
Riv. Mat. Univ. Parma, Vol. 10 (2019), 63–84

Milan Paštéka and Robert Tichy

Measurable sequences

Abstract. The paper deals with the distribution functions of sequences
with respect to asymptotic density and measure density. Furthermore
also polyadicly continuous sequences and their extension to random vari-
ables are studied.
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1 - Introduction

In the first part we study sequences having an asymptotic distribution func-
tion in the sense of Schoenberg [Sch]. The connection between independence
and statistical independence is established in case of continuous distribution
functions.

Later we develop relations between distribution functions of sequences and
distribution functions of random variables. We study statistical independence
and independence in the sense of probability theory. In the last part we transfer
some probabilistic limit laws to certain types of deterministic sequences. This
makes heavily use of methods developed in [CQ].

The ”general” notion of uniform distribution was introduced by Hermann
Weyl (1916) in his famous paper [WEY]: a sequence {v(n)}, v(n) ∈ [0, 1) is
uniformly distributed if and only if for every x ∈ [0, 1)

lim
N→∞

1

N
|{n ≤ N ; v(n) < x}| = x,

where |A| denotes he cardinality of the set A. This can be equivalently for-
mulated using the notion of asymptotic density. Let N be the set of positive
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integers. We say that a set A ⊂ N has an asymptotic density if and only if the
limit

lim
N→∞

|A ∩ [1, N)|

N
:= d(A)

exists, and in this case the value d(A) is called the asymptotic density of A. Let
D denote the system of all subsets of N having an asymptotic density. Then a
sequence {v(n)}, v(n) ∈ [0, 1) is uniformly distributed if and only if for every
x ∈ [0, 1) the set {n ∈ N; v(n) < x} belongs to D and d({n ∈ N; v(n) < x}) = x.
Schoenberg [Sch] generalized this notion as follows: we say that a sequence
{v(n)}, v(n) ∈ [0, 1) has an asymptotic distribution function if and only if for
each real number x the set {n ∈ N; v(n) < x} belongs to D. In this case the
function F (x) = d({n ∈ N; v(n) < x}) is called the asymptotic distribution
function of the sequence {v(n)}.

Our aim is to study distribution functions of sequences. The following state-
ment is useful in this context.

P r o p o s i t i o n 1. If F is a non decreasing function defined on the real line
then for each real numbers x1, x2 - the points of continuity of F -we have that
for every ε > 0 there exist two continuous function g, g1 such that

g ≤ X[x1,x2] ≤ g1

and ∫ ∞

−∞
(g1(x)− g(x)) < ε,

X[x1,x2] denoting the indicator function of the interval [x1, x2].

The proof follows from a standard procedure, see [KN] page 54.

Another important notion of uniform distribution was introduce by Niven
[NIV]. A sequence of positive integers k = {kn} is called uniformly distributed in
Z if and only for each m ∈ N, r ∈ Z we have that {n ∈ N; kn ≡ r mod m} ∈ D

and d({n ∈ N; kn ≡ r mod m}) =
1

m
. In sections 9 and 10 we will use this

concept to prove structural properties concerning measurable sequences.

2 - Mean value, dispersion and Buck measurability

Let v = {v(n)} be a sequence of real numbers. Set

EN (v) =
1

N

N∑

n=1

v(n)
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for N = 1, 2, 3, . . . and

E(v) = lim inf
N→∞

EN (v), E(v) = lim sup
N→∞

EN (v).

De f i n i t i o n 1. If E(v) = E(v) := E(v) we say that v has a mean value
and the number E(v) will be called the mean value of v.

Clearly we have

P r o p o s i t i o n 2. If sequences v,w have mean values then for all numbers
a, b the sequence av + bw has a mean value and

E(av + bw) = aE(v) + bE(w).

P r o p o s i t i o n 3. If v is bounded sequence with elements in the interval
[a, b] and having an asymptotic distribution function F, then v has a mean value
and

E(v) =

∫ b

a
xdF (x).

De f i n i t i o n 2. We say that a sequence v has a dispersion if v has a mean
value and the sequence (v − E(v))2 has a mean value; in this case the number

D2(v) = E((v − E(v))2)

is called the dispersion of v.

If a bounded sequence v has a dispersion then

D2(v) = lim
N→∞

1

N

N∑

n=1

(v(n)− E(v))2.

In the following we introduce Buck measurability, weak measurability and
weak distribution functions.

R. C. Buck [BUC] constructed a measure density via covering of sets by
arithmetic progressions. Denote

r + (m) = {r + jm; j = 0, 1, 2, . . . }

for r = 0, 1, 2, . . . and m ∈ N. Then r+(m) belongs to D and d(r+(m)) =
1

m
.

If S ⊂ N then the value

µ∗(S) = inf
{ k∑

j=1

1

mk
;S ⊂

k⋃

j=1

rj + (mj)
}
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is called Buck’s measure density of the set S.
The sets from the system

Dµ = {S ⊂ N;µ∗(S) + µ∗(N \ S) = 1}

are called Buck measurable.
The following trivial fact will be useful for us, (see [PAS3], page 39) :

P r o p o s i t i o n 4. a) Dµ is an algebra of sets, the restriction µ = µ∗|Dµ is
a finitely additive probability measure on Dµ.

b) Dµ ⊂ D and d(S) = µ(S) for every S ∈ Dµ.
c) A set S ⊂ N belongs to Dµ if and only if for each ε > 0 sets S1, S2 ∈ Dµ

exist such that S1 ⊂ S ⊂ S2 and µ(S2)− µ(S1) < ε.

We say that a sequence of real numbers {v(n)} is Buck measurable if and
only if for every real number x the set {n ∈ N; v(n) < x} belongs to Dµ. In this
case the function

F (x) = µ({n ∈ N; v(n) < x})

is called Buck’s distribution function (for short B-d.f.) of {v(n)}.
A Buck measurable sequence is called Buck uniformly distributed (for short

B- u.d.) if and only if its Buck distribution function F (x) satisfies

(1) F (x) = 0, for x < 0, F (x) = x, for x ∈ [0, 1], F (x) = 1, for x > 1.

Proposition 4 implies

P r o p o s i t i o n 5. Each Buck measurable sequence of real numbers has an
asymptotic distribution function which coincides with its Buck distribution func-
tion.

De f i n i t i o n 3. A real valued sequence {v(n)} is called weakly Buck mea-
surable if and only if the sets {n ∈ N; v(n) < x} are Buck measurable excluding
at most a countable set of real numbers x. In this case the function

F (x) = {n ∈ N; v(n) < x}

defined on the real line excluding at most a countable set is called a weak Buck
distribution function of {v(n)}.

The standard procedure yields a variant of Chebyshev’s inequality:

P r o p o s i t i o n 6. If a bounded sequence v has weak distribution function
then for each ε > 0 we have

d({n ∈ N; |v(n)− E(v)| > ε}) ≤
D2(v)

ε2
.
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Using these concepts we obtain the following

P r o p o s i t i o n 7. If v is a bounded sequence having a weak distribution
function and D2(v) = 0 then there exists a set A ∈ D such that d(A) = 1 and
limA v(n) = E(v), were the limit is taken along the set A.

De f i n i t i o n 4. Let v,w be sequences having weak asymptotic distribution
functions. Suppose moreover that the sequence vw has a mean value. The value

ρ(v,w) =
|E(vw) − E(v)E(w)|

D(v)D(w)

will be called the correlation coefficient of the sequences v,w.

D e f i n i t i o n 5. We say that the sequences v,w are correlated if and only
if such values α, β exist that limAw(n)−αv(n)− β = 0 for some set A from D
such that d(A) = 1, where the limit is taken along the set A.

In [P-T] the following result is proved

P r o p o s i t i o n 8. The sequences v, w are correlated if and only if vw has
a mean value and ρ(v,w) = 1. In this case for α, β from Definition 5 we have

α =
E(vw) − E(v)E(w)

D2(v)
, β = E(w) − αE(v).

This has the following implication:

C o r o l l a r y 1. If v,w are sequences uniformly distributed modulo 1, then

they are correlated if and only if E(vw) =
1

3
or E(vw) =

1

6
.

3 - Independent sequences

In the book [Ra] the following notion is defined :

D e f i n i t i o n 6. Two bounded real valued sequences v,w are called statis-
tically independent if and only if for every functions g, g1, that are continuous
on a closed interval containing the elements of both sequences

lim
N→∞

EN (g(v))EN (g1(w)) − EN (g(v)g1(w)) = 0.

Properties of statistical independent sequences are studied in various papers.
For a survey we refer to the monograph [SP].
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D e f i n i t i o n 7. Two sets S, S1 ∈ D are called independent if and only if S∩
S1 ∈ D and d(S ∩S1) = d(S)d(S1). Bounded sequences v,w having asymptotic
distribution functions are called independent if and only if for arbitrary intervals
I, I1 the sets {n ∈ N; v(n) ∈ I} and {n ∈ N;w(n) ∈ I1} are independent.

We shall prove

Th e o r em 1. Let v,w be bounded sequences having continuous asymptotic
distribution functions. Then these sequences are independent if and only if they
are statistically independent.

We start with the following

P r o p o s i t i o n 9. Let vk, wk, (k ∈ N) be two systems of sequences of el-
ements from a certain closed interval [a, b]. Suppose that for each k ∈ N the
sequences vk, wk are statistically independent. If vk converges uniformly to v
and wk converges uniformly to w then the sequences v,w are statistically inde-
pendent.

P r o o f. Let g, g1 be continuous functions defined on a closed interval con-
taining the elements of both sequences. Then these functions are uniformly con-
tinuous. Thus g(vk) converges uniformly to g(v), g1(wk) converges uniformly to
g(w) and g(vk)g1(wk) converges uniformly to g(v)g1(w). Hence for given ε > 0
there exists k with

|EN (g(vk))− EN (g(v))| < ε, |EN (g(wk))− EN (g(w))| < ε

and

|EN (g(vk)g1(wk))− EN (g(v)g1(w))| < ε.

Moreover there exists N0 such that for N ≥ N0 we have

|EN (g(vk))EN (g(wk))− EN (g(vk)g1(wk))| < ε.

From the first inequalities we derive

|EN (g(vk))EN (g1(wk))− EN (g(v))EN (g1(w))| < 2Mε,

where M is an upper bound of |v|, |w|. This yields for N ≥ N0

|EN (g(v)g1(w)) −EN (g(v))EN (g1(w))| < 2Mε+ ε.

�
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De f i n i t i o n 8. If S1, . . . , Sk are disjoint sets belonging toD and c1, . . . ck ∈
R then the sequence s defined by

s(n) =

k∑

j=1

cjXSj
(n), n ∈ N

is called a simple sequence.

It is easy to check :

P r o p o s i t i o n 10. If s is a simple sequence then s has a mean value and

E(s) =

k∑

j=1

cjd(Sj).

This leads to the following consequence:

P r o p o s i t i o n 11. Let s =
∑k

j=1 cjXSj
, r =

∑ℓ
j=1 rjXRj

be such simple
sequences that the sets Sj, Rk, are independent for j = 1, . . . , k, k = 1, . . . , ℓ.
Then they are statistically independent.

P r o p o s i t i o n 12. If v,w are bounded independent sequences then they are
statistically independent.

P r o o f. Let the values of v,w be contained in the interval [a, b]. Consider
for k ∈ N the partition of [a, b] into disjoint subintervals Ij, j = 1, . . . ,m such

that |Ij| <
1

k
, j = 1, . . . ,m. Then the sets

Sj = {n ∈ N; v(n) ∈ Ij}, Ri = {n ∈ N;w(n) ∈ Ii}, 1 ≤ i, j ≤ m

are independent. Thus the simple sequences

sk =

m∑

j=1

cjXSj
, rk =

m∑

j=1

cjXRj
, cj ∈ Ij, j = 1, . . . ,m

are statistically independent. Since |sk(n)− v(n)| ≤
1

k
and |rk(n)−w(n)| ≤

1

k
for n ∈ N we obtain that sk converges uniformly to v and rk converges uniformly
to w. Thus due to Proposition 9 v and w are statistically independent. �

P r o o f o f t h e s e c o n d imp l i c a t i o n o f Th e o r em 1. Consider sta-
tistically independent bounded sequences v,w having continuous asymptotic
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distribution functions F,F1 respectively. Let I1 = [x1, x2], I2 = [y1, y2]. Since
F,F1, are continuous, Proposition 1 guarantees that for ε > 0 there exist posi-
tive continuous functions f, f1, g, g1 satisfying

(2) f ≤ XI1 ≤ f1, g ≤ XI2 ≤ g1

and

(3)

∫ b

a
(f1(x)− f(x))dF (x) < ε,

∫ b

a
(g1(x)− g(x))dF1(x) < ε.

From (2) we derive

EN (f(v)g(w)) ≤ EN (XI1(v)XI2(w)) ≤ EN (f1(v)g1(w)),

moreover

EN (f(v))EN (g(w)) ≤ EN (XI1(v))EN (XI2(w)) ≤ EN (f1(v))EN (g1(w)).

If N → ∞ we obtain for E = E(XI1(v)XI2(w)) and E = E(XI1(v)XI2(w)) the
inequalities

∫ b

a
f(x)dF (x)

∫ a

b
g(x)dF1(x) ≤ E ≤

∫ b

a
f1(x)dF (x)

∫ a

b
g1(x)dF1(x)

and
∫ b

a
f(x)dF (x)

∫ b

a
g(x)dF1(x) ≤ E ≤

∫ b

a
f1(x)dF (x)

∫ b

a
g1(x)dF1(x).

Set S1 = {n ∈ N; v(n) ∈ I1}, S2 = {n ∈ N;w(n) ∈ I2}. Then

lim
N→∞

EN (XI1(v))EN (XI2(w)) = d(S1)d(S2).

This yields
|E − d(S1)d(S2)| ≤ Hε, |E − d(S1)d(S2)| ≤ Hε,

whereH is suitable constant. Since ε > is arbitrary we get E = E = d(S1)d(S2).
If we consider that E = E = E = d(S1 ∩ S2) the assertion follows. �

An immediate consequence of the definition is the following:

P r o p o s i t i o n 13. Let v,w be bounded sequences having continuous asymp-
totic distributions F,F1, respectively. Suppose that these sequences are inde-
pendent. Then for any intervals I1 = [x1, x2], I2 = [y1, y2] the set S = {n ∈
N; (v(n), w(n)) ∈ I1 × I2} belongs to D and

d(S) = (F (x2)− F (x1))(F1(y1)− F1(y2)).
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Using the above notation the standard method yields:

P r o p o s i t i o n 14. Let A be a Riemann Stjeltjes measurable set with respect
product measure F × F1 then the set R = {n ∈ N; (v(n), w(n)) ∈ A} belongs to
D and

d(R) =

∫ ∫

R
dF (t1)dF1(t2).

Furthermore the following theorem holds (with the above notation).

T h e o r em 2. The sequence v+w has an asymptotic distribution function
F2 given by

F2(x) =

∫ ∫

{(t1,t2);t1+t2≤x}
dF (t1)dF (t2).

This leads after some calculation to:

C o r o l l a r y 2. If v,w are two independent uniformly distributed sequences
then the sequence v + w has the distribution function G where G(x) = 0, x ≤

0, G(x) =
x2

2
, x ∈ [0, 1], G(x) = 2x−

x2

2
− 1, x ∈ [1, 2], G(x) = 1, x > 2.

In following the more general notion of independence will be useful:

D e f i n i t i o n 9. If v1, . . . , vk are bounded sequences having asymptotic
distribution functions then they are called independent if and only if for all
intervals I1, . . . , Ik the set S = {n ∈ N; vj(n) ∈ Ij , j = 1, . . . , k} belongs to D
and

d(S) =

k∏

j=1

d({n ∈ N; vj(n) ∈ Ij}).

These sequences are called statistically independent if and only if

lim
N→∞

EN (g1(v1) . . . gk(vk))− EN (g1(v1)) . . . EN (gk(vk)) = 0

for any functions g1, . . . , gk continuous on closed intervals containing all ele-
ments of the given sequences.

T h e o r em 3. Let v1, . . . , vk be bounded sequences having continuous asymp-
totic distribution functions. Then they are independent if and only if they are
statistically independent.

P r o p o s i t i o n 15. Let v1, v2, v3 be bounded sequences having asymptotic
distribution functions. If these sequences are independent then v1 + v2, v3 are
independent, too.
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From this we derive as above:

T h e o r em 4. If v1, . . . , vk are independent bounded sequences with con-
tinuous distribution functions, having the same mean value E and the same
dispersion D2. Then

d
({

n ∈ N;
∣∣∣v1 + · · · + vk

k
− E

∣∣∣ ≥ ε
})

≤
D2

nε2
.

4 - Polyadicly continuous sequences

Denote by Ω the compact metric ring of polyadic integers, (see [N], [N1],
[PAS5], which is the completion of N with respect to the polyadic metric

(4) d(a, b) =

∞∑

n=1

ψn(a− b)

2n
,

where ψn(x) = 0 if n divides x and ψn(x) = 1 otherwise. For sequences {v(n)}
we shall use two synonymous expressions: sequences or arithmetic functions. A
sequence {v(n)} is called polyadicly continuous (for short: p-continuous) if and
only if for each ε > 0 there is m ∈ N such that

∀a, b ∈ N; a ≡ b (mod m) ⇒ |v(a) − v(b)| < ε.

In [PAS2] it is proved:

P r o p o s i t i o n 16. Let {v(n)} be a p-continuous sequence of elements of
[0, 1]. Suppose that F is a continuous function defined on [0, 1]. Then {v(n)} is
Buck measurable with B-d.f. F if and only if

lim
N→∞

1

N

N∑

n=1

h(v(n)) =

∫ 1

0
h(x)dF (x)

for each continuous real valued function h defined on [0, 1].

This implies the following

P r o p o s i t i o n 17. If a p-continuous sequence of elements in [0, 1] has a
continuous asymptotic distribution function then it is Buck measurable and its
B-d.f. coincides with its asymptotic distribution function.

The next result is due to P. Erdős [Er], see also [PAS3], p.32. In the following
we use the notation

A(v(n), I) =| {n ∈ N; v(n) ∈ I} |,

for sequences v(n) ∈ [0, 1] and intervals I ⊂ [0, 1].
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Th e o r em 5. Suppose that f is a non-negative additive arithmetic function
such that for every prime p we have f(p) = f(pk), k = 1, 2, 3, . . . , and for
distinct primes p1, p2 we have f(p1) �= f(p2). Assume that the infinite series
∑

p

f(p)

p
(running over the primes) converges. Then for every interval I, there

holds A({f(n)}, I) ∈ D. Moreover, in this case, the function

g(x) = d(A({f(n)}, [−∞, x))

is continuous on the real line.

Co r o l l a r y 3. Let f be a non-negative additive arithmetic function such
that for every prime p we have f(p) = f(pk), k = 1, 2, 3, . . . , for different primes
f(p1) �= f(p2) and the series

∑
p f(p) converges. Then the sequence {f(n)} is

Buck measurable with continuous Buck distribution function.

P r o o f. Let N ∈ N. If n1 ≡ n2 (mod N !) then n1, n2 contain the same
primes smaller than N in canonical decomposition and so in this case

|f(n1)− f(n2)| ≤ 2
∑

p>N

f(p).

Thus the convergence of
∑

p f(p) provides that {f(n)} is a p-continuous

sequence. This condition yields also the convergence of
∑

p

f(p)

p
, and the as-

sertion follows. �

It is easy to check that each p-continuous sequence of real numbers is
uniformly continuous with respect to the polyadic metric d, and so each p-
continuous sequence of real numbers {v(n)} can be extended in the natural
way to a real valued continuous function ṽ defined on Ω such that

ṽ(α) = lim
j→∞

v(nj),

where {nj} is a sequence of positive integers such that nj → α for j → ∞
with respect the polyadic metric. The compact ring Ω is equipped with Haar
probability measure P and so the function ṽ can be considered as random
variable on the probability space (Ω, P ). As usually h is a random variable on
Ω and we denote E(h) =

∫
hdP , the mean value of h.

Let m ∈ N and s = 0, 1, . . . m− 1. Put

s+mΩ = {s +mα;α ∈ Ω}.
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The ring Ω can be represented as disjoint union

Ω =

m−1⋃

s=0

s+mΩ.

(see [N], [N1]). Thus for the Haar probability measure P we have

(5) P (s +mΩ) =
1

m

for m ∈ N, s = 0, . . . m− 1.
In [PAS4] it is proven that

(6) µ∗(S) = P (cl(S))

for each S ⊂ N, where cl(S) denote the topological closure of S in Ω.

E x amp l e 1. Let {Qk} be an increasing sequence of integers such that
Q0 = 1 and Qk divides Qk+1, k = 1, 2, 3, . . . . Each positive integer n can be
uniquely represented in the form

n = a0 + a1Q1 + ...+ akQk,

where aj <
Qj+1

Qj
, j = 1, . . . , k. To this n we associate an element γ(n) in the

unit interval of the form

γ(n) =
a0
Q1

+ · · · +
ak

Qk+1
.

The sequence {γ(n)} is known as van der Corput sequence in base {Qk} and
in [PAS2] it is proved that it is Buck uniformly distributed and p-continuous.

The following characterization allows us to apply results of probability the-
ory to the distribution of p-continuous sequences:

T h e o r em 6. Let {v(n)} be a p-continuous sequence and F a continuous
real valued function defined on the real line. Then the following the statements
are equivalent:

(i) F is the distribution function of the random variable ṽ.

(ii) {v(n)} is a Buck measurable sequence and F is its B-d.f. .

(iii) For each real number x we have

µ∗({n ∈ N; v(n) < x}) = F (x).
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P r o o f. (i) ⇒ (ii). The continuity of F yields

(7) P (ṽ < x) = F (x) = P (ṽ ≤ x)

for each real number, x. From the inclusion

{n ∈ N; v(n) < x} ⊂ {α ∈ Ω; ṽ(α) ≤ x}

we obtain

cl ({n ∈ N; v(n) < x}) ⊂ {α ∈ Ω; ṽ(α) ≤ x}.

Furthermore (7) yields

µ∗({n ∈ N; v(n) < x}) ≤ F (x)

for every real number x. On the other hand

N \ {n ∈ N; v(n) < x} = {n ∈ N; v(n) ≥ x},

therefore

cl (N \ {n ∈ N; v(n) < x}) ⊂ {α ∈ Ω; ṽ(α) ≥ x}.

Hence

µ∗(N \ {n ∈ N; v(n) < x}) ≤ 1− F (x),

and so the set {n ∈ N; v(n) < x} is Buck measurable and its measure density
is F (x).

The implication (ii) ⇒ (iii) is trivial.

(iii) ⇒ (i).

Clearly

{n ∈ N; v(n) < x} ⊂ {α ∈ Ω; ṽ(α) ≤ x}),

and so F (x) ≤ P (ṽ ≤ x). On the other hand

{α ∈ Ω; ṽ(α) < x}) ⊂ cl({n ∈ N; v(n) ≤ x})

for ε > 0. This yields F (x) ≤ P (ṽ ≤ x) ≤ F (x + ε) for ε > 0. For ε → 0+ we
obtain the assertion from the continuity of F . �
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5 - Independence and measurability

From our definitions in previous sections we immediately derive:

P r o p o s i t i o n 18. The Buck measurable sequences {v1(n)}, {v2(n)}, . . . ,
{vr(n)} are independent if and only if for every x1, . . . , xr ∈ R we have

µ
( r⋂

j=1

{n ∈ N; vj(n) < xj}
)
=

r∏

j=1

µ({n ∈ N; vj(n) < xj}).

Ex amp l e 2. We come back to Example 1. Consider the sequences {Q
(j)
k }

given such that Q
(j)
0 = 1, j = 1, . . . , r and Q

(j)
k |Q

(j)
k+1 for j = 1, . . . , r and k =

0, 1, 2 . . . . Let Q
(j)
k , Q

(j1)
k be relatively prime for j �= j1. Denote by {γj(n)} the

van der Corput sequence with base Q
(j)
k for j = 1, . . . , r. Then these sequences

are independent (see [IPT]).

T h e o r em 7. Let {v1(n)}, {v2(n)}, . . . , {vk(n)} be independent Buck mea-
surable p-continuous sequences with continuous Buck distribution functions
Fj , j = 1 . . . , k. Then the random variables ṽ1, . . . , ṽk are independent.

P r o o f. For x1, . . . xk ∈ R we have

{α ∈ Ω; ṽ1(α) < x1, . . . , ṽk(α) < xk}

⊂ cl({n ∈ N; v1(n) ≤ x1, . . . , vk(n) ≤ xk}).

Thus P (ṽ1 < x1, . . . , ṽk < xk) ≤ F1(x) . . . Fk(xk), and so from the above theo-
rem we get P (ṽ1 < x1, . . . , ṽk <k) ≤ P (ṽ1 < x1) . . . P (ṽk < xk).

On the other hand we have

P (ṽ1 ≤ x1) . . . P (ṽk ≤ xk)

= µ({n ∈ N; v1(n) ≤ x}) . . . µ({n ∈ N; vk(n) ≤ xk})

= P (cl({n ∈ N; v1(n) ≤ x1, . . . , vk(n) ≤ xk}) ≤ P (ṽ1 ≤ x1, . . . , ṽk ≤ xk).

�

Let F1, ..., Fk be non-decreasing functions defined on R, (k is a fixed positive
integer). A set B ⊂ R

k is called Jordan Stieltjes measurable with respect to the
functions F1, ..., Fk if and only the Riemann Stieltjes integral

∫ ∫
...

∫
XBdF1...dFk

exists; XB denoting the indicator function of B.
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Th e o r em 8. Let {v1(n)}, ..., {vk(n)} be independent Buck measurable p-
continuous sequences with continuous Buck distribution functions F1, ..., Fk.
Suppose that a set B ⊂ R

k is Jordan Stieltjes measurable with respect to the
functions F1, ..., Fk. Then the set {n ∈ N; (v1(n), ..., vk(n)) ∈ B} is Buck mea-
surable and its Buck measure density is

(8)

∫ ∫
...

∫
XBdF1...dFk .

P r o o f. If B = [a1, b1]×...×[ak, bk] is a cylinder set then (8) follows directly
from independence of {v1(n)}, ..., {vk(n)} and Theorem 6. Proposition 4 then
implies the assertion. �

6 - Integral and mean value

Let h : Ω → (−∞,∞) be a continuous function. Since Ω is a compact space,
it is uniformly continuous. Consider m ∈ N. To the function h we can associate
a periodic function hm with period m in the following way:

α ∈ s+mΩ ⇐⇒ hm(α) = h(s).

Clearly,

(9)

∫
hmdP =

1

m

m−1∑

s=0

h(s).

Clearly limN→∞ d(N !, 0) = 0, and so uniform continuity of h implies that hN !

converges uniformly to h. From (9) we obtain

(10)

∫
hdP = lim

N→∞

1

N !

N !−1∑

s=0

h(s).

The function h restricted on N is p-continuous. Thus there exists the limit

limm→∞
1

m

m−1∑

s=0

h(s). From (10) we conclude

(11)

∫
hdP = lim

m→∞

1

m

m−1∑

s=0

h(s).
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R ema r k 1. If the random variable ṽ has a continuous distribution function
F then ∫

ṽdP =

∫ ∞

−∞
xdF (x) = E(v).

The central limit theorem immediately yields:

P r o p o s i t i o n 19. Let {vk(n)}, k = 1, 2, 3, . . .be a sequence of p-continuous
sequences such that for every k = 1, 2, 3, . . . the sequences {vj(n)}, j = 1, . . . , k
are independent and have the same continuous Buck distribution function. Then
for every x ∈ R we have

lim
k→∞

µ
({

n ∈ N;
v1(n) + · · ·+ vk(n)− kE

√
kD

≤ x
})

=
1

√
2π

∫ x

−∞
e

−t2

2 dt.

We conclude this section with the following metric result:

T h e o r em 9. Let vk, k = 1, 2, 3, . . .be a system of independent p-continuous
uniformly distributed sequences. Then the sequence {ṽn(α)} is uniformly dis-
tributed for almost all α ∈ Ω.

P r o o f. Denote

SN (h, α) =
1

N

N∑

n=1

e2πihṽn(α)

for h ∈ Z \ {0} and α ∈ Ω. Put

Ah = {α ∈ Ω; lim
N→∞

SN (h, α) = 0}

for h �= 0. For every n ∈ N we have E(e2πihṽn) = 0. Therefore the strong low of
large numbers implies that P (Ah) = 1. Thus P (∩h �=0Ah) = 1 and the assertion
follows. �

7 - Weak Buck measurability

De f i n i t i o n 10. Let v = {v(n)} be a real valued sequence. We say that v
is weakly polyadicly continuous if and only if for every ε > 0, δ > 0 there exists
a set A ∈ Dµ with µ(A) < δ such that

n1 ≡ n2 (mod m) ⇒ |v(n1)− v(n2)| < ε

for all n1, n2 ∈ N \A and a suitable m ∈ N.
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Our aim is to prove the following equivalence :

T h e o r em 10. A bounded sequence of real numbers is weakly Buck mea-
surable if and only if it is weakly polyadicly continuous.

We start by the proof of the first implication. We recall the following notion:

D e f i n i t i o n 11. A real valued sequence v is called almost polyadicly con-
tinuous if and only if for each δ > 0 there exists a set A ∈ Dµ with µ(A) < δ
such that v is polyadicly continuous on the set N \A.

Directly from the definition we get

P r o p o s i t i o n 20. A set S ⊂ N is Buck measurable if and only if its
indicator function XS is almost polyadicly continuous.

P r o p o s i t i o n 21. If v1, v2 are two almost polyadicly continuous sequences
and c1, c2 are real numbers then the sequence c1v1 + c2v2 is almost polyadicly
continuous.

P r o p o s i t i o n 22. If v is a real valued sequence such that for each ε > 0
there exists an almost polyadicly sequence v0 such that |v(n) − v0(n)| < ε for
n ∈ N then v is weakly polyadicly continuous.

P r o p o s i t i o n 23. Each bounded weakly Buck measurable sequence is
weakly polyadicly continuous.

P r o o f. Let v be a weakly Buck measurable sequence of elements in the
interval [a, b], a < b. Consider ε > 0. Then there exists a partition x0, . . . , xk of
[a, b] such that the sets

Si = {n ∈ N; v(n) ∈ [xi, xi+1)}, i = 0, . . . , k − 2

and
Sk−1 = {n ∈ N; v(n) ∈ [xk−1, b]}

are Buck measurable and xi+1 − xi < ε. Then the sequence

v0(n) =

k−1∑

i=0

xiXSi
(n), n ∈ N

is almost polyadicly continuous and |v0(n) − v(n)| < ε. The assertion follows
from Proposition 22. �

Now we prove the second implication.
If v = {v(n)} is a real valued sequence and k = {kn} is a sequence of positive

integers then we shall denote v(k) = {v(kn)}.
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P r o p o s i t i o n 24. A set S ⊂ N is Buck measurable if and only if for each
sequence of positive integers k the sequence XS(k) has a mean value and in this
case

µ(S) = E(XS(k)).

This proposition is an easy reformulation of Theorem 7 in [PAS3] page 51
or Theorem 50 in [PAS5] page 113.

P r o p o s i t i o n 25. If v is a bounded weakly polyadicly continuous sequence
then it has a mean value and for each sequence of positive integers k which is
uniformly distributed in Z we have

E(v(k)) = E(v).

P r o o f. Consider δ > 0, ε > 0. Let A,m be as in Definition 10. Suppose
that r1, . . . , rs is the maximal finite sequence of elements of N \ A incongruent
modulo m and rs+1, . . . , rm its completion with respect to a complete residue
system modulo m. Define the periodic sequence vm(n) = v(rj) if and only if
n ≡ rj (mod m) for j = 1, . . . ,m and n ∈ N. Then for each n ∈ N \A we have

(12) |vm(n)− v(n)| < ε.

For N = 1, 2, 3, . . . we obtain

EN (vm(k)) − EN (v(k)) =
1

N

N∑

n=1

(vm(kn)− v(kn))

=
1

N

∑

n≤N,kn∈A

(vm(kn)− v(kn)) +
1

N

∑

n≤N,kn �∈A

(vm(kn)− v(kn)).

And so from (12) we device

|EN (vm(k))− EN (v(k))| < 2HEN (XA(k)) + ε

where H is upper bound of {|v(n)|}. If k is uniformly distributed in Z we get
for N → ∞

(13) |E(vm)− E(v(k))| < 2Hδ + ε

and

(14) |E(vm)− E(v(k))| < 2Hδ + ε.
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Therefore
E(v(k)) − E(v(k)) < 4Hδ + 2ε.

Since δ, ε are arbitrary we have E(v(k)) = E(v(k)) = E(v(k)). If in the inequal-
ities (13) and (14) we substitute the sequence {n} instead of k we conclude
E(v) = E(v(k)). �

P r o p o s i t i o n 26. If v is a weakly polyadicly continuous sequence of ele-
ments in [a, b] and f is a continuous real function defined on this interval then
the sequence f(v) is weakly polyadicly continuous, too.

P r o o f. The assertion follows immediately from the fact that a continuous
function on a compact interval is uniformly continuous. �

P r o p o s i t i o n 27. Each bounded weakly polyadic continuous real valued
sequence is weakly Buck measurable.

P r o o f. Let v be a weakly polyadic continuous real valued sequence of
elements in [a, b]. Then for every continuous function f defined on [a, b] the
sequence f(v) has a mean value and for every sequence of positive integers k
uniformly distributed in Z we have

E(f(v)) = E(f(v(k)).

We define a positive linear functional

Φ(f) = E(f(v))

on the linear space of all continuous real functions defined on [a, b] such that
Φ(1) = 1.

Thus Riesz representation theorem provides that a non decreasing function
F exists such F (a) = 0, F (b) = 1 and

(15) E(f(v(k)) = Φ(f) =

∫ b

a
f(x)dF (x)

holds for each sequence k uniformly distributed in Z. If the function F is con-
tinuous in x0 then by Proposition 1 we can construct for every ε > 0 two
continuous functions f1, f2 defined on [a, b] satistying

∫ b

a
(f2(x)− f1(x))dF (x) < ε
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and
f1 ≤ X[0,x0) ≤ f2.

Hence for each sequence k uniformly distributed in Z we have

E(X[0,x0)(v(k))) = F (x0).

Proposition 24 implies that the set {n ∈ N; v(n) < x0} is Buck measurable.
Since every non-decreasing function has at most a countable set of discontinu-
ities, the proof is complete. �

Let Bµ be the set of all bounded weakly measurable sequences. Theorem 3
implies

P r o p o s i t i o n 28. Define the norm

||v|| = sup{|v(n)|;n ∈ N}

for v ∈ Bµ. Then (Bµ,+, ·, || · ||) is a Banach algebra.

8 - Statistical independence

If v = {v(n)} is a sequence and g is a function defined on the set containing
the elements of v then we denote by g(v) the sequence {g(v(n))}. The following
theorem relates p-continuous independent sequences to the concept of uniform
distribution in Z.

The o r em 11. Let {v1(n)}, . . . , {vk(n)} be p-continuous independent se-
quences. Then for arbitrary functions g1, . . . , gk continuous on the real line we
have

E
( k∏

j=1

gj(vj(k))
)
=

k∏

j=1

E
(
gj(vj(k))

)

for each sequence k = {kn} which is uniformly distributed in Z.

P r o o f. If {v(n)} is a p-continuous function, then it is bounded. Every
continuous function g defined on the real line is uniformly continuous on the
interval [b1, b2] where b1 is a lower bound of the sequence {v(n)} and b2 its
upper bound. Thus the sequence {g(v(n))} is p-continuous, too.

Let us consider {v1(n)}, . . . , {vk(n)} - polyadicly continuous independent
sequences. Then the random variables ṽ1, . . . , ṽk are independent and so the
random variables g1(ṽ1), . . . , gk(ṽk) are independent, too. Thus

E(g1(v1) . . . gk(vk)) = E(g1(v1)) . . . E(gk(vk))
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and the assertion follows from Proposition 25. �

Theorem 3 and Proposition 25 imply

Th e o r em 12. Let {v1(n)}, . . . , {vk(n)} Buck measurable independent se-
quences having continuous Buck distribution functions. Then for arbitrary func-
tions g1, . . . , gk continuous on the real line

E
( k∏

j=1

gj(vj(k)
)
=

k∏

j=1

E
(
gj(vj(k))

)

for each sequence k = {kn} which is uniformly distributed in Z.
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