of degree
ℓ. Moreover, the representation of the orthogonal group O(d+1) on the linear
space Eℓ is irreducible, in the sense of the representation theory, see Chapter IV
of the celebrated monograph [26] by E.M. Stein and G. Weiss.

By (3.3) every function v ∈ L2(Sd) admits a unique Fourier decomposition

(3.4) v =

∞∑

ℓ=0

cℓ∑

j=1

v̂ (ℓ, j)Y j
ℓ ,

where v̂(ℓ, j) denotes the Fourier coefficient of v given by

v̂(ℓ, j) = �v, Y j
ℓ �L2(Sd)

for every ℓ ∈ N0 and j = 1, ..., cℓ. In other words, (3.4) has the expected
expression

v =
∞∑

ℓ=0

cℓ∑

j=1

�v, Y j
ℓ �L2(Sd)Y

j
ℓ

for every v ∈ L2(Sd). Accordingly to (3.4), we can rewrite the inner product
given in (3.2) as

(3.5) �v,w�Hm(Sd) =
∞∑

ℓ=0

(bmℓ +1)

cℓ∑

j=1

v̂ (ℓ, j) ŵ (ℓ, j) for every v,w ∈ Hm(Sd),

where bℓ = ℓ(ℓ+ d− 1) denotes the ℓ–th eigenvalue of −∆h in H1(Sd), that is

(3.6) −∆hY
j
ℓ = bℓY

j
ℓ in S

d
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for all j = 1, . . . , cℓ. Moreover, as it is well–known, by (3.5) the inner product
on Hm(Sd), defined for every v, w ∈ Hm(Sd) by

(3.7) �v,w�∗ =

∞�

ℓ=0

γℓ(d,m)

cℓ�

j=1

�v(ℓ, j) �w(ℓ, j), γℓ(d,m) =

Γ

�
d

2
+m+ ℓ

�

Γ

�
d

2
−m+ ℓ

� ,

induces the norm

�v�∗ =




∞�

ℓ=0

γℓ(d,m)

cℓ�

j=1

���v(ℓ, j)
��2



1/2

for every v ∈ Hm(Sd),

which is equivalent to � · �Hm(Sd).

3.1 - Variational formulation of problem (3.1)

We first claim that

(3.8) D
mY j

ℓ = γℓ(d,m)Y j
ℓ

for every ℓ ∈ N0 and j = 1, ..., cℓ. Fix ℓ ∈ N0 and j = 1, ..., cℓ. Then, by (3.6)
and (3.7)

D
mY j

ℓ =
m�

k=1

�
−∆h +

1

4
(d− 2k)(d + 2k − 2)IL2(Sd)

�
Y j
ℓ

=

m�

k=1

�
bℓ +

1

4
(d− 2k)(d + 2k − 2)

�
Y j
ℓ

= γℓ(d,m)Y j
ℓ ,

as claimed.
Let us now prove

(3.9) �v,w�∗ =

�

Sd

(Dmv)wdσh

for every v,w ∈ Hm(Sd). To see this fix v,w ∈ Hm(Sd). By (3.4) clearly

�

Sd

(Dmv)wdσh =
∞�

ℓ=0

cℓ�

j=1

�v(ℓ, j)
�

Sd

�
D

mY j
ℓ

�
wdσh.
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On the other hand, (3.8) yields
∫

Sd

(
D

mY j
ℓ

)
wdσh = γℓ(d,m)

∫

Sd

Y j
ℓ wdσh.

Thus

(3.10)

∫

Sd

(Dmv)wdσh =
∞∑

ℓ=0

γℓ(d,m)

cℓ∑

j=1

v̂(ℓ, j)

∫

Sd

Y j
ℓ wdσh.

By (3.3) it follows that
∫

Sd

Y j
ℓ wdσh =

∞∑

ℓ̃=0

cı∑

j̃=1

ŵ(ℓ̃, j̃)

∫

Sd

Y j
ℓ Y

j̃

ℓ̃
dσh =

∞∑

ℓ̃=0

cı∑

j̃=1

ŵ(ℓ̃, j̃)δ
ℓ̃,ℓ
δj̃,j

= ŵ(ℓ, j).

(3.11)

Then, (3.10) and (3.11) give

∫

Sd

(Dmv)wdσh =
∞∑

ℓ=0

γℓ(d,m)

cℓ∑

j=1

v̂(ℓ, j)ŵ(ℓ, j),

i.e. (3.9) is verified.
In conclusion, we have shown that the main transformed problem (3.1) has

a variational nature. Consequently, we say that a function v ∈ Hm(Sd) is a
weak solution of (3.1) if

(3.12) �v, ϕ�∗ =

∫

Sd

|v|2
∗

m−2vϕdσh

for every ϕ ∈ Hm(Sd).
As shown in [2], there exists an explicit correspondence between the weak

solutions of (3.1) and (1.1). To this end, let us introduce the classical stereo-
graphic projection π : Sd \ {σo} → R

d from the south pole σo = (0, ..., 0,−1) ∈
S
d ⊂ R

d+1, which is defined for every σ = (x1, ..., xd, xd+1) ∈ S
d by

π(σ) =

(
x1

1 + xd+1
, ...,

xd
1 + xd+1

)
.

It is well–known that the stereographic projection π is a conformal diffeomor-
phism whose inverse map π−1 : Rd → S

d \{σo} is given for all x = (x1, ..., xd) ∈
R
d by

(3.13) π−1(x) =

(
2x1

1 +
∑d

i=1 x
2
i

, ...,
2xd

1 +
∑d

i=1 x
2
i

,
1−

∑d
i=1 x

2
i

1 +
∑d

i=1 x
2
i

)
.
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We are now in a position to state the following key result.

P r o p o s i t i o n 3.1. If v ∈ L2∗m(Sd), then the function u, defined for all

x = (x1, ..., xd) ∈ R
d by

u(x) = U(x)v(π−1(x)), where U(x) =

(
2

1 + |x|

)d/2∗m

,

is of class L2∗m(Rd) and
∫

Sd

|v(σ)|2
∗

mdσh =

∫

Rd

|u(x)|2
∗

mdx.

Moreover, if v ∈ Hm(Sd) is a weak solution of (3.1), then u = Uv ◦ π−1 is of

class Dm,2(Rd) and solves (1.1) in the weak sense. Conversely, if u ∈ Dm,2(Rd)
is a weak solution of (1.1), then

v =
u ◦ π

U ◦ π
in S

d

is of class Hm(Sd) and solves (3.1) in the weak sense.

For a detailed proof of the above result we refer to Proposition 2.2 and
Lemma 2.3 of [2], as well as Proposition 3.1 of [14].

3.2 - Groups actions and embedding results

Let ⋄ : G×Wm,l(Sd) → Wm,l(Sd) be an action of a topological group G on
the Sobolev space Wm,l(Sd), where m and l in N. Set

Wm,l
G (Sd) = {v ∈ Wm,l(Sd) : g ⋄ v = v for all g ∈ G}.

If G is a subgroup of O(d+ 1), the orbit Gσ of an element σ ∈ S
d is given by

Gσ = {g · σ : for all g ∈ G},

where · : G× S
d → S

d is the natural multiplicative action.

P r o p o s i t i o n 3.2. Let G be a closed subgroup of the orthogonal group

O(d+ 1) and let

dG = min
σ∈Sd

dim(Gσ)

be the minimal dimension of the orbits in S
d. Then the Sobolev embedding

Wm,l
G (Sd) →֒ Lq(Sd)



[13] geometrical analysis 129

is compact for every q ∈ [1, qG), where

qG =





l(d− dG)

d− dG − lm
if d > ml + dG,

∞ if d ≤ ml + dG.

If d > ml + dG, then the space Wm,l
G (Sd) is continuously embedded in LqG(Sd).

If G is a connected algebraic group, which acts on a variety Y (not neces-
sarily affine), then for each y ∈ Y the orbit Gy is an irreducible variety, that is
Gy is open in its closure. Moreover, its boundary, ∂Gy = Gy \Gy, is the union
of orbits of strictly smaller dimension. Finally, in this case orbits of minimal
dimension are closed.

C o r o l l a r y 3.3. Let m and l be two positive integers. Let

⊙ : O(d+ 1)×Wm,l(Sd) → Wm,l(Sd)

be the action induced by the natural multiplicative action · : O(d+1)×S
d → S

d

of the orthogonal group O(d + 1) on the unit sphere S
d. If G ⊂ O(d + 1) is a

closed subgroup and

Wm,l
G (Sd) = {w ∈ Wm,l(Sd) : v(g−1 · σ) = v(σ)

for each σ ∈ S
d and for all g ∈ G},

then the embedding

Wm,l
G (Sd) →֒ Lq(Sd) is compact for every q ∈ [1,∞).

In particular, if d > ml then the embedding

Wm,l
G (Sd) →֒ Ll∗m(Sd), l∗m =

ld

d− lm
,

is compact.

P r o o f. Since the orthogonal group O(d+ 1) acts transitively on S
d, then

the orbit of each element of the sphere S
d is the whole sphere itself, so that

dimO(d+ 1)σ = d for every σ ∈ S
d. Thus, the minimal dimension

dO(d+1) = min
σ∈Sd

dimO(d+ 1)σ = d,

and Proposition 3.2 yields that the embedding

Wm,l
O(d+1)(S

d) →֒ Lq(Sd)
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is compact for every q ∈ [1,∞). Consequently, if ⊙ : O(d + 1) ×Wm,l(Sd) →
Wm,l(Sd) is the action induced by the natural multiplicative action ·, then the
embedding

Wm,l
G (Sd) →֒ Wm,l

O(d+1)(S
d)

is continuous for every closed subgroup G ⊂ O(d + 1). In particular, the
embedding

Wm,l
G (Sd) →֒ Lq(Sd) is compact for every q ∈ [1,∞)

along the closed subgroup G ⊂ O(d+ 1). This completes the proof. �

Due to the usual role of the critical exponent, the Sobolev space Hm(Sd)
cannot be compactly embedded into the Lebesgue space L2∗m(Sd). In order to
prove Theorem 1.1 we recover compactness for suitable symmetric subspaces
of Hm(Sd) thanks to the validity of Proposition 3.2. Indeed, Proposition 3.2
produces compact embeddings in higher order Lebesgue spaces Lq(Sd), q ≥ 2∗m.
Such properties have been observed in specific contexts by several authors,
see [12,13] and references therein for related topics. This approach is fruitful
in the study of a wide class of variational elliptic problems in the presence of a
suitable group action on the Sobolev space, thanks to the famous principle of
symmetric criticality due to R.S. Palais in [21].

Let d ≥ 5 and sd = [d/2] + (−1)d+1 − 1. For every i ∈ Jd = {1, ..., sd}, let
us define

Gd,i =





O(i+ 1)×O(d− 2i− 1)×O(i+ 1), if i �=
d− 1

2
,

O(i+ 1)×O(i+ 1), if i =
d− 1

2
,

and for all i, j ∈ Jd, with i �= j. Denote by Gd
i,j the group �Gd,i;Gd,j� generated

by Gd,i and Gd,j . The following result, proved in Proposition 3.2 of [13], will
be crucial in the sequel.

P r o p o s i t i o n 3.4. For every i, j ∈ Jd, with i �= j, the group Gd
i,j acts

transitively on S
d, i.e. there exists σ0 ∈ S

d such that Gd
i,jσ0 = S

d.

Fix d ≥ 5 and Gd,i for some i ∈ Jd. Let τi : S
d → S

d be the function
associated to Gd,i and defined for all σ = (σ1, σ2, σ3) ∈ S

d by

τi(σ) =





(σ3, σ2, σ1), if i �=
d− 1

2
and σ1, σ3 ∈ R

i+1, σ2 ∈ R
d−2i−1,

(σ3, σ1), if i =
d− 1

2
and σ1, σ3 ∈ R

i+1.
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By construction,

τi /∈ Gd,i, τiGd,iτ
−1
i = Gd,i and τ2i = IRd+1

for every i ∈ Jd.
For small dimensions d > 2m the explicit form of the groups Gd,i and of

the functions τi are summarized in Chapter 10 of [16] and we report the table
here for clarity purposes.

Table 4. Some explicit constructions for low dimensions

d sd Gd,i; i ∈ {1, ..., sd} τi; i ∈ {1, ..., sd}

5 2 G5,1 = O(2)×O(2)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ2, σ3 ∈ R
2

G5,2 = O(3)×O(3) τ2(σ1, σ2) = (σ2, σ1);

σ1, σ2 ∈ R
3

6 1 G6,1 = O(2)×O(3)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
2, σ2 ∈ R

3

7 3 G7,1 = O(2)×O(4)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
2, σ2 ∈ R

4

G7,2 = O(3)×O(2)×O(3) τ2(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
3, σ2 ∈ R

2

G7,3 = O(4)×O(4) τ3(σ1, σ2) = (σ2, σ1); σ1, σ2 ∈ R
4

8 2 G8,1 = O(2)×O(5)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
2, σ2 ∈ R

5

G8,2 = O(3)×O(3)×O(3) τ2(σ1, σ2, σ3) = (σ2, σ1, σ3);

σ1, σ2, σ3 ∈ R
3

9 4 G9,1 = O(2)×O(6)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
2, σ2 ∈ R

6

G9,2 = O(3)×O(4)×O(3) τ2(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
3, σ2 ∈ R

4

G9,3 = O(4)×O(2)×O(4) τ3(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
4, σ2 ∈ R

2

G9,4 = O(5)×O(5) τ4(σ1, σ2) = (σ2, σ1); σ1, σ2 ∈ R
5
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d sd Gd,i; i ∈ {1, ..., sd} τi; i ∈ {1, ..., sd}

10 3 G10,1 = O(2)×O(7)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
2, σ2 ∈ R

7

G10,2 = O(3)×O(5)×O(3) τ2(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
3, σ2 ∈ R

5

G10,3 = O(4)×O(3)×O(4) τ3(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
4, σ2 ∈ R

3

11 5 G11,1 = O(2)×O(8)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
2, σ2 ∈ R

8

G11,2 = O(3)×O(6)×O(3) τ2(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
3, σ2 ∈ R

6

G11,3 = O(4)×O(4)×O(4) τ3(σ1, σ2, σ3) = (σ2, σ1, σ3);

σ1, σ2, σ3 ∈ R
4

G11,4 = O(5)×O(2)×O(5) τ4(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
5, σ2 ∈ R

2

G11,5 = O(6)×O(6) τ5(σ1, σ2) = (σ2, σ1); σ1, σ2 ∈ R
6

12 4 G12,1 = O(2)×O(9)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
2, σ2 ∈ R

9

G12,2 = O(3)×O(7)×O(3) τ2(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
3, σ2 ∈ R

7

G12,3 = O(4)×O(5)×O(4) τ3(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
4, σ2 ∈ R

5

G12,4 = O(5)×O(3)×O(5) τ4(σ1, σ2, σ3) = (σ3, σ2, σ1);

σ1, σ3 ∈ R
5, σ2 ∈ R

3

As in [13], recalling that d > 2m throughout the paper, we define for all
i ∈ Jd an action ⊛̂i of the compact group

(3.14) Gτi
d,i = �Gd,i, τi� ⊂ O(d+ 1)

on the Sobolev space Hm(Sd).

More precisely, we consider the action ⊛̂i : Gτi
d,i × Hm(Sd) → Hm(Sd),

(g̃, v) �→ g̃⊛̂iv, which is defined pointwise for every σ ∈ S
d by

(3.15) (g̃⊛̂iv)(σ) =

{
v(g−1 · σ), if g̃ = g ∈ Gd,i

−v(g−1τ−1
i · σ), if g̃ = τi g ∈ Gτi

d,i \Gd,i, g ∈ Gd,i.
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This can be done by the properties of τi. Therefore, �⊛i is well defined, linear
and continuous.

Let us consider for every i ∈ Jd the subspace Hm
G

τi
d,i

(Sd) of Hm(Sd) given by

Hm
G

τi
d,i

(Sd) = {v ∈ Hm(Sd) : g̃�⊛iv = v for all g̃ ∈ Gτi
d,i}.

Clearly, Hm
G

τi
d,i

(Sd) contains all the functions v ∈ Hm(Sd), which are symmetric

with respect to the action �⊛i of the compact group Gτi
d,i.

Moreover, for every i ∈ Jd we also introduce

Hm
Gd,i

(Sd) = {v ∈ Hm(Sd) : g ⊛i v = v for all g ∈ Gd,i},

where the action ⊛i : Gd,i ×Hm(Sd) → Hm(Sd) of the compact group Gd,i on
Hm(Sd), (g, v) �→ g⊛iv, is defined pointwise for all σ ∈ S

d by

(3.16) (g⊛iv)(σ) = v(g−1 · σ).

Rema r k 3.5. Every v ∈ HG
τi
d,i
(Sd) \ {0} does not have constant sign.

Indeed, v(σ) = −v(τ−1
i ·σ) for every σ ∈ S

d, since v is Gτi
d,i–invariant by (3.16).

The conclusion follows immediately from the fact that v is not zero.

By Proposition 3.4, arguing as in the proof of Theorem 3.1 of [13], the
following result holds.

P r o p o s i t i o n 3.6. Let d > 2m, with m ≥ 2. Then the following state-

ments hold for any fixed i ∈ Jd.

(i) The Sobolev space Hm
Gd,i

(Sd) is compactly embedded into Lq(Sd), whenever

q ∈ [1, q⋆i ), where

q⋆i =





2(d− 1)

d− 2m− 1
if d > 2m+ 1,

∞ if d = 2m+ 1;

(ii) Hm
Gd,i

(Sd)∩Hm
Gd,j

(Sd) = {constant functions on S
d} for every j ∈ Jd, with

j �= i;

(iii) Hm
G

τi
d,i

(Sd) ∩Hm

G
τj
d,j

(Sd) = {0} for every j ∈ Jd, with j �= i.
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P r o o f. Part (i) – A careful analysis of the definition of Gd,i shows that the
Gd,i–orbit of every point σ ∈ S

d has at least dimension 1, i.e., dim(Gd,iσ) ≥ 1
for every σ ∈ S

d, and

dGd,i
= min

σ∈Sd
dim(Gd,iσ) ≥ 1.

Hence, by Proposition 3.2 the space Hm
Gd,i

(Sd) is compactly embedded into

Lq(Sd) for every q ∈ [1, q⋆i ). Since d > 2m, then

q⋆i > 2∗m =
2d

d− 2m

and HG
τi
d,i
(Sd) ⊂ HGd,i

(Sd), so that the embedding

HG
τi
d,i
(Sd) →֒ L2∗m(Sd)

is compact for every i ∈ Jd.

Part (ii) – Fix j ∈ Jd, with j �= i, and v ∈ Hm
Gd,i

(Sd)∩Hm
Gd,j

(Sd). Since v is

both Gd,i and Gd,j–invariant, then v is also Gd
i,j–invariant, i.e., v(g · σ) = v(σ)

for every g ∈ Gd
i,j and σ ∈ S

d. According to Proposition 3.4, the group Gd
i,j

acts transitively on the sphere S
d, i.e., Gd

i,jσ = S
d for each σ ∈ S

d. Thus, v is
a constant function.

Part (iii) – Fix j ∈ Jd, with j �= i, and v ∈ Hm
G

τi
d,i

(Sd) ∩ Hm

G
τj
d,j

(Sd). The

second relation of (3.15) shows that v(σ) = −v(τ−1
i ·σ) = −v(τ−1

j ·σ) for every

σ ∈ S
d. But, Part (ii) shows that v is constant. Thus, v must be identically

zero in S
d. �

Problem (3.1) has a variational nature and its Euler–Lagrange functional
J is given by

(3.17) J (v) =
1

2
�v�2∗ −

∫

Sd

|v|2
∗

mdσh, v ∈ Hm(Sd).

Clearly, the functional J is well–defined inHm(Sd) and it is of class C1(Hm(Sd)).
Moreover, for each v ∈ Hm(Sd)

(3.18) �J (v), ϕ� =�v, ϕ�∗ −

∫

Sd

|v|2
∗

m−2vϕdσh

for every ϕ ∈ Hm(Sd). Hence, the critical points of J in Hm(Sd) are exactly
the weak solutions of (3.1).
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Let G be a topological group. We say that u ∈ Hm
G (Sd) is a weak solution

of (3.1) only in the Hm
G (Sd) sense if

�J (v), ϕ� =�v, ϕ�∗ −

∫

Sd

|v|2
∗

m−2vϕdσh(3.19)

for any ϕ ∈ Hm
G (Sd). Then, u ∈ Hm

G (Sd) is a weak solution of (3.1) in the
whole space Hm(Sd), that is in sense of definition (3.18), if the principle of

symmetric criticality of Palais given in [21] holds. To prove this let us recall
the well known principle of symmetric criticality of Palais stated in the general
form proved in [6] for reflexive strictly convex Banach spaces. For details and
comments we refer to Section 5 of [5].

More precisely, let X = (X, � · �X) be a reflexive strictly convex Banach
space. Suppose that G is a subgroup of isometries g : X → X, that is g is linear
and �g(u)�X = �u�X for all u ∈ X. Consider the G–invariant closed subspace
of X

ΣG = {u ∈ X : g(u) = u for all g ∈ G}.

By Proposition 3.1 of [6] we have

L emma 3.7. Let X, G and Σ be as before and let I be a C1 functional

defined on X such that the composition I ◦ g = I for all g ∈ G. Then u ∈ ΣG

is a critical point of I in X if and only if u is a critical point of I|Σ
G

.

Bartsch, Schneider, and Weth observed in Remark 1.2 – Part a) of [2] that
a careful choice of a subgroup of O(d + 1) in certain dimensions assures the
existence of infinitely many solutions of equation (1.1). Their abstract ap-
proach, based on groups symmetries, gives additional information on the nodal
structure of the solutions. In the same paper the authors also point out that
several unbounded sequences of changing sign solutions distinguished by their
symmetry properties can be obtained. The number of such sequences increases
with the number of partitions of the Euclidean dimension d. In the case d ≥ 5,
exploiting the topological group arguments developed in [13], a key ingredi-
ent used along our proof is based on the explicit construction of the subgroups
Gτi

d,i ⊂ O(d+1) such that the energy functional J is invariant under a subgroup

action of O(d + 1) and whose restriction to the subspaces Hm
G

τi
d,i

(Sd) of Gτi
d,i–

invariant functions admits a sequence of critical points. Due to the principle of
symmetric criticality of Palais recalled in Lemma 3.7, these points will be also
critical points of the original functional J , depending on the choice of the sub-
group of O(d+ 1). According to Proposition 3.6 the subspaces Hm

G
τi
d,i

(Sd) have

different symmetry structures for every i, j ∈ Jd, with i �= j. Consequently,
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(1.1) admits at least sd sequences of infinitely many finite energy nodal weak
solutions, with mutually different symmetry structure. We emphasize that
the invariance of J , with respect to translations and dilations, implies that the
functional J does not satisfy the Palais–Smale condition. However, as observed
in Proposition 3.1 of [2], the symmetric mountain pass theorem in addition to
Lemma 3.7 yields the following critical point result.

T h e o r em 3.8. Let G be a compact group. Let

⋄ : G×Hm(Sd) → Hm(Sd), (g,w) �→ g ⋄ w,

be a linear and isometric action of G on Hm(Sd) and denote by

Hm
G (Sd) = {v ∈ Hm(Sd) : g ⋄ v = v for all g ∈ G}

the subspace of Hm(Sd) containing all the symmetric functions with respect to

the group G. Let J be the energy functional associated to (3.1) and assume

that

(i) J is G–invariant;

(ii) the embedding Hm
G (Sd) →֒ L2∗m(Sd) is compact;

(iii) Hm
G (Sd) has infinite dimension;

hold. Then, the functional J admits a sequence of critical points (vk)k ⊂
Hm

G (Sd) such that ∫

Sd

|vk|
2∗mdσh → ∞

as k → ∞.

More recently, in [20] the author describes a group theoretical scheme,
which arises in previous papers on O(d + 1)–invariant variational problems,
as a method to show the existence of several geometrically different sequences
of solutions, distinguished by their symmetry properties. The abstract ap-
proach developed in [20] can be applied to Hm(Sd) in order to find a finite
family {Hm

Ki
(Sd)}κd

i=1 of subspaces Hm
Ki
(Sd) ⊂ Hm(Sd) such that for every

Kl, Ks ⊂ O(d+ 1), with l �= s, we have

(i) Hm
Kl
(Sd) ∩Hm

Ks
(Sd) = {0};

(ii)
(
O(d+ 1)v

)
∩Hm

Kl
(Sd) = ∅ for every v ∈ Hm

Ks
(Sd) \ {0}.
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The above construction in addition to the Palais symmetry principle, recalled
in Lemma 3.7, as well as Proposition 3.1, ensure that equation (1.1) admits
at least κd geometrically different sequences of solutions distinguished by their
symmetry properties. This result is summarized in Theorem 4.8 of [20] in a
more general form. In order to prove Theorem 4.8 W. Marzantowicz studies the
intrinsic linking between orthogonal Borel subgroups in O(d + 1) with partial
and orthogonal flags in R

d+1. The key tool is the use of the number p(d + 1)
of the unrestricted partitions of the Euclidean dimension d+ 1.

4 - Proof of the main result

We divide the proof of Theorem 1.1 in three steps.

Step 1: Euclidean dimension d = 4 and order of differentiability m = 1. In such
a case the main result is a direct consequence of Theorem 1.1 of [2]. Indeed,
the functional J : H1(S4) → R reduces to

J (v) =
1

2

∫

S4

|∇hv|
2
hdσh −

∫

S4

|v|4dσh

for every v ∈ H1(S4).

From now on we argue as in the proof of Theorem 1.1 of [2] and take as
compact group

G = O(2)×O(3) ⊂ O(5).

Let · : G × S
4 → S

4 be the standard action of the group G on the sphere S
4

and denote by ♮ : G × H1(S4) → H1(S4) the induced linear, continuous and
isometric action of the group G on the space H1(S4), (g, v) �→ g♮v, defined
pointwise for all σ ∈ S

4 by

(g♮v)(σ) = v(g−1 · σ).

Now, an easy calculation ensures that the functional J is G–invariant, that is

J (g♮v) = J (v)

for every (g, v) ∈ G×H1(S4). Moreover, the subspace

H1
G(S

4) = {v ∈ H1(S4) : g♮v = v for all g ∈ G}

of H1(S4), which consists of the G–invariant functions of H1(S4), has infinite
dimension.
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Since dim (Gσ) ≥ 1 for every σ ∈ S
4, then qG = 6 > 4. Thus, Proposi-

tion 3.2 ensures that the embedding

H1
G(S

4) →֒ L4(S4)

is compact.
Hence, by Theorem 3.8 the functional J admits a sequence of critical points

(vk)k in H1
G(S

4) such that

∫

S4

|vk|
4dσh → ∞,

as k → ∞. Lemma 3.7 and Proposition 3.1 yield that the equation

{
−∆u = |u|2u in R

4,

u ∈ D1,2(R4),

admits a sequence (uk)k ⊂ D1,2(R4) of solutions such that

∫

R4

|∇uk|
4dx → ∞, that is �uk� → ∞,

as k → ∞. Finally, Remark 1.2 (b) of [2] implies that there is k0 ∈ N such that
uk changes sign for every k ≥ k0.

Step 2: Euclidean dimension d ≥ 5 and order of differentiability m < d/2.
Let J be the energy functional associated to (3.1) and given in (3.17). Fix
i ∈ Jd and consider the compact group

Gτi
d,i ⊂ O(d+ 1),

given in (3.14) and let ⊛̂i : G
τi
d,i ×Hm(Sd) → Hm(Sd) be the action defined in

(3.15).
Thanks to the definition of ⊛̂i, the functional J is Gτi

d,i–invariant, that is

J (g̃⊛̂iv) = J (v)

for every (g̃, v) ∈ Gτi
d,i ×Hm(Sd). Then, the subspace

Hm
G

τi
d,i

(Sd) = {v ∈ Hm(Sd) : g̃⊛̂iv = v for all g̃ ∈ Gτi
d,i}

of Hm(Sd), which consists of Gτi
d,i–invariant functions, has infinite dimension.
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Since dim
(
Gτi

d,iσ
)

≥ 1 for every σ ∈ Sd, then q⋆i > 2∗m. Thus, Proposi-

tion 3.2 ensures that the embedding

Hm
G

τi
d,i

(Sd) →֒ L2∗m(Sd)

is compact.

Hence, by Theorem 3.8 the functional J admits a sequence of critical points

(v
(i)
k )k in Hm

G
τi
d,i

(Sd) such that

∫

Sd

|v
(i)
k |2

∗

mdσh → ∞,

as k → ∞. Lemma 3.7 and Proposition 3.1 imply that (1.1) admits a sequence

(u
(i)
k )k ⊂ Dm,2(Rd) of solutions such that

(4.1) �u
(i)
k � → ∞ as k → ∞.

Consequently, Proposition 3.6 – Part (ii) gives that (1.1) admits at least

sd = [d/2] + (−1)d+1 − 1

sequences (u
(i)
k )k ⊂ Dm,2(Rd) of weak solutions, satisfying (4.1).

Finally, Remark 3.5 yields that the solutions u
(i)
k for every k ∈ N and i ∈ Jd

are changing sign.
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Step 3: Euclidean dimension d ≥ 3, with d �= 4, and order of differentiability

m < d/2. In this case the assertion is a consequence of the general result proved
in Theorem 4.8 of [20]. Indeed, the C1 functional J , associated to (3.1) and
given in (3.17), is O(d+1)–invariant, with respect to the linear isometric action
⊙ : O(d+1)×Hm(Sd) → Hm(Sd) induced by the natural multiplicative action
· of the orthogonal group O(d + 1) on S

d. By Corollary 3.3 and Theorem 3.8
the following facts hold for every closed subgroup G ⊂ O(d+ 1).

(i) J is G–invariant;

(ii) The Sobolev space Hm
G (Sd) has infinite dimension;

(iii) The restriction J
∣∣
Hm

G
(Sd)

of J on Hm
G (Sd) has infinitely many critical

points (vk)k such that �vk�
L2∗m (Sd)

→ ∞ as k → ∞.

Then, by Theorem 4.8 of [20] there exist κd sequences of changing sign solutions,
where κd is defined in (1.2). In particular, for each i = 1, . . . , κd there exists a

sequence (v
(i)
k )k of changing sign solutions v

(i)
k in Hm(Sd), which are mutually

symmetrically distinct in k and such that
∫

Sd

|v
(i)
k |2

∗

mdσh → ∞

as k → ∞. Proposition 3.1 implies that (1.1) admits κd sequences (u
(i)
k )k ⊂

Dm,2(Rd) of solutions such that (4.1) is satisfied. Moreover, in this case the

solutions u
(i)
k are changing sign and mutually symmetrically distinct in k.
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In summary, Steps 1–3 show that (1.1) admits at least ζd = max{1, sd, κd}

sequences (u
(i)
k )k of changing sign solutions u

(i)
k of class Dm,2(Rd), satisfying

(4.1) for each i = 1, . . . , ζd and mutually symmetrically distinct in k.
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Finally, the constructed weak solutions are of class C2m(Rd) and classical
for (1.1), by the regularity result of S. Luckhaus [17]. Even if in [17] only the
Dirichlet problem on a bounded domain is considered, the methods used there
also yield interior regularity for arbitrary boundary conditions. This completes
the proof of Theorem 1.1. �

We emphasize that the strategy adopted along this paper can be performed
in order to investigate the existence of entire solutions for Schrödinger–Hardy
systems involving two nonlocal fractional operators; see [8] for related topics.
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[16] A. Kristály, V. D. Rădulescu and C. G. Varga, Variational principles in
mathematical physics, geometry, and economics, Qualitative analysis of nonlin-
ear equations and unilateral problems, Encyclopedia Math. Appl., 136, Cam-
bridge University Press, Cambridge, 2010.

[17] S. Luckhaus, Existence and regularity of weak solutions to the Dirichlet prob-

lem for semilinear elliptic systems of higher order, J. Reine Angew. Math. 306
(1979), 192–207.

[18] A. Maalaoui and V. Martino, Changing–sign solutions for the CR–Yamabe

equation, Differential Integral Equations 25 (2012) 601–609.

[19] A. Maalaoui, V. Martino and G. Tralli, Complex group actions on the

sphere and sign changing solutions for the CR–Yamabe equation, J. Math. Anal.
Appl. 431 (2015), 126–135.

[20] W. Marzantowicz, Geometrically distinct solutions given by symmetries of

variational problems with the O(N)–symmetry, Commun. Contemp. Math.,
doi: 10.1142/S0219199718500803.

[21] R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69
(1979), 19–30.

[22] S. M. Paneitz, A quartic conformally covariant differential operator for ar-

bitrary pseudo–Riemannian manifolds, SIGMA Symmetry Integrability Geom.
Methods Appl. 4 (2008), Paper 036, 3 pp.

[23] P. Pucci and J. Serrin, Critical exponents and critical dimensions for poly-

harmonic operators, J. Math. Pures Appl. (9) 69 (1990), 55–83.
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