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On derivations of rings and Banach algebras

involving anti-commutator

Abstract. In the present paper we obtain commutativity of a semiprime

ring R which admits a derivation d such that either (d(xm ◦ yn))ℓ ±
(xp ◦k yq) = 0 for all x, y ∈ R or (d(xm) ◦ d(yn))ℓ ± (xp ◦k yq) = 0
for all x, y ∈ R, where m,n, p, q, k, ℓ are fixed positive integers. Finally,

we apply the above purely ring theoretic results to Banach algebras and

obtain a noncommutative version of the Singer-Wermer theorem. In

particular, we prove that if B is a noncommutative Banach algebra which

admits a continuous linear derivation d : B → B such that either (d(xm◦
yn))ℓ ± (xp ◦k yq) ∈ rad(B) or (d(xm) ◦ d(yn))ℓ ± (xp ◦k yq) ∈ rad(B)
for all x, y ∈ B, where m,n, p, q, k, ℓ are fixed positive integers, then

d(B) ⊆ rad(B).
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1 - Introduction

In all that follows, unless stated otherwise, R will be an associative ring,
Z(R) the center of R, Q the Martindale quotient ring of R and A the Utumi
quotient ring of R. The center of A, denoted by C, is called the extended centroid
of R (we refer the reader to [4] for these objects). By a Banach algebra we shall
mean complex normed algebra B whose underlying vector space is a Banach
space (see [8]). The Jacobson radical rad(B) of B is the intersection of all
primitive ideals. If the Jacobson radical reduces to the zero element, B is called
semisimple.
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For any x, y ∈ R, the symbol [x, y] and x◦y stand for the commutator xy−yx
and anti-commutator xy + yx, respectively. Given x, y ∈ R, set x ◦0 y = x,
x◦y = x◦1y = xy+yx and inductively x◦k y = (x◦k−1y)◦y for k > 1. The ring
R is said to satisfy the Engel condition if for all x, y ∈ R there exists a positive
integer k such that [x, y]k = 0, where [x, y]k = [[x, y]k−1, y] for k > 1. Recall
that a ring R is prime if for any a, b ∈ R, aRb = {0} implies a = 0 or b = 0, and
is semiprime if for any a ∈ R, aRa = {0} implies a = 0. An additive mapping
d : R → R is said to be a derivation on R if d(xy) = d(x)y+xd(y) holds for all
x, y ∈ R. For a fixed a ∈ R, the mapping Ia : R → R given by Ia(x) = [a, x]
for all x ∈ R is a derivation which is called an inner derivation determined by
a in R. A mapping f : R → R is said to be commutativity preserving on R if
[x, y] = 0 implies that [f(x), f(y)] = 0 for all x, y ∈ R. The mapping f is called
strong commutativity preserving (scp) on R if [f(x), f(y)] = [x, y] holds for all
x, y ∈ R.

A classical problem of ring theory is to find combinations of properties
that force a ring to be commutative. Posner [27] connected commutativity
and derivations in 1957, proving that if a prime ring R admitting a nonzero
derivation d such that [d(x), x] ∈ Z(R) for all x ∈ R, must be commuta-
tive. Since then several authors have studied this kind of Engel type identi-
ties with derivations acting on ideals and Lie ideals of prime and semiprime
rings (see [6], [13], [16] for a partial bibliography). In the year 1992, Daif and
Bell [12, Theorem 3] showed that if in a semiprime ring R there exists a nonzero
ideal I of R and a derivation d : R → R such that d([x, y]) = [x, y] holds for
all x, y ∈ I , then I ⊆ Z(R). If R is a prime ring, this implies that R is
commutative. In the year 2002, Ashraf and Rehman [1, Theorem 4.1] showed
that if R is a prime ring, I a nonzero ideal of R and d a derivation on R such
that either d(x ◦ y) = x ◦ y or d(x) ◦ d(y) = x ◦ y holds for all x, y ∈ I , then
R is commutative. Very recently, this result was further extended by Argaç
and Inceboz [3, Theorem 3] who proved that if a semiprime ring R admits a
derivation d such that (d(x ◦ y))n = x ◦ y holds for all x, y ∈ R and n a fixed
positive integer, then R is commutative.

In view of the latter result due to Argaç and Inceboz, it is natural to explore
the commutativity of a ring R which satisfies the identity (d(xm ◦ yn))ℓ =
±(xp ◦k yq) for all x, y ∈ R. In this paper we investigate this identity and
obtain the commutativity of R. In fact, we also prove the commutativity of a
semiprime R, which allows us to obtain a commutativity theorem in the setting
of Banach algebras.
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2 - The Result on prime and semiprime rings

We shall use the fact that any derivation of a semiprime ring R can be
uniquely extended to a derivation of its Utumi quotient ring A (maximal right
ring of quotient), and so any derivation of R can be defined on the whole A

(Beidar et al., [4, Proposition 2.5.1]). Moreover, if R is a semiprime ring then
so is its Utumi quotient ring. The extended centroid C of a semiprime ring
R coincides with the center of its Utumi quotient ring (Chuang, [11, pp.38]).
Also, if B is the set of all the idempotents in C, one may assume that R is a B-
algebra which is orthogonal complete. For any maximal ideal P of B, PR forms
a minimal prime ideal of R, which is invariant under any nonzero derivation of
R (Chuang, [11, pp.42]). We use the theory of differential identities and the
fact that any semiprime ring R and its maximal right ring of quotient satisfy
the same differential identities (for the explanation of differential identities we
refer the reader to Beidar et al. [4], Chuang [11], Kharchenko [19], Lee [22]).

For the proof of our main results, we need the following facts, which might
be of some independent interest.

F a c t 2.1 ( [22]). If I is a two-sided ideal of R, then R, I and A satisfy the

same generalized polynomial identities with coefficient in A.

Fa c t 2.2 ( [4, Proposition 2.5.1]). Any derivation of a semiprime ring R
can be uniquely extended to a derivation of its left Utumi quotient ring A, and

so any derivation of R can be defined on the whole A.

Fa c t 2.3 ( [19]). Let R be a prime ring, d a nonzero derivation of R
and I a nonzero two-sided ideal of R. Let f(x1, . . . , xn, d(x1), . . . , d(xn)) be a

differential identity in I, that is

f(r1, . . . , rn, d(r1), . . . , d(rn)) = 0 for all r1, . . . , rn ∈ I.

Then one of the following holds:

1. Either d is an inner derivation in Q, the Martindale quotient ring of R,

in the sense that there exists b ∈ Q such that d(x) = [b, x] for all x ∈ R,

and I satisfies the generalized polynomial identity

f(r1, . . . , rn, [b, r1], . . . , [b, rn])

or

2. I satisfies the generalized polynomial identity

f(x1, . . . , xn, y1, . . . , yn).
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We begin with the following result which are crucial for developing the proof
of our main theorem. The proof of Lemma 2.1 can be seen in [5].

L emma 2.1. Let R be a ring satisfying an identity q(X) = 0, where q(X)
is the polynomial in the finite number of non-commuting indeterminates, its

coefficients being integers with highest common factor 1. If there exists no prime

p for which the ring of 2 × 2 matrices over GF (p) satisfies q(X) = 0, then R
has nil commutator ideal and the nilpotent elements of R form an ideal.

L emma 2.2. Let R be a ring and a ∈ R such that a2 = 0. Then (ax)m ◦k
(xa)n = (ax)m(xa)kn for all x ∈ R and fixed positive integers m,n, k.

P r o o f. We proceed by induction on k. For k = 1, we have (ax)m ◦(xa)n =
(ax)m(xa)n + (xa)n(ax)m. Using the given hypothesis we get (ax)m ◦ (xa)n =
(ax)m(xa)n for all x, y ∈ R. Thus the result is true for k = 1. Now for k > 1
assume that the result is true for k − 1 i.e.;

(ax)m ◦k−1 (xa)
n = (ax)m(xa)(k−1)n

for all x, y ∈ R. Now,

(ax)m ◦k (xa)
n = ((ax)m ◦k−1 (xa)

n) ◦ (xa)n

for all x, y ∈ R. Then by the induction hypothesis, we find that

(ax)m ◦k (xa)
n = (ax)m(xa)(k−1)n ◦ (xa)n = (ax)m(xa)kn

x, y ∈ R. Thus the result is true for k also. Hence the result is true for all
positive integer k. �

L emma 2.3. Let m ≥ 1, n ≥ 1, k ≥ 1 be fixed integers and let R be a

semiprime ring satisfying xm◦ky
n = 0 for all x, y ∈ R. Then R is commutative.

P r o o f. Suppose that

xm ◦k y
n = 0 for all x, y ∈ R.(2.1)

First we show that R has no nonzero nilpotent element. Let a ∈ R such that
a2 = 0. Using our hypothesis, we find that

(ax)m ◦k (xa)
n = 0, for all x ∈ R.
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By Lemma 2.2, we have (ax)m(xa)kn = 0 for all x ∈ R. Now, one can see that

(ax)m+kn+1 = {(ax)m+kna+ (ax)m(xa)kn}x

= {a(xa+ x)}m{(xa+ x)a}knx

= 0.

Therefore (ax)m+kn+1 = 0 for all x ∈ R. If aR �= 0, then aR is a nil right ideal
satisfying the identity zm+kn+1 = 0 for all z ∈ aR. Application of Lemma 1.1
of Herstein [15], yields that aR = 0 and hence we find that a = 0.

Since R is a semiprime ring satisfying (2.1), R is isomorphic to a subdirect
sum of prime rings Rα each of which as a homomorphic image of R satisfies
the hypothesis placed on R. Hence we can assume that R is a prime ring which

satisfies the identity (2.1). Now if we consider x =

(
1 0
0 0

)
, y =

(
1 1
0 0

)
,

then we find that no ring of 2 × 2 matrices over GF (2), satisfies the identity
(2.1). Hence by Lemma 2.1, R has a nil commutator ideal. But since R has no
nonzero nilpotent element, R has no nonzero nil ideal and R is commutative. �

Th e o r em 2.1. Let R be a prime ring and m,n, p, q, k, ℓ be fixed positive

integers. If R admits a derivation d such that (d(xm ◦ yn))ℓ = ±(xp ◦k y
q) for

all x, y ∈ R, then R is commutative.

P r o o f. If d = 0, then xp ◦k yq = 0 for all x, y ∈ R. By Lemma 2.3 we
see that R is commutative. Now we assume d is a nonzero derivation satisfying
(d(xm ◦ yn))ℓ = ±(xp ◦k y

q) for all x, y ∈ R which can be rewritten as

{d(xm)yn + xmd(yn) + d(yn)xm + ynd(xm)}ℓ = ±(xp ◦k y
q).

By Kharchenko [19] we divide the proof into two cases:

Case 1. If d is outer derivation, then R satisfies the polynomial identity

(xp ◦k y
q) =

((m−1∑

s=0

xszxm−1−s

)
yn + xm

( n−1∑

s=0

yswyn−1−s

)

+

( n−1∑

s=0

yswyn−1−s

)
xm + yn

(m−1∑

s=0

xszxm−1−s

))ℓ

for all x, y, z, w ∈ R. In particular, for z = w = 0, we obtain the identity
xp ◦k y

q = 0 for all x, y ∈ R. Hence R is commutative by Lemma 2.3.
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Case 2. Let d be Q-inner derivation induced by an element b ∈ Q, that is,
d(x) = [b, x] for all x ∈ R. It follows that

(
[b, xm]yn + xm[b, yn] + [b, yn]xm +

yn[b, xm]
)ℓ

= ±(xp◦k y
q) for all x, y ∈ R. By Chuang [10, Theorem 2], R and Q

satisfy the same generalized polynomial identities (GPIs), and hence we have,

([b, xm]yn + xm[b, yn] + [b, yn]xm + yn[b, xm])ℓ = ±(xp ◦k y
q) for all x, y ∈ Q.

In case the center C of Q is infinite, we have

([b, xm]yn+xm[b, yn]+[b, yn]xm+yn[b, xm])ℓ = ±(xp◦ky
q) for all x, y ∈ Q

⊗

C

C,

where C is the algebraic closure of C. Since both Q and Q
⊗

C
C are prime and

centrally closed [14, Theorem 2.5 and 3.5], we may replace R by Q or Q
⊗

C
C

according as C is finite or infinite. Thus we may assume that R is centrally
closed over C (i.e., RC = R) which is either finite or algebraically closed and
hence

([b, xm]yn + xm[b, yn] + [b, yn]xm + yn[b, xm])ℓ = ±(xp ◦k y
q) for all x, y ∈ R.

By Martindale [24, Theorem 3], RC (and so R) is a primitive ring having
nonzero socle H with C as the associated division ring. Hence by Jacobson’s
theorem [17, pp.75], R is isomorphic to a dense ring of linear transformations
of some vector space V over C and H consists of the finite rank linear transfor-
mations in R. Assume that dimCV ≥ 2, otherwise we are done.

Our aim is to show that for any v ∈ V , v and bv are linearly C-dependent.
If bv = 0, then v, bv is C-dependent. Thus we may assume that bv �= 0. If v and
bv are linearly C-independent for some v ∈ V . By the density of R there exist
x, y ∈ R such that

xv = v, xbv = v;

yv = 0, ybv = bv.

We can easily see that

0 = (([b, xm]yn +xm[b, yn] + [b, yn]xm+ yn[b, xm])ℓ ± (xp ◦k y
q))v = (−1)ℓv �= 0,

a contradiction. So we conclude that v and bv are linearly C-dependent for all
v ∈ V . Hence for each v ∈ V , bv = vαv for some αv ∈ C. Now we prove
αv is not depending on the choice of v ∈ V . Since dimCV ≥ 2 there exists
w ∈ V such that v and w are linearly independent over C. Now there exist
αv, αw, αv+w ∈ C such that

bv = vαv, bw = wαw, b(v + w) = (v + w)αv+w,



[7] derivations of rings and banach algebras 91

and hence,
vαv + wαw = b(v + w) = (v + w)αv+w.

This implies that v(αv − αv+w) + w(αv − αv+w) = 0. Since v and w are
linearly independent over C, it follows αv = αv+w = αv. Therefore there exists
α ∈ C such that bv = vα for all v ∈ V .

Now let r ∈ R, v ∈ V . Since bv = vα,

[b, r]v = (br)v − (rb)v = b(rv)− r(bv) = (rv)α− r(vα) = 0,

that is, [b,R]V = 0. Since V is a faithful irreducible R-module, [b,R] = 0, i.e.;
b ∈ Z(R), and hence d = 0, a contradiction. �

Th e o r em 2.2. Let R be a prime ring and m,n, p, q, k, ℓ be fixed positive

integers. If R admits a derivation d such that (d(xm) ◦ d(yn))ℓ = ±(xp ◦k yq)
for all x, y ∈ R, then R is commutative.

P r o o f. If d = 0, then xp ◦k yq = 0 for all x, y ∈ R. By Lemma 2.3 we
see that R is commutative. Now we assume d is a nonzero derivation satisfying
(d(xm) ◦ d(yn))ℓ = ±(xp ◦k y

q) for all x, y ∈ R which can be rewritten as

{d(xm)d(yn) + d(xm)d(yn)}ℓ = ±(xp ◦k y
q).

By Kharchenko [19] we divide the proof into two cases:

Case 1. If d is outer derivation, then R satisfies the polynomial identity

(xp ◦k y
q) =

((m−1∑

s=0

xszxm−1−s

)( n−1∑

s=0

yswyn−1−s

)

+

( n−1∑

s=0

yswyn−1−s

)(m−1∑

s=0

xszxm−1−s

))ℓ

for all x, y, z, w ∈ R. In particular, for z = w = 0, we obtain the identity
xp ◦k y

q = 0 for all x, y ∈ R. Then R is commutative by Lemma 2.3.

Case 2. Let d be Q-inner derivation induced by an element b ∈ Q, that is
d(x) = [b, x] for all x ∈ R, then the proof runs exactly parallel to that given in
the proof of the Theorem 2.1(Case 2) except the case dimCV ≥ 2. We omit the
details of the proof just to avoid repetition. Assume that dimCV ≥ 2, otherwise
we are done.

Our aim is to show that for any v ∈ V , v and bv are linearly C-dependent.
If bv = 0, then v, bv is C-dependent. Thus we may assume that bv �= 0. If v and
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bv are linearly C-independent for some v ∈ V . then we consider the following
cases:

If b2v /∈ SpanC{v, bv} then the set {v, bv, b2v} is linearly C-independent. By
the density of R there exist x, y ∈ R such that

xv = 0, xbv = bv, xb2v = b2v

yv = v, ybv = 0, yb2v = v.

We can easily see that 0 = (([b, xm][b, yn] + [b, yn][b, xm])ℓ ± (xp ◦k y
q))v =

v �= 0, a contradiction.
On the other hand if b2v ∈ SpanC{v, bv} then b2v = vα + bvβ for some

0 �= α, β ∈ C. In view of the density of R, there exist x, y ∈ R such that

xv = 0, xbv = bv;

yv = v, ybv = 0.

Hence we find that 0 = (([b, xm][b, yn]+[b, yn][b, xm])ℓ±(xp◦ky
q))v = 2ℓvαℓ �= 0,

a contradiction. So we conclude that v and bv are linearly C-dependent for all
v ∈ V . Hence for each v ∈ V , bv = vαv for some αv ∈ C. Now we prove
αv is not depending on the choice of v ∈ V . Since dimCV ≥ 2 there exists
w ∈ V such that v and w are linearly independent over C. Now there exist
αv, αw, αv+w ∈ C such that

bv = vαv, bw = wαw, b(v + w) = (v + w)αv+w,

and hence,
vαv + wαw = b(v + w) = (v + w)αv+w.

Which implies
v(αv − αv+w) + w(αv − αv+w) = 0.

Since v and w are linearly independent over C, it follows αv = αv+w = αv.
Therefore there exists α ∈ C such that bv = vα for all v ∈ V .

Now let r ∈ R, v ∈ V . Since bv = vα,

[b, r]v = (br)v − (rb)v = b(rv)− r(bv) = (rv)α − r(vα) = 0,

that is, [b,R]V = 0. Since V is a faithful irreducible R-module, [b,R] = 0, i.e.;
b ∈ Z(R), and hence d = 0, a contradiction. �

Th e o r em 2.3. Let R be a semiprime ring and m,n, p, q, k, ℓ be fixed posi-

tive integers. If R admits a derivation d such that (d(xm ◦ yn))ℓ = ±(xp ◦k y
q)

for all x, y ∈ R, then R is commutative.
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P r o o f. If d = 0, then xp ◦k yq = 0 for all x, y ∈ R. Thus we are done
by Lemma 2.3. So we assume that d is a nonzero derivation such that (d(xm ◦
yn))ℓ = ±(xp ◦k yq) for all x, y ∈ R. By Chuang [11, pp.38], Z(A) = C, the
extended centroid of R, and by Beidar et al. [4, Proposition 2.5.1], derivation
d can be uniquely extended on A, the maximal right ring of quotient of R. In
view of Lee [22], R and A satisfy the same differential identities, hence

(d(xm ◦ yn))ℓ = ±(xp ◦k y
q) for all x, y ∈ A.

Let B be the complete Boolean algebra of idempotents in C and let M be any
maximal ideal of B. Due to Chuang [11, pp.42], A is an orthogonal complete B-
algebra and MA is a prime ideal of A, which is d-invariant. Denote A = A/MA

and let d be the derivation induced by d on A, i.e., d(u) = d(u) for all u ∈ A.
Therefore d has in A the same property as d on A. In particular, A is prime and
hence by Theorem 2.1 A is commutative. This implies that, for any maximal
ideal M of B, [A,A] ⊆ MA and hence [A,A] ⊆ ∩MMA = 0, where MA runs
over all prime ideals of A. In particular, [R,R] = 0 and hence R is commutative.
�

By arguments similar to those used in the proof of the above theorem, one
can prove the following:

Th e o r em 2.4. Let R be a semiprime ring and m,n, p, q, k, ℓ be fixed posi-

tive integers. If R admits a derivation d such that (d(xm)◦d(yn))ℓ = ±(xp◦ky
q)

for all x, y ∈ R, then R is commutative.

We close this section by the following corollary.

C o r o l l a r y 2.1 ( [3, Theorem 3]). Let R be a semiprime ring and n a fixed

positive integer. If R admits a derivation d such that (d(x)y + xd(y) + d(y)x+
yd(x))n = xy + yx for all x, y ∈ R, then R is a commutative ring.

3 - The Result on prime Banach algebra

Let us introduce the background of our investigation. Singer and Wer-
mer [29] obtained a fundamental result which started investigation into the
ranges of derivations on Banach algebras. In [29] , Singer and Wermer proved
that any continuous derivation on a commutative Banach algebra has the range
in the Jacobson radical of the algebra. In their paper they conjectured that
the continuity is not necessary. Thomas [30] established this conjecture. It is
clear that the same result of Singer and Wermer does not hold in noncommu-
tative Banach algebras because of inner derivations. Hence in this context a
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very interesting question arises that how to obtain noncommutative version of
Singer-Wermer theorem. The first answer to this problem was obtained by Sin-
clair in [28], who proved that every continuous derivation of a Banach algebra
leaves primitive ideals of the algebra invariant. In [20], Kim proved that if a
noncommutative Banach algebra B admits a continuous linear Jordan deriva-
tion d such that d(x)[d(x), x]d(x) ∈ rad(B) for all x ∈ B then d(B) ⊆ rad(B).
More recently, Park [26] proved that if d is a linear continuous derivation of a
noncommutative Banach algebra B such that [[d(x), x], d(x)] ∈ rad(B) for all
x ∈ B then d(B) ⊆ rad(B). In the meanwhile many authors obtained more
information about derivations satisfying certain suitable conditions in Banach
algebra (see [31], [32] where further references can be found). Motivated by
these results, in this section, we use the above ring theoretic results and prove
that if a non commutative Banach algebra admits a continuous linear derivation
d such that (d(xm◦yn))ℓ±(xp◦ky

q) ∈ rad(B) for all x, y ∈ B and m,n, p, q, k, ℓ,
fixed positive integers, then d(B) ⊆ rad(B).

T h e o r em 3.1. Let B be a noncommutative Banach algebra and m,n, p,
q, k, ℓ be fixed positive integers. If there exists a continuous linear derivation

d : B → B such that (d(xm ◦ yn))ℓ ± (xp ◦k y
q) ∈ rad(B) for all x, y ∈ B, then

d(B) ⊆ rad(B).

P r o o f. Following the result of A. M. Sinclair [28, Theorem 2.2] that every
continuous linear derivation on a Banach algebra leaves the primitive ideals of
B invariant, for every primitive ideal P ⊆ B, we can define a linear derivation
dP : B/P → B/P , where B/P is a factor Banach algebra, by dP (x̂) = d(x)+P ,
x̂ = x+P for all x ∈ B. Since P is a primitive ideal, the factor algebra B/P is
prime and so it is semiprime. The hypothesis (d(xm◦yn))ℓ±(xp◦k y

q) ∈ rad(B)
yields that (d(xm ◦ yn))ℓ ± xp ◦k yq = 0 for all x, y ∈ B. We also see that dP
is continuous since B/P is semisimple [18]. Thus we obtain that dP (B/P ) ⊆
rad(B/P ). Again using the semisimplicity of B/P , we see that dP = 0 on
B/P . In case B/P is commutative, we can conclude that dP = 0 on B/P
as well since B/P is semisimple and we know that there are no nonzero linear
derivations on commutative semisimple Banach algebras. In both the cases,
we obtain d(B ⊆ P for any primitive ideal P . Since the intersection of all
primitive ideals is the Jacobson radical rad(B), it follows that d(B) ⊆ rad(B).
This completes the proof of the theorem. �

By arguments similar to those used in the proof of Theorem 3.1 (use Theorem
2.4 instead of Theorem 2.3), we get the following theorem. We omit the details
of the proof just to avoid the repetition.
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Th e o r em 3.2. Let B be a noncommutative Banach algebra and m,n, p,
q, k, ℓ be fixed positive integers. If there exists a continuous linear derivation

d : B → B such that (d(xm) ◦ d(yn))ℓ ± (xp ◦k y
q) ∈ rad(B) for all x, y ∈ B,

then d(B) ⊆ rad(B).

A c k n ow l e d gm e n t s. The authors are highly indebted to the referee for
his/her valuable comments which have improved the paper immensely.
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