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The problem of detecting linear dependence

Abstract. Let A be an algebraic group defined over a number field K , let P
be a point in A(K), and let G be a finitely generated subgroup of A(K). If
P belongs to G, then clearly its reduction (P mod p) belongs to (G mod p)
for all but finitely many primes p of K (notice that we only consider those
primes p such that the reductions are well-defined, and are “good” reductions).
The problem of detecting linear dependence asks whether the converse holds,
so whether we have a local-global principle. In this survey article we also
investigate the problem of detecting linear dependence for torsion points.
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1 - Introduction

This is a survey article on the problem of detecting linear dependence, which is a
number theoretical problem first investigated by Schinzel in 1975 [23] for the multi-
plicative group. A more general setting was independently considered by Gajda and
by Kowalski. The latter asked [14]:

Q u e s t i o n 1. Does the assertion “b is in the group generated by a” obey a
local-global principle for points of an algebraic group over a number field?

The question concerns the reductions of algebraic groups defined over a number
field: if a rational point belongs to a group of rational points (this is the global prop-
erty), then clearly the reductions of the point belong to the reductions of the group
(these are the local properties). One can ask whether the local properties are strong
enough to imply the global property, so if one has a local-global principle. Gajda for-
mulated this problem for simple abelian varieties (as a question to Ribet in 2002), and
the Conjecture of Detecting Linear Dependence arose:

C o n j e c t u r e 2. Let A be an abelian variety defined over a number field K. Let
P be a point in A(K), and let G be a subgroup of A(K). If the point (P mod p)
belongs to (G mod p) for almost all primes p of K , then P belongs to G.

The conjecture has been open from 2002 to 2009, and it has been proven in various
cases, see Section 2. Jossen and Perucca disproved the conjecture [12]: their counter-
example and further negative results are presented in Section 3. Some open questions
are listed in Section 5. Beyond several original remarks, new material can be found in
Section 4, where we investigate the problem of detecting linear dependence for torsion
points. In particular we complete a result by Weston and prove that the local-global
principle holds for all abelian varieties with endomorphism ring Z, see Corollary 16.

One possible application of the problem of detecting linear dependence is invest-
igating the rank of the Mordell-Weil group of abelian varieties. Quoting [3]:

One of our goals [. . . ] is to show that the reduction maps can be used to
investigate the nontorsion part of the Mordell-Weil group. Given a finite
set of nontorsion points [. . . ], one can ask whether it is possible to detect
linear dependence among elements of this set by reductions.



[3] THE PROBLEM OF DETECTING LINEAR DEPENDENCE 101

Understanding the rank of the Mordell-Weil group (possibly making use of inform-
ations coming from the reductions) is a long-term goal and an open research direction
in number theory.

2 - Positive results

In this section we consider the positive results around the following question,
which asks whether the local-global principle of linear dependence holds:

Q u e s t i o n 3. Let A be a commutative algebraic group defined over a number
field K. Let P be a point in A(K), and let G be a finitely generated subgroup of
A(K). If the point (P mod p) belongs to (G mod p) for almost all primes p of K,
does it follow that P belongs to G? (Notice that we only consider those primes p such
that the reductions are well-defined, and are “good” reductions.)

Notice that ‘for almost all primes’ could either mean ‘for all but finitely many
primes’ or ‘for a set of primes having Dirichlet density 1’ (it does not make a substan-
tial difference in this context). The assumption that the group G is finitely generated
ensures that its reductions are well-defined for all but finitely many primes of K.

R em a r k 4. Question 3 has a negative answer already for the multiplicative
group over Q if we allow the group G to be infinitely generated (and reduce mod-
ulo p only the points ofG which do not contain p in their prime factorisation). Indeed,
consider the point 2 and the group generated by the odd prime numbers. The global
condition clearly does not hold, but the local conditions are satisfied as a consequence
of Dirichlet’s theorem on arithmetic progressions.

2.1 - The multiplicative group

Schinzel proved that Question 3 has a positive answer for the multiplicative group
(however this does not hold in general for tori, see Section 3.1):

T h e o r em 5 (Schinzel [23, Theorem 2]). If a1, . . . , ar, and b are non-zero ele-
ments of K and the congruence

b ≡
r∏

i=1

axi

i mod p

in the integer variables xi is soluble for almost all primes p of K, then the correspond-
ing equation b =

∏r
i=1 a

xi

i is soluble.
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P r o o f s k e t c h. Schinzel’s proof is based on Kummer theory and several results
about congruences. To highlight the proof structure we will assume K = K(ζ4).
Fix some n � 2, and consider the Galois group of the cyclotomic-Kummer extension
K(ζn, a

1/n
1 , . . . , a

1/n
r )/K. The elements in this Galois group which fix all a1/ni for

some choice of the n-th roots must also fix b1/n for some choice of the n-th root,
otherwise we could easily construct a positive density of reductions for which the
local condition does not hold.

Then we can apply [23, Lemma 6] and find integers zi such that the equality
b1/n =

∏
i a

zi/n
i holds up to some multiple of ζn and up to some element of K×.

We deduce that the equality b =
∏

i a
zi
i holds up to some element of (K×)n. This last

relation immediately translates to a set of congruences modulo n for the exponents
with respect to a multiplicative basis forK× (we can express non-zero elements ofK
in a unique way as a root of unity in K times a product of powers of some multiplic-
atively independent elements of K).

We then have a system of linear congruences which is soluble modulo n for all
n � 2, and by a result of Skolem [25] the corresponding equations are also soluble.
This means that the above exponents satisfy a relation that, considering the original
algebraic numbers, can be written in the form b =

∏
i a

xi

i for some integers xi. This
concludes the proof.

We have made use of [23, Lemma 6]: to prove this lemma, Schinzel analyzes the
Galois action on the given n-th roots as multiplication by ζein for some integers ei.
Such integers give rise to functions with abstract properties as those in [23, Lemma 5]
and for which this other lemma applies. In turn, [23, Lemma 5] is a technical result
about ‘double congruences’: the notation v ≡ 0 mod (M,M ′), where v is an integral
vector and M,M ′ are square integral matrices of the same size, stands for the relation
v = wM + w′M ′ for some integral vectors w,w′. �

2.2 - A cyclic group of points

Question 1 is the special case of Question 3 if the group of points is cyclic. Kow-
alski [14, Theorem 3.3] proved that the answer to Question 1 is affirmative for elliptic
curves, and in general we have:

T h e o r e m 6 (Perucca [17, Theorem 11]). Let A be the product of an abelian
variety and a torus defined over a number field K. Let P be a point in A(K), and let
G be a cyclic subgroup of A(K). If the point (P mod p) belongs to (G mod p) for
almost all primes p of K, then P belongs to G.

Perucca derives this result from Theorem 10, so we present instead the direct proof
by Kowalski for elliptic curves. If K is a number field and P is a K-rational point on
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an elliptic curve, then we denote by K(n−1P ) the field extension of K obtained by
adding all points on the curve (defined on an algebraic closure K̄) such that nQ = P .

P r o o f s k e t c h (for elliptic curves). Let P ′ be a generator ofG, and let us focus
on the main case where P and P ′ are points of infinite order. The local conditions
imply an inclusion between Kummer extensions, namely for every n � 1 we have
K(n−1P ) ⊆ K(n−1P ′). This is because for almost all primes p of K we know
that if (P ′ mod p) is an n-th power, then so is (P mod p). We deduce that P and
P ′ cannot be independent over the ring of K-endomorphisms [14, Proposition 6.1]
because two independent points would generate instead “large Kummer extensions”
by a well-known result of Ribet [20, Theorem 1.2]. Then one can write a dependency
relation in the form f(P ) = nP ′, where f is a K-endomorphism and n is a non-zero
integer. For CM elliptic curves, by analyzing the images of the torsion points under
f (and by making use of the local conditions) one finds that f is the multiplication
by an integer. Finally, the smallest positive integer m such that mP ∈ G must be
1, otherwise we can find a positive density of reductions that do not satisfy the local
condition. �

2.3 - Abelian varieties with commutative endomorphism ring

The local-global principle of linear dependence has been established by Weston
‘up to a rational torsion point’ for all abelian varieties with commutative endomorph-
ism ring:

T h e o r em 7 (Weston [26, Theorem]). Let A be an abelian variety defined over a
number fieldK, and suppose that EndK A is commutative. Let P be a point in A(K),
and let G be a subgroup of A(K). If the point (P mod p) belongs to (G mod p) for
almost all primes p of K, then P belongs to G+A(K)tors.

P r o o f s k e t c h. The proof investigates in detail the structure of the Mordell-Weil
group as a module over the endomorphism ring. We assume that E := EndK A is a
Dedekind domain because in this basic case one can better see the proof structure. It
suffices to fix any prime number p and prove the following claim: the point P belongs
to G⊗ Z(p), where Z(p) is the localization of Z away from p.

Up to torsion, we can choose a Z-basis for A(K) such that G is generated by
multiples of elements of this basis. Suppose that the claim does not hold. Then there
is some integer coordinate which has less p-divisibility for the point P than for the
points of G. So there is a group homomorphism ψ0 : A(K) → Z such that ψ0(P )
does not belong to ψ0(G) + pnZ for all sufficiently large n. By the general algebraic
result [26, Lemma 2.1] there is a homomorphism of E-modules ψ : A(K) → E such
that ψ(P ) does not belong to ψ(G) + pnE for all sufficiently large n. To conclude the
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proof we will contradict the last assertion, and for this we will have to choose some
sufficiently large integer N .

The E-moduleA(K) has a pre-basis, i.e. points inA(K) which are E-independent
and generate a subgroup of A(K) of finite index. We will assume the index to be 1
(otherwise we only need to increase N to take care of this index). If we choose the
pre-basis appropriately, then ψ is an integer multiple of the map to the first coordinate.
We will assume that ψ equals that map (otherwise we only need to increase N to
compensate this). Call B the first element of the pre-basis.

We will work with some prime q ofK which is of good reduction forA, is not over
p, satisfies the local condition of the statement, and has the following additional prop-
erties [26, Lemma 3.3]. Firstly, the reduction of B modulo q is not Pc-divisible for
any prime ideal P dividing pE, where c > 0 is a fixed constant: for simplicity we sup-
pose that c = 1 (otherwise we could compensate this by increasing N ). Secondly, the
reductions modulo q of all other elements of the pre-basis are pN -divisible. Thirdly,
the pN -torsion points of the reduction of A modulo q are defined over the residue field
kq.

By the choice of q we know that (ψ(P )B mod q) belongs to (ψ(G)B mod q)
up to some pN -divisible point. In other words, the point (ψ(P − P ′)B mod q) is
pN -divisible for some P ′ ∈ G. This pN -divisibility does not come from (B mod q),
so we deduce (with the help of [26, Lemma 2.4]) that ψ(P ) belongs to ψ(G) up to
some element in pNE. SinceN can be chosen to be arbitrarily large, we have found a
contradiction. �

Banaszak and Krasoń extended Weston’s result as follows:

T h e o r em 8 (Banaszak and Krasoń [4, Theorem A]). Let A be an abelian variety
defined over a number fieldK. Let A be K̄-isogenous to the product

∏t
i=1 A

ei
i , where

the Ai are geometrically simple and pairwise not K̄-isogenous abelian varieties. Sup-
pose that ei does not exceed the dimension of H1(Ai(C),Q) over EndK̄ Ai ⊗ Q for
all i. Let P be a point in A(K), and let G be a subgroup of A(K). If the point
(P mod p) belongs to (G mod p) for all but finitely many primes p of K, then P
belongs to G+A(K)tors.

P r o o f s k e t c h. Since P and G are defined over K , it suffices to prove that for
some finite extension K ′ of K we have P ∈ G + A(K ′)tors. In particular we may
replace K by some finite extension K ′ (because the local conditions for P and G also
hold over K ′). Moreover, we may replace A by any K-isogenous abelian variety.
Indeed, if ϕ : A → A′ is a K-isogeny, then the local conditions also hold in A′

for ϕ(P ) and ϕ(G), and the global condition ϕ(P ) ∈ ϕ(G) + A′(K)tors implies
P ∈ G+A(K ′)tors for some finite extension K ′ ofK (where the points in the kernel
of ϕ are defined). This allows us to work with the abelian variety

∏t
i=1A

ei
i instead.
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The proof then follows substantially the one of Theorem 7, which covers the case
where ei = 1 for all i. Thus we only explain where the assumption on ei is used.
Let Li be a Riemann lattice such that Ai(C) ≃ C

gi/Li, where gi is the dimension of
Ai. Fix a finite index sublattice L′

i of Li which is a free EndK Ai-submodule: the
rank of L′

i is at least ei by assumption. Let O be the ring of integers of K , let ℓ be
a prime number, and write the prime ideal factorisation ℓO =

∏
λ|ℓ λ

ǫ. Call Oλ the
localization of O away from λ. For every n � 1 we have Ai[ℓ

n] =
⊕

λ|ℓAi[λ
ǫn] and

Ai[λ
ǫn] ≃ Li⊗Oλ/λ

ǫnLi⊗Oλ. The information about the rank of L′
i ensures that we

can find ei torsion points which are independent over an appropriate endomorphism
ring. This will be used to construct (with results in the style of Lemma 9) a suitable
family of reductions. �

The analogous result for products of abelian varieties and tori (i.e. where one of
the simple factors can be the multiplicative group) was proven by Blinkiewicz [7,
Twierdzenie 3.1.7].

2.4 - Free modules over the endomorphism ring

Several theorems about the problem of detecting linear dependence are based on
results about ‘prescribing valuations for the order of the reductions of points’ like the
following lemma (for the most general results of this kind so far, see [18]).

L e m m a 9. Let A be the product of an abelian variety and a torus defined over
a number field K. Let P1 to Pn be points in A(K) that are independent over the
ring of K-endomorphisms of A. Let ℓ be a prime number, and let a1 to an be non-
negative integers. There exists a positive density of primes p of K such that for every
i = 1, . . . , n the order of (Pi mod p) has ℓ-adic valuation ai.

The first theorems around Question 3 obtained with this method are due to Ba-
naszak, Gajda, and Krasoń [1, 3]: crucial assumptions are that the point generates
a free module over the endomorphism ring, and that the group of points is either a
free module or it has group generators which generate a free module. Gajda and
Górnisiewicz proved a similar result in [8, Theorem B]. All these results are improved
by Theorem 10.

T h e o r e m 10 (Perucca [17, Theorems 6 and 8]). Let A be the product of an
abelian variety and a torus defined over a number field K. The local-global prin-
ciple of linear dependence holds for a point in A(K) and a subgroup of A(K) if the
subgroup is either a free EndK A-module or it has a set of group generators which
generate a free EndK A-module.

Perucca’s proof is based on her results about the support problem [19], which in
turn are based on Lemma 9. Gajda and Górnisiewicz also proved the following result:



106 ANTONELLA PERUCCA [8]

T h e o r em 11 (Gajda and Górnisiewicz [8, Theorem A]). Let A be an abelian
variety defined over a number field K. Let ℓ be a prime number, and suppose that the
Tate module Tℓ(A) is integrally semisimple. Then the local-global principle of linear
dependence holds for a point in A(K)⊗Zℓ and a subgroup of A(K)⊗Zℓ if the point
generates a free module and the subgroup is a free module over EndK A⊗ Zℓ.

A free Zℓ-module T with the continuous action of Gal(K̄/K) is called integrally
semisimple if for every Galois subrepresentation T ′ of T ⊗ Qℓ the following exact
sequence of Zℓ[Gal(K̄/K)]-modules splits:

0 −→ T ∩ T ′ −→ T −→ T/(T ∩ T ′) −→ 0 .

The Tate module Tℓ(A) is integrally semisimple for almost all ℓ. Moreover, it is in-
tegrally semisimple for all ℓ for at least one abelian variety in every K-isogeny class.
These results are due to Larsen and Schoof [15] and can be found in [8, Section 3].
The proof of Theorem 11 uses this theory of integrally semisimple Galois modules, but
also results of Kummer theory and Galois cohomology [8, Section 2] which provide
an assertion similar to Lemma 9.

The following result does not require additional assumptions, and its proof is also
based on Lemma 9:

T h e o r e m 12 (Perucca [17, Theorem 6]). Let A be the product of an abelian
variety and a torus defined over a number field K. Let P be a point in A(K), and let
G be a subgroup of A(K). If the point (P mod p) belongs to (G mod p) for almost
all primes p of K, then there exists a non-zero integer m (depending on A and K, and
the rank of G) such that mP belongs to the EndK A-module generated by G.

2.5 - Geometrically simple abelian varieties

Jossen proved that the local-global principle of linear dependence holds for all
geometrically simple abelian varieties, and in particular for all elliptic curves:

T h e o r em 13 (Jossen [10, Main Theorem]). Let A be a geometrically simple
abelian variety defined over a number field K. Let P be a point in A(K), and let G
be a subgroup of A(K). If the point (P mod p) belongs to (G mod p) for almost all
primes p of K, then P belongs to G.

Jossen’s proof makes use of 1-motives, but these are not really necessary because
one could phrase everything in terms of Galois modules. To avoid misunderstandings
we point out that a previous and more general version of this result [11] was incorrect.

P r o o f s k e t c h. Let S be a set of primes of K having density 1 and for which
the local condition in the statement holds. Then for any subgroup X of A(K) define
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the group

X̄ := {Q ∈ A(K) | (Q mod p) ∈ (X mod p) ∀ p ∈ S} .

We have to prove that Ḡ = G, and for this it suffices to show that X̄/X is torsion free
for every finite index subgroup X of A(K) containing G. Indeed, the quotient X̄/X
is trivial (being torsion free and finite), so we have Ḡ ⊆ X̄ = X. Thus Ḡ is contained
in all finite index subgroups of A(K) containing G, and hence Ḡ = G because A(K)
is finitely generated.

We now prove that X̄/X is torsion free for every subgroup X of A(K). It suffices
that for any prime number ℓ the group (X̄/X) ⊗ Zℓ is torsion free.

Let Γ be the absolute Galois group of K, and let TℓM be the Tate module of
the 1-motive encoding the group X. In simpler terms, TℓM is the generalisation of
the Tate module to points other than the zero point, and it is constructed by similarly
considering the tree of ℓ-division points; it is in particular a finitely generated and free
Zℓ-module with a continuous Galois action. Then define the group H1

S(Γ, TℓM) as
the kernel of the map

H1(Γ, TℓM) −→
∏

p∈S

H1(Γp, TℓM) ,

where Γp is the absolute Galois group of the residue field at p, and where we con-
sider the family of restriction maps. The group (X̄/X) ⊗ Zℓ can be embedded in
H1

S(Γ, TℓM) [10, Proposition 1.11] and hence it suffices to prove that the latter group
is torsion free. One technical detail: we may replace S so that the primes over ℓ are
excluded.

By the Chebotarev Density Theorem (considering the topologically cyclic sub-
groups generated by the Frobenius maps) we find that H1

S(Γ, TℓM) is isomorphic to
the group H1

∗ (Γ, TℓM) [10, Proposition 1.15], which is defined as the kernel of the
map

H1(Γ, TℓM) −→
∏

C

H1(C, TℓM) ,

where C varies over all topologically cyclic subgroups of Γ, and where we consider
the family of restriction maps. Moreover, we may replace Γ by its image in the group
of automorphisms of TℓM , i.e. we may work with the smallest Galois extension of
K where for each n the ℓn-division points over the points of G are defined [10, Pro-
position 1.16]. This is straight-forward but important because Γ is then an ℓ-adic Lie
group.

Finally, the proof that H1
∗ (Γ, TℓM) is torsion free is achieved through a general

result [10, Key Lemma 4.1] about a finitely generated and free Zℓ-module with the
continuous action of an ℓ-adic Lie group, whose assumptions hold for a geometrically
simple abelian variety [10, Corollary 4.5]. �
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3 - Negative results

3.1 - A counterexample for tori

Schinzel gave a counterexample to the local-global principle of detecting linear
dependence for tori [23, p.419-420]. The counterexample is for the square of the

multiplicative group over Q. Consider the point P :=

(
1
2

)
, and the group G which is

generated by the following three points:

P1 :=

(
2
1

)
P2 :=

(
3
2

)
P3 :=

(
1
3

)
.

The group G consists of all points of the form
(
2x3y

2y3z

)
for some integers x, y, z. Since

2 and 3 are multiplicative independent integers, the point P does not belong to G (in
fact, no non-trivial multiple of P does). Nevertheless, for every prime number p �= 2, 3
the reduction of P modulo p belongs to the reduction ofG modulo p. Indeed, calling a
and b the index of (2 mod p) and (3 mod p) in (Z/pZ)×, we only need to find integers
x, y, z satisfying {

xa+ yb ≡ 0 (mod p− 1)

ya+ zb ≡ a (mod p− 1).

For any integer t the numbers x := −tb/(a, b) and y := ta/(a, b) satisfy the first
congruence. It then suffices to take for t and z a solution of the following linear
diophantine equation (which can be easily checked to be solvable):

t
a2

(a, b)
+ zb = a .

Wemay consider the reductions modulo any prime p by working with Z/pZ rather
than (Z/pZ)×, provided that we exclude those points for which the reduction is not
well-defined (e.g. the reduction of P−1

1 modulo 2 is not well-defined). In the above

example, by choosing P :=

(
1
4

)
instead (as done by Schinzel), one gets a counter-

example where the local condition is satisfied for all prime numbers.

R em a r k 14. In Schinzel’s counterexample the numbers 2 and 3 can be replaced
by any other prime number pair, and hence one has infinitely many counterexamples.
By putting such counterexamples together, one can fix any positive integer n and con-
struct two finitely generated and torsion free groups of points G′ ⊂ G such that for
all prime numbers p we have (G mod p) = (G′ mod p), and such that the ranks
of G and G′ differ by n. In the same way one could construct groups G and G′
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that satisfy the above local conditions and such that the quotient G/G′ is not finitely
generated. Analogously, one could consider two groups G and G′ having a small
intersection (i.e. the difference between the ranks of G and G ∩ G′ can be made ar-
bitrarily large, and similarly for G′) and such that for all prime numbers p we have
(G mod p) = (G′ mod p) = (G ∩ G′ mod p): some examples of this kind (easy
adaptations of the counterexamples in this section) can be found in [2, Section 3] by
Banaszak and Blinkiewicz.

3.2 - A counterexample for abelian varieties

Jossen and Perucca [12] gave a counterexample to Conjecture 2 for the third power
of an elliptic curve without complex multiplication1. Consider the elliptic curve (Cre-
mona label 5077a1)

E : y2 + y = x3 − 7x+ 6 .

This curve is without CM, and its Q-points P1 := (−2, 3), P2 := (−1, 3), and P3 :=
(0, 2) are Z–linearly independent. For the problem of detecting linear dependence,
consider the abelian variety E3 over Q, and the following point and group:

P :=



P1

P2

P3


 G :=

�
MP ∈ E3(Q)

��� M ∈ Mat(3,Z), trM = 0
�
.

The group G consists of the images of the point P under all those endomorphisms
of E3 which, considered as 3 × 3 matrices, have trace zero. The point P has three
coordinates which are Z-linearly independent, and therefore it does not belong to G.
However, for all primes p �= 5077 the point (P mod p) belongs to (G mod p) because
we can find a matrix M with trace zero such that (MP mod p) = (P mod p), see
[12]. This is because the Z/pZ-points of E form a group which is isomorphic to a
subgroup of (Z/nZ)2 for some integer n � 1, and hence any three such points are
‘dependent’.

3.3 - A counterexample for abelian surfaces

Banaszak and Krasoń gave a counterexample to Conjecture 2 for the square of
an elliptic curve with complex multiplication. Consider the following elliptic curve
(Cremona label 18496i2):

E : y2 = x3 − 342x .

1Jossen had reasons to believe that the conjecture was false and thus Perucca, who was previously
trying to prove the conjecture, produced the first counterexample.
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This curve has complex multiplication by Z[i], and the points Q1 := (−16, 120) and
Q2 := (−2, 48) are independent over the endomorphism ring Z[i]. For the problem
of detecting linear dependence consider the abelian variety E2 over Q(i), whose en-
domorphism ring consists of the 2 × 2 matrices with entries in Z[i]. Take as point

P :=

(
0
Q1

)
, and take as group G the Z[i]-module generated by the following three

points:

P1 :=

(
Q1

0

)
P2 :=

(
Q2

Q1

)
P3 :=

(
0
Q2

)
.

The group G is closed under multiplication by scalar matrices, but not by all matrices.
It does not contain the point P (nor any non-zero multiple of P ). For all primes
p of Q(i) which lie over a prime number p �= 2, 17 the group of kp-points of E
(where kp is the residue field at p) is a cyclic Z[i]-module, and one can show that the
point (P mod p) belongs to (G mod p), see [4, Section 6]. It is because of the above
cyclicity that this counterexample works as the one in Section 3.1.

4 - Torsion points

We now investigate Question 3 for a split semiabelian variety (i.e. the product of a
variety and a torus) if P is a torsion point, or if G is finite. The local-global principle
of linear dependence holds if G is finite because the reductions of two distinct points
cannot coincide for infinitely many reductions. So the interesting case is the following:
P is a torsion point and G is infinite. Some of the results in Section 2 allow P to be a
torsion point. Moreover, we may strengthen Theorem 10:

T h e o r e m 15. Let A be the product of an abelian variety and a torus defined
over a number field K. The local-global principle of linear dependence holds for
a torsion point P ∈ A(K) and a group G ⊆ A(K) if the torsion free part of G
(by which we mean any complement to the torsion subgroup) is contained in a free
EndK A-module.

P r o o f. Write P =
∑

ℓ Pℓ where ℓ varies over the prime divisors of the order of
P , and where Pℓ is a torsion point of order a power of ℓ. Since Pℓ is a multiple of
P , the local conditions also hold for Pℓ, and we are left to show that Pℓ ∈ G. Write
G = G′ + Gtors, where Gtors is the torsion subgroup of G. By assumption G′ is
contained in some free EndK A-module, whose generators are as in Lemma 9 (there
choose ai = 0). We then find infinitely many primes p of K such that (Pℓ mod p)
belongs to (Gtors mod p), which ensures that Pℓ belongs to the finite group Gtors. �

We are then able to complete Weston’s result (Theorem 7) for all abelian varieties
whose endomorphism ring is Z:
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Co r o l l a r y 16. Let A be an abelian variety defined over a number field K,
and whose ring of K-endomorphisms is Z. Then the local-global principle of linear
dependence holds for A.

P r o o f. We use the notation of Theorem 7. Because of this result we know that
P + T ∈ G for some point T ∈ A(K)tors. We deduce that (T mod p) ∈ (G mod p)
for all but finitely many primes p of K . By applying Theorem 15 we find that T ∈ G
and hence P ∈ G. �

The following examples show that, even supposing that P is a torsion point, the
local-global principle of linear dependence in general does not hold (neither for tori
nor for abelian varieties).

E x amp l e 17. Consider the square of the multiplicative group over Q, the torsion

point P :=

(
1
−1

)
, and the group G which is generated by the two points

P0 :=

(
1
2

)
P1 :=

(
2
−1

)
.

The point (P mod 2) coincides with the reduction modulo 2 of the neutral element of
G. For a prime number p �= 2, if the order of (2 mod p) is odd, then there is an odd
multiple of (P1 mod p) which equals (P mod p), while if the order of (2 mod p) is
even, then there is a multiple of (P0 mod p) which equals (P mod p). Thus for all
prime numbers p the point (P mod p) belongs to (G mod p), although P does not
belong to G.

We now construct a similar counterexample where the order of P is any integer

m > 1. Notice that we denote by ζN a root of unity of order N . Set P :=

(
1
ζm

)

and, considering the prime factorization m =
∏

ℓ|m ℓn, take the group G which is

generated by all points
(
1
ℓ

)
and

(
ℓℓ

n−1

ζℓn

)
.

E x amp l e 18. Consider the elliptic curve y2 = x3 − 342x (Cremona label
18496i2) over its field of complex multiplication K := Q(i). On this curve take
the following points: the zero point O; the points of infinite order Q := (−16, 120)
and iQ; the torsion points T1 := (0, 0) and T2 := (34, 0) of order 2. Then consider, on

the square of the elliptic curve, the torsion point P :=

(
O
T1

)
, and the group G which

is generated by the following points:

P1 :=

(
Q
T1

)
P2 :=

(
O
T2

)
P3 :=

(
O
Q

)
P4 :=

(
O
iQ

)
.
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For a prime p of K of good reduction forE the following holds: If the order of (Q mod
p) is odd, then (P mod p) is an odd multiple of (P1 mod p). If the order of (Q mod
p) is even, then this point has a multiple of the form (T mod p) for some point T of
order 2: since T1 is a combination of the points T , iT , and T2, the point (P mod p) is
in the group generated by the reductions modulo p of P2, P3, and P4.

5 - Research directions

5.1 - Extending the known results

It may be possible to find further classes of abelian varieties for which the local-
global principle holds, for example: the square of an elliptic curve without complex
multiplication; simple abelian varieties; products of pairwise non-isogenous (geomet-
rically) simple abelian varieties. Notice that removing the torsion ambiguity in the
results of Section 2.3 amounts to proving the local-global principle under the assump-
tion that P is a torsion point. One could also investigate the constant of Theorem 12,
for example answering the following question:

Q u e s t i o n 19. Is is true in general that the local conditions of Question 3 imply
that P belongs to the EndK A-module generated by G?

As suggested by the referee, one could consider Question 3 for non-split semi-
abelian varieties which are extensions by tori of dimension one (this seems to be the
most natural, still unsettled case).

5.2 - Considering the ℓ-part of the reductions

Khare proved the following statement for the multiplicative group:

T h e o r e m 20 (Khare [13, Proposition 3]). Let K be a number field, let P ∈ K×,
and let G be a finitely generated subgroup of K×. If for almost all primes p of K the
point (npP mod p) belongs to (G mod p) for some integer np which is coprime to ℓ
(and that may depend on p), then nP belongs to G for some integer n that is coprime
to ℓ.

Perucca proved [17, Lemma 7] for products of abelian varieties and tori that
Khare’s local assumptions imply the existence of a non-zero integer n such that nP
belongs to the EndK A-module generated by G. It is also possible to say something
about the ℓ-adic valuation of n, namely that vℓ(n) � vℓ(m) where m only depends on
A,K and the rank of G (in particular, the bound does not depend on ℓ and hence, for
almost all ℓ, n is coprime to ℓ).
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R em a r k 21. If A is the product of an abelian variety and a torus defined over a
number fieldK, then Khare’s result holds forA, if we suppose that the torsion free part
of G is a free EndK A-module or it has a set of group generators that generate a free
EndK A-module (e.g. if A is K-simple and G is infinite cyclic, or if EndK A = Z).
Here is a sketch of proof: We apply [17, Lemma 10] to a multiple of P and G (such
that G torsion free) and find that nP+T ∈ G for some torsion point T ∈ A(K) having
order a power of ℓ, and where n is an integer coprime to ℓ; Khare’s local conditions
hold for T and G and hence by Theorem 15 we can remove the torsion ambiguity.

One can ask if such results can be improved, for example if Khare’s theorem ex-
tends to all simple abelian varieties.

5.3 - Making the results effective

Let A be an algebraic group defined over a number field K . If P is a point in
A(K), and G is a subgroup of A(K), what can we say about the set of primes p ofK
such that (P mod p) belongs to (G mod p) [10, Question 2]? In terms of effectivity,
for how many reductions do we have to check the local condition of Question 3 before
we can be sure that P ∈ G? Some general investigation of the effectivity can be
found in [2, 4, 7] by Banaszak, Blinkiewicz, and Krasoń: the key idea is using an
effective version of Chebotarev Density Theorem whenever this result needs to be
applied. More precise results for elliptic curves over Q can be found in [22] by Sadek,
and in [24] by Sha and Shparlinski. Given a group G of rational points, one may
consider those rational points which are x-pseudolinearly dependent of G, i.e. whose
reduction modulo p belongs to (G mod p) for all primes p of good reduction up to x.
In [24] there are bounds for the canonical height of such pseudodependent points: as
noted by the authors, some of their results would hold in greater generality as soon
as the theorems they rely upon can be extended. As an example of result, Sha and
Shparlinski proved:

T h e o r em 22 (Sha and Shparlinski [24, Theorem 5]). Let E be an elliptic curve
defined over Q of rank r � 2, and let G be a subgroup of E(Q) of positive rank s < r.
Then for any sufficiently large x there is a rational point Q ∈ E(Q) of canonical
height

ĥ(Q) � exp
( 4

s+ 2
x+O(x/ log x)

)

such that Q is x-pseudolinearly dependent of G.



114 ANTONELLA PERUCCA [16]

5.4 - Changing the setting

Rzonsowski generalized some of the results on the problem of detecting linear
dependence to abelian varieties over a finitely generated (possibly non algebraic) ex-
tension of Q, see [21, Theorem 7.2 and Proposition 7.3]. One could ask whether
further results hold in this setting. Alternatively, one could consider algebraic groups
over function fields and their reductions. Another possibility is working abstractly
with Mordell-Weil systems as done by Banaszak, Gajda, and Krasoń in [3] (they ax-
iomatized the properties of Mordell-Weil groups of abelian varieties). Some further
results of this kind have been obtained by Barańczuk and Górnisiewicz [5, 6] for the
K-theory of number fields, and for the étale and Quillen K-theory of curves.

5.5 - Comparing two groups

Let A be an algebraic group defined over a number field K, and consider two
subgroups G and G′ of A(K). We may wish to know whether G′ ⊆ G. The condition
that (G′ mod p) ⊆ (G mod p) holds for almost all primes p of K gives nothing new
with respect to Question 3 (just consider one by one group generators for G′). In
[2] Banaszak and Blinkiewicz investigated local conditions that are equivalent to the
following:

1. Suppose that for almost all primes p ofK we have

(G+G′ mod p) ⊆ ((G ∩G′) +A(K)tors mod p) .

2. Fix some integer c � 1, and suppose that for almost all primes p ofK the index

(G+G′ mod p)/(G ∩G′ mod p)

divides c.

The first condition clearly implies the second. Banaszak and Blinkiewicz showed [2,
Propositions 2.1 and 2.2] that again we do not have anything new with respect to
Question 3. Indeed, Property (1) implies the inclusion (G+G′) ⊆ (G∩G′)+A(K)tors
if and only if for Question 3 we can prove that P ∈ G+A(K)tors. Moreover, Property
(2) implies the finiteness of the group (G +G′)/(G ∩G′) if and only if for Question
3 we can prove that nP ∈ G for some non-negative integer n. A new question could
be:

Q u e s t i o n 23. If for almost all primes p of K the two groups (G mod p) and
(G′ mod p) have a non-trivial intersection, does it follow that G and G′ have a non-
trivial intersection?



[17] THE PROBLEM OF DETECTING LINEAR DEPENDENCE 115

The counterexamples in Section 3 provide a negative answer to the above ques-
tion. Nevertheless the answer could be affirmative, say, for cyclic groups of points
of the multiplicative group or an elliptic curve. We conclude by remarking that there
are several open questions in number theory concerning the reductions of algebraic
groups, but to describe them goes beyond the purpose of this note. Just to mention
one example, in a work by Hall and Perucca [9] the following result is proven (for
simplicity, we state the result for elliptic curves):

T h e o r e m 24. Let E/K be an elliptic curve defined over a number fieldK, and
suppose that the rank of E(K) is positive. Then the size of the group (E(K) mod
p) by varying p in a set of primes of K (of good reduction for E) having density 1
determines E up to K-isogeny.

A c k n o w l e d g m e n t s. The author would like to sincerely thank the referee for
their improvements to the paper.
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[6] S. BARAŃCZUK and K. GÓRNISIEWICZ, On reduction maps for the étale and Quillen
K-theory of curves and applications, J. K-Theory 2 (2008), 103–122.

[7] D. BLINKIEWICZ, Zasada lokalno-globalna dla rozmaitości semiabelowych, Ph.D.
thesis, Adam Mickiewicz University, Poznań, 2017.
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