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Abstract.We give the complete Bott-Chern-Aeppli cohomology for
compact complex 3-folds in terms of Dolbeault, Frölicher, a bi-degree
deRham-like type of cohomology, Kp,q, defined as

Kp,q =
ker(∂) ∩ ker(∂̄)

im(∂) ∩ ker(∂̄) + im(∂̄) ∩ ker(∂)

and Ȟ1(PH). (Here PH is the sheaf of phuri-harmonic functions.) We
then work out the complete Bott-Chern-Aeppli cohomology in some ex-
amples. We give the Bott-Chern-Aeppli cohomology for a hypothet-
ical complex structure on S6 in terms of Dolbeault and Frölicher. We
also give the Bott-Chern-Aeppli cohomology on a Calabi-Eckmann 3-fold
concurring with the calculations of Angella and Tomassini [5]. Finally,
we show agreement of our results with the calculation by Angella [3] of
the Bott-Chern-Aeppli cohomology for small Kuranishi deformations of
the Iwasawa manifold.
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1 - Introduction

On a differentiable manifold, X, the deRham cohomology,

Hp =
ker(d : Ep(X) → Ep+1(X) )

im(d : Ep−1(X) → Ep(X) )

depends only on the topological structure of the manifold. (Here, Ep(X) denotes
the set of smooth complex-valued p-forms on X, as this is more convenient for
the following discussion of cohomology on complex manifolds.)

On a complex manifold, we also have the Dolbeault cohomology,

Hp,q
∂̄

=
ker(∂̄ : Ep,q(X) → Ep,q+1(X) )

im(∂̄ : Ep,q−1(X) → Ep,q(X) )

which depends only on the complex structure of the manifold. When a com-
pact complex manifold is Kähler or satisfies the ∂∂̄-lemma, we have the Hodge
decomposition, Hr ∼=

⊕
p+q=r H

p,q
∂̄

.

On a complex manifold of dimension n, there are also the Frölicher spectral
sequences, Ep,q

r . For r = 1, Ep,q
1 = Hp,q

∂̄
and for 0 ≤ q ≤ n we have the

sequences,

0 → H0,q
∂̄

∂
→ H1,q

∂̄

∂
→ H2,q

∂̄

∂
→ . . .

∂
→ Hn,q

∂̄

∂
→ 0 .

So, for r = 2, we have the definition,

Ep,q
2 = ker(Hp,q

∂̄

∂
→ Hp+1,q

∂̄
)/im(Hp−1,q

∂̄

∂
→ Hp,q

∂̄
) .

There are further definitions for the Frölicher spectral sequences for r ≥ 2 and
Ep,q

r for r ≥ 3, which we will not be using in this article.
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The Aeppli cohomology of a complex manifold is defined by the vector
spaces (see Aeppli [1] and also Angella [3] and Popovici [15]) :

Hp,q
A =

ker(∂∂̄ : Ep,q(X) → Ep+1,q+1(X) )

(im(∂ : Ep−1,q(X) → Ep,q(X) ) + im(∂̄ : Ep,q−1(X) → Ep,q(X) ) )

The Bott-Chern cohomology of a complex manifold is defined by the vector
spaces (see Bott and Chern [8] and also Angella [3] and Popovici [15]) :

Hp,q
BC =

ker(∂ : Ep,q(X) → Ep+1,q(X) ) ∩ ker(∂̄ : Ep,q(X) → Ep,q+1(X) )

im(∂∂̄ : Ep−1,q−1(X) → Ep,q(X) )

On compact complex manifolds, there is a harmonic theory due to Schweit-
zer [16] for each of these cohomologies which ensures that they are finite di-
mensional complex vector spaces. Schweitzer’s harmonic theory shows that
the two cohomologies are dual to each other. Let hp,qA = dim(Hp,q

A ) and
hp,qBC = dim(Hp,q

BC) . We have then(see Schweitzer [16] and also Angella [3]

and Popovici [15]) that hp,qA = hq,pA , hp,qBC = hq,pBC and hp,qA = hn−p,n−q
BC . We

mention as a historical note that results on compact complex manifolds about
finiteness and duality between Aeppli and Bott-Chern cohomology also appear
in Bigolin [7].

Bott-Chern/Aeppli cohomology has been studied extensively by a number
of mathematicians. Popovici [15] utilizes Aeppli cohomology, in particular,
Hn−1,n−1

A , to study Gauduchon metrics on complex manifolds. Tseng and Yau
[20] point out the importance of understanding Bott-Chern/Aeppli cohomology,
in particular, H2,2

BC , for the study of Strominger’s system of supersymmetric
equations in type IIB theory on complex 3-folds.

For compact complex surfaces, the deRham and Dolbeault cohomologies
determine the Bott-Chern and Aeppli cohomologies. This is due to a result
of Teleman, (Lemma 2.3 in [18]) which gives h1,1BC for an arbitrary compact
complex surface in terms of dimR(H

1,1(R)), where H1,1(R) is the subgroup of
H2(R) of deRham classes which have a representative which is a real d-closed
1, 1-form. The other Bott-Chern Hodge numbers can easily be calculated and
shown to be given in terms of Dolbeault cohomology. (One can do so, for
example, by using the straightforward formulas derived in Section 3 and Section
4 of the present work. See also the discussion in MathOverflow [11].) Bott-
Chern cohomology of compact complex surfaces diffeomorphic to solvmanifolds
have also been calculated by Angella, Dloussky and Tomassini [6].

Angella [3] has given an example of two different complex 3-folds with the
same deRham and Dolbeault cohomologies but different Bott-Chern/Aeppli
cohomologies. In this article we give the complete Bott-Chern-Aeppli coho-
mology for compact complex 3-folds in terms of Hp,q

∂̄
, E3,1

2 , Ȟ1(PH) and a
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bi-degree deRham-like type of cohomology, Kp,q, defined as

Kp,q =
ker(∂ : Ep,q(X) → Ep+1,q(X) ) ∩ ker(∂̄ : Ep,q(X) → Ep,q+1(X) )

im(∂) ∩ ker(∂̄) + im(∂̄) ∩ ker(∂)

We set kp,q = dimC(K
p,q). It can easily be shown that kp,q ≤ bp+q, kp,q ≤ hp,q

∂̄
,

kp,q ≤ hp,q∂ = hq,p
∂̄

. We also see that Kp,q embeds into Hp,q
A by the obvious map,

[κ]K �→ [κ]A. This is easily seen to be one-to-one. Thus kp,q ≤ hp,qA . Since
im(∂∂̄) ⊆ (im(∂) + im(∂̄)), we have kp,q ≤ hp,qBC from the definitions of Hp,q

BC

and Kp,q. We also easily have from the definition of Kp,q that kp,q = kq,p.

Our main result is given in the following table:

Bott-Chern cohomology on a compact complex 3-fold

hp,qBC q = 0 q = 1 q = 2 q = 3

p = 0 1 k1,0 h2,0
∂̄

k3,0

p = 1 k1,0 ȟ1(PH) h1,2
∂̄

+ h3,12 − k2,0 h0,2
∂̄

p = 2 h2,0
∂̄

h1,2
∂̄

+ h3,12 − k2,0 h2,2BC h0,1
∂̄

+ h2,0
∂̄

− k2,0

p = 3 k3,0 h0,2
∂̄

h0,1
∂̄

+ h2,0
∂̄

− k2,0 1

where h3,12 = dimC(E
3,1
2 ), and h2,2BC is given by:

h2,2BC = −ȟ1(PH) + h0,1
∂̄

− h0,2
∂̄

− h1,0
∂̄

+ h1,1
∂̄

+h1,2
∂̄

+ h2,0
∂̄

+ 2h3,12 + k1,1 − k1,2 − 2k2,0 .

We also note that by a result of Tosatti [19] which is covered later in the article
we have

h1,1BC = ȟ1(PH) = 2h0,1
∂̄

− b1 + dimR(H1,1(R))

where H1,1(R) is the subgroup of H2(R) of deRham classes which have a
representative which is a real d-closed 1, 1-form.

An understanding of Bott-Chern and Aeppli cohomologies through the
decomposition of the double complex of forms on a complex manifolds into
“zigzags” and “squares” has been achieved by Stelzig [17]. The dimensions of
the Bott-Chern, Aeppli, and Dolbeault cohomologies are given by the number
of zigzags of particular types passing through the point, (p, q), in the double
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complex. A more complete comprehension of these cohomologies would be ob-
tained by viewing the present work in terms of Stelzig’s results. Unfortunately,
we do not do so here but hope to do so in a future work. I would like to thank
the anonymous referee for this observation.

In Section 2, we derive some useful “almost exact” sequences of cohomology
on compact complex mandifolds of any dimension that prove useful in the
calculation of Bott-Chern/Aeppli cohomology. In Section 3, we derive Bott-
Chern/Aeppli cohomology Hodge numbers, h1,0BC , h

n−1,0
BC , and hn,0BC on compact

complex n-manifolds. In Section 4, we derive Bott-Chern/Aeppli cohomology
Hodge numbers, hp,0BC and hp,nBC on compact complex n-manifolds. In Section 5,
we give a decomposition of Hp,q

A into subspaces Hp,q
∂ /im(∂̄), Gp,q

∂ , and Lp,q
∂ on

compact complex n-manifolds that proves crucial in our calculation of Hp,q
BC on

compact complex 3-folds. In Section 6, we first derive a formula for h1,1BC on a
compact complex n-manifold. We then restrict to compact complex 3-folds, to
calculate the complete Bott-Chern/Aeppli cohomology, Hp,q

BC . In Section 7 we
show how our table of Bott-Chern/Aeppli cohomology on a compact complex
3-fold applies to a hypothetical complex structure on S6 and on how it is in
agreement with Angella and Tomassini’s calculation on a Calabi-Eckman 3-
fold [5] and with Angella’s calculation for small Kuranishi deformations of the
Iwasawa manifold [3].

2 - Sequences of maps of cohomology

We first note that there is a natural projection map, π∂̄ : Hp,q
BC → Hp,q

∂̄

where for a d-closed p, q-form, θ, we have θ/im(∂∂̄) �→ θ/im(∂̄) . Similiarly, we
have the projection map, πA : Hp,q

∂̄
→ Hp,q

A where for a ∂̄-closed p, q-form, θ,

we have θ/im(∂̄) �→ θ/(im(∂) + im(∂̄)) .
Consider the following sequences of maps of cohomology on a compact

n-dimensional complex manifold X with, p = 0, · · · , n,

0 → Hp,0
BC

π∂̄−→ Hp,0
∂̄

πA−→ Hp,0
A

∂̄
→ Hp,1

BC

π∂̄−→ · · ·

· · · → Hp,q
BC

π∂̄−→ Hp,q
∂̄

πA−→ Hp,q
A

∂̄
→ Hp,q+1

BC

π∂̄−→ · · ·

πA−→ Hp,n−1
A

∂̄
→ Hp,n

BC

π∂̄−→ Hp,n
∂̄

πA−→ Hp,n
A → 0 .

The above sequence of maps for the case of X, a hypothetical complex
3-fold diffeomorphic to S6, was also given in McHugh [13]. It is pretty straight
forward to show the sequence of maps above is exact at Hp,q

BC . Namely,

ker(π∂̄ : Hp,q
BC → Hp,q

∂̄
) = im(∂̄ : Hp,q−1

A → Hp,q
BC) .
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It is also straight forward to show the sequence of maps above is exact at Hp,q
A .

Namely,
im(πA : Hp,q

∂̄
→ Hp,q

A ) = ker(∂̄ : Hp,q
A → Hp,q+1

BC ) .

We have the following “almost” exactness at Hp,q
∂̄

:

P r o p o s i t i o n 2.1.

dim(im(π∂̄ : Hp,q
BC → Hp,q

∂̄
)) = kp,q + dim(ker(πA : Hp,q

∂̄
→ Hp,q

A )) .

P r o o f. We first show that

ker(πA : Hp,q
∂̄

→ Hp,q
A ) ⊆ im(π∂̄ : Hp,q

BC → Hp,q
∂̄

) .

Indeed, if we have a ∂̄-closed p, q-form, φ such that φ = ∂λ + ∂̄χ, then ∂λ is
∂̄-closed and represents the same element as φ in Hp,q

∂̄
. Clearly, ∂λ ∈ ker(∂) ∩

ker(∂̄) and thus
[φ] = [∂λ] ∈ im(π∂̄ : Hp,q

BC → Hp,q
∂̄

) .

Denote V p,q = im(π∂̄ : Hp,q
BC → Hp,q

∂̄
). We also have by what we have just

shown that

ker(πA : Hp,q
∂̄

→ Hp,q
A ) = ker(πA : V p,q → Hp,q

A ) .

If we apply the Rank Theorem from basic Linear Algebra, to πA : V p,q → Hp,q
A

we get the result of our proposition:

dim(V p,q) = dim(ker(πA : V p,q → Hp,q
A )) + dim(im(πA : V p,q → Hp,q

A ))

or
dim(im(π∂̄ : Hp,q

BC → Hp,q
∂̄

))

= dim(ker(πA : Hp,q
∂̄

→ Hp,q
A )) + dim(

ker(∂) ∩ ker(∂̄)

im(∂) + im(∂̄)
) .

�

Using the Rank theorem from basic Linear Algebra we have for 0 ≤ p ≤ n
and 0 ≤ q ≤ n :

hp,qBC = dim(Ker(π∂̄ : Hp,q
BC → Hp,q

∂̄
)) + dim(im(π∂̄ : Hp,q

BC → Hp,q
∂̄

)) ,

kp,q + hp,q
∂̄

= kp,q + dim(Ker(πA : Hp,q

∂̄
→ Hp,q

A ))

+ dim(im(πA : Hp,q
∂̄

→ Hp,q
A )) ,

hp,qA = dim(ker(∂̄ : Hp,q
A → Hp,q+1

BC )) + dim(im(∂̄ : Hp,q
A → Hp,q+1

BC )) .
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Notice that we have trivially added kp,q to both sides of the equation from the
Rank theorem for hp,q

∂̄
. Creating an alternating sum over q of both sides of the

equations above and using the lemmas and proposition on exactness, we have:

n∑

q=0

(−1)q(hp,qBC − (hp,q
∂̄

+ kp,q) + hp,qA ) = 0(1)

or using the duality, hp,qA = hn−p,n−q
BC ,

n∑

q=0

(−1)q(hp,qBC + hn−p,n−q
BC ) =

n∑

q=0

(−1)q(hp,q
∂̄

+ kp,q) .

Using the Riemann-Roch-Hirzebruch Theorem, we can also write this equation
as

n∑

q=0

(−1)q(hp,qBC + hn−p,n−q
BC − kp,q) =

n∑

q=0

(−1)qhp,q
∂̄

= χ(Ωp)

=

∫

X

ch(Ωp)td(X)

where Ωp is the bundle of holomorphic p, 0-forms. Thus,

P r o p o s i t i o n 2.2. On an n-dimensional compact complex manifold, X,

n∑

q=0

(−1)q(hp,qBC + hn−p,n−q
BC − kp,q) =

∫

X

ch(Ωp)td(X)

is a “topological” invariant of our compact complex manifold (in that it depends
only on the topological structure of Ωp and TX).

We shall use the (almost exact) sequences above in calculating the Bott-
Chern cohomology. In more specific situations the sequences split into two or
more useful sequences.

3 - Some general results for Aeppli/Bott-Chern cohomology

Let X be a compact complex manifold of dimension n. We have the follow-
ing straight forward result (see McHugh [13]) when b1 = 0

P r o p o s i t i o n 3.1. If b1 = 0 then H1,0
BC = H0,1

BC = Hn−1,n
A = Hn,n−1

A = 0
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P r o o f. Let [φ] ∈ H1,0
BC , where φ is a 1, 0-form such that ∂φ = 0 and

∂̄φ = 0. Specifically, dφ = 0 and so since b1 = 0 we have φ = df for some global
function f . Now φ = ∂f + ∂̄f . Since φ is a 1, 0-form, we have ∂̄f = 0. Thus,
f is a global holomorphic function on a compact complex manifold and thus
must be a constant function. Hence, ∂f = 0, and we have φ = 0. �

We can generalize this to the case b1 �= 0. Consider the following portion of
our sequence of maps:

0 → H0,0
BC → H0,0

∂̄
→ H0,0

A → H0,1
BC → H0,1

∂̄
→ . . . .

For a (connected) compact complex manifold, b0 = h0,0
∂̄

= k0,0 = 1, and it is

easy to see that h0,0BC = 1. Thus the image of the map, H0,0
∂̄

→ H0,0
A is one-

dimensional. Also, H0,0
A consists of all pluri-harmonic scalar functions on our

compact manifold. These must be constant by the maximum modulus theorem
so h0,0A = 1. ( I thank Michael Albanese for pointing this out to me. [2]) By

exactness, the kernel of the map, H0,1
BC → H0,1

∂̄
is zero. Since,

K0,1 = (ker(d) ∩ E0,1)/(im(∂) ∩ E0,1 + im(∂̄) ∩ E0,1)

= (ker(d) ∩ E0,1)/(im(∂̄) ∩ E0,1) ,

we have,

P r o p o s i t i o n 3.2. On a compact complex manifold with b1 �= 0, h0,1BC =
k0,1.

We will also show the following:

P r o p o s i t i o n 3.3. For any n-dimensional compact complex manifold, X,
hn−1,0
BC = hn−1,0

∂̄
.

Before we prove this we need the following lemma:

L emma 3.1. For an n-dimensional compact complex manifold, X, a ∂̄-
closed, ∂-exact n, 0-form is zero. Explicitly, let φ be an n− 1, 0-form. If ∂φ is
∂̄-closed, then ∂φ = 0.

P r o o f. Following in the same manner almost verbatim as Lemma 2.2 in
Brown [9],
∫

X

∂φ ∧ ∂̄φ̄ = (−1)n(

∫

X

∂̄(∂φ ∧ φ̄)−

∫

X

(∂̄(∂φ)) ∧ φ̄ )

= (−1)n(

∫

X

d(∂φ ∧ φ̄)−

∫

X

(∂̄(∂φ)) ∧ φ̄ ) = (−1)n(0 + 0) = 0
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by Stokes theorem.
Locally, ∂φ = fdz1 ∧ · · · ∧ dzn and so

∫

X

∂φ ∧ ∂̄φ̄ =

∫

X

|f |2dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n

=

∫

X

(−1)
n(n−1)

2 |f |2dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn = 0

Thus f = 0 and ∂φ = 0. �

P r o o f [ o f P r o p o s i t i o n ]. We have the sequence,

0 → Hn−1,0
BC → Hn−1,0

∂̄
→ Hn−1,0

A → · · ·

which is exact at Hn−1,0
BC . Thus Hn−1,0

BC →֒ Hn−1,0

∂̄
injectively. We shall show

that the map is surjective.
Let [φ] ∈ Hn−1,0

∂̄
, with of course, ∂̄φ = 0. We have that ∂φ is a ∂̄-closed,

∂-exact n, 0-form and thus ∂φ = 0. We have φ ∈ ker(∂) ∩ ker(∂̄) and [φ]∂̄ =
π∂̄([φ]BC). Hence Hn−1,0

BC = Hn−1,0
∂̄

and hn−1,0
BC = hn−1,0

∂̄
. �

We shall also show in almost exactly the same way that

hn,0BC = hn,0
∂̄

= kn,0 .

We repeat the argument for completeness. See also Angella [3], Section 1.4.4 .

P r o p o s i t i o n 3.4. For an n-dimensional compact complex manifold, X,

hn,0BC = hn,0
∂̄

= kn,0 .

P r o o f. We have the sequence,

0 → Hn,0
BC → Hn,0

∂̄
→ Hn,0

A → · · ·

which is exact at Hn,0
BC . Thus H

n,0
BC →֒ Hn,0

∂̄
injectively. We shall show that the

map is surjective.
Let [φ] ∈ Hn,0

∂̄
, with of course, ∂̄φ = 0. We have that ∂φ = 0 since φ

is an n, 0-form. We have φ ∈ ker(∂) ∩ ker(∂̄) and [φ]∂̄ = π∂̄([φ]BC). Hence
Hn,0

BC = Hn,0
∂̄

and hn,0BC = hn,0
∂̄

.

Define the projection map, πK : Hp,q
BC → Kp,q where for a d-closed p, q-

form, θ, we have θ/im(∂∂̄) �→ θ/(im(∂) + im(∂̄)). Now consider a nonzero,
[φ]BC ∈ Hn,0

BC . By our lemma above, φ is not ∂-exact. Thus the map, πK :

Hn,0
BC → Kn,0 is injective and hn,0BC ≤ kn,0. Combining this together we get

hn,0BC ≤ kn,0 ≤ hn,0
∂̄

= hn,0BC and thus hn,0BC = hn,0
∂̄

= kn,0. �
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4 - Some more general results for Aeppli/Bott-Chern cohomology:
Calculating hp,0BC and hp,0A

Recall the following results just shown above.
On an n-dimensional compact complex manifold with b1 = 0, H1,0

BC =

H0,1
BC = Hn−1,n

A = Hn,n−1
A = 0 .

On a compact complex manifold with b1 �= 0, h0,1BC = k0,1.

For any n-dimensional complex manifold, X, hn−1,0
BC = hn−1,0

∂̄
and hn,0BC =

hn,0
∂̄

= kn,0.

We will be deriving the “extreme” rows/columns of our Bott-Chern and
Aeppli cohomology tables, i.e. hp,0BC and hp,0A for all p. We first derive a formula

for hp,0BC . We have the beginning of the sequence,

0 → Hp,0
BC → Hp,0

∂̄
→ Hp,0

A → · · · .

We can consider the sequence,

0 → Hp,0
BC → Hp,0

∂̄
→ im(πA : Hp,0

∂̄
→ Hp,0

A ) → 0

which is exact except in the middle with the non-exactness measured by Kp,0.
Thus

hp,0BC − (hp,0
∂̄

+ kp,0) + dim(im(πA)) : H
p,0
∂̄

→ Hp,0
A )) = 0

and

hp,0BC = hp,0
∂̄

− (dim(im(πA : Hp,0
∂̄

→ Hp,0
A ))− kp,0) .(2)

We claim that

dim(im(πA : Hp,0

∂̄
→ Hp,0

A ))− kp,0 = dim(im(∂ : Hp,0

∂̄
→ Hp+1,0

∂̄
))

where ∂ : Hp,0
∂̄

→ Hp+1,0
∂̄

is the map from the Frölicher spectral sequence. Note
that we may consider the embedding,

Kp,0 →֒ im(πA : Hp,0
∂̄

→ Hp,0
A ))

and thus

dim(im(πA : Hp,0

∂̄
→ Hp,0

A ))− kp,0 = dim(im(πA : Hp,0

∂̄
→ Hp,0

A )/Kp,0) .

We will thus show that

dim(im(πA : Hp,0
∂̄

→ Hp,0
A )/Kp,0) = dim(im(∂ : Hp,0

∂̄
→ Hp+1,0

∂̄
)) .
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Consider an non-zero element,

[θ]A/K
p,0 ∈ im(πA : Hp,0

∂̄
→ Hp,0

A )/Kp,0

for θ, a nonzero ∂̄-closed, p, 0-form. We will show that ∂[θ]∂̄ �= 0. We can not
have ∂θ = ∂̄ν as this is a p+ 1, 0 form and if we have ∂θ = 0 then [θ]A ∈ Kp,0

contradicting [θ]A/K
p,0 �= 0. Thus

∂[θ]∂̄ ∈ im(∂ : Hp,0
∂̄

→ Hp+1,0
∂̄

)

and is nonzero. This is thus an injective linear map from

im(πA : Hp,0
∂̄

→ Hp,0
A )/Kp,0 to im(∂ : Hp,0

∂̄
→ Hp+1,0

∂̄
) .

We still need to show it is onto. Clearly, the map is well defined.

Now consider a nonzero element,

∂[φ]∂̄ ∈ im(∂ : Hp,0
∂̄

→ Hp+1,0
∂̄

)

for φ, a nonzero ∂̄-closed, p, 0-form. If [φ]A/K
p,0 = 0, then φ = κ+ ∂µ where κ

is a representative of Kp,0. But then ∂φ = 0 and this is a contradiction. Hence,
[φ]A/K

p,0 is non-zero and thus ∂[φ]∂̄ is in the image of our map just above.
Our map is onto. Thus we have an isomorphism,

im(πA : Hp,0
∂̄

→ Hp,0
A )/Kp,0 = im(∂ : Hp,0

∂̄
→ Hp+1,0

∂̄
)

and

dim(im(πA : Hp,0
∂̄

→ Hp,0
A ))− kp,0 = dim(im(∂ : Hp,0

∂̄
→ Hp+1,0

∂̄
)) .

We now calculate dim(im(∂ : Hp,0
∂̄

→ Hp+1,0
∂̄

)). Recall the Frölicher Se-
quence,

0 → H0,0
∂̄

∂
→ · · ·

∂
→ Hp,0

∂̄

∂
→ Hp+1,0

∂̄

∂
→ · · ·

∂
→ Hn,0

∂̄

∂
→ 0

where the non-exactness is measured by the spectral sequence terms,

Eq,0
2 = Ker(Hq,0

∂̄

∂
→ Hq+1,0

∂̄
)/im(Hq−1,0

∂̄

∂
→ Hq,0

∂̄
) .

Let kerq = dim(Ker(Hq,0
∂̄

∂
→ Hq+1,0

∂̄
)) and imq = dim(im(Hq−1,0

∂̄

∂
→ Hq,0

∂̄
))

and thus hq,02 = kerq − imq. Using,

hq,0
∂̄

= kerq + imq+1 = imq + hq,02 + imq+1



36 andrew mchugh [12]

we have,

hq,0
∂̄

− hq,02 = imq + imq+1 .

Thus, performing a telescoping alternating sum,

imp+1 = (hp,0
∂̄

− hp,02 )− (hp−1,0
∂̄

− hp−1,0
2 )+

· · · + (−1)p−1(h1,0
∂̄

− h1,02 ) + (−1)p(h0,0
∂̄

− h0,02 ) .

For compact complex manifolds, h0,0
∂̄

= h0,02 = 1 , so we can write

imp+1 =

p∑

j=1

(−1)p+j(hj,0
∂̄

− hj,02 ) .(3)

Finally, using equation (2), we have

hp,0BC = hp,0
∂̄

−

p∑

j=1

(−1)p+j(hj,0
∂̄

− hj,02 ) .

We now derive formulas for hp,0A = hn,n−p
BC . We will proceed by induction on

q for calculating hn,qBC . We start the induction by deriving hn,1BC . We know from

Proposition 3.4 that hn,0A = h0,nBC = hn,0BC = kn,0. Thus the map, ∂̄ : Hn,0
A → Hn,1

BC

is zero and we have the clipped sequence,

0 → Hn,1
BC → Hn,1

∂̄
→ Hn,1

A → Hn,2
BC → · · · .

Hence, Hn,1
BC embeds into Hn,1

∂̄
. We have

dim(Hn,1
∂̄

) = dim(Ker(πA : Hn,1
∂̄

→ Hn,1
A )) + dim(im(πA : Hn,1

∂̄
→ Hn,1

A ))

so that

hn,1
∂̄

= dim(im(π∂̄ : Hn,1
BC → Hn,1

∂̄
))− kn,1 + dim(im(πA : Hn,1

∂̄
→ Hn,1

A ))

= hn,1BC + dim(im(πA : Hn,1
∂̄

→ Hn,1
A ))− kn,1 .

We claim that

dim(im(πA : Hn,1
∂̄

→ Hn,1
A ))− kn,1 = 0 .

Note that we may consider

Kn,1 →֒ im(πA : Hn,1
∂̄

→ Hn,1
A ))
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and thus

dim(im(πA : Hn,1
∂̄

→ Hn,1
A ))− kn,1 = dim(im(πA : Hn,1

∂̄
→ Hn,1

A )/Kn,1) .

Indeed, consider an element,

[θ]A/K
n,1 ∈ im(πA : Hn,1

∂̄
→ Hn,1

A )/Kn,1

for θ, a nonzero ∂̄-closed, but not ∂̄-exact, n, 1-form. We automatically have
that ∂θ = 0 as it is an n, 1-form. Thus dθ = 0 and [θ]A ∈ Kn,1 with θ =
κ+ ∂µ+ ∂̄ν and [θ]A/K

n,1 = 0.
Hence

dim(im(πA : Hn,1
∂̄

→ Hn,1
A )/Kn,1) = 0

and
dim(im(πA : Hn,1

∂̄
→ Hn,1

A ))− kn,1 = 0 .

Thus

h0,n−1
A = hn,1BC = hn,1

∂̄
.(4)

We shall now proceed with our induction on q in hn,qBC . Assume that we can

write formulas for hn,jBC in terms of h∗,∗
∂̄

, h∗,∗2 , and k∗,∗, for 0 ≤ j ≤ q. We note

that we already can write formulas for hn,jA , 0 ≤ j ≤ n, in such terms since

hn,jA = h0,n−j
BC = hn−j,0

BC . Consider again the sequence,

0 → Hn,1
BC → · · · → Hn,q

BC → Hn,q
∂̄

→ Hn,q
A

→ Hn,q+1
BC → Hn,q+1

∂̄
→ Hn,q+1

A → · · ·

and shorten it to

0 → Hn,1
BC → · · · → Hn,q

BC → Hn,q
∂̄

→ Hn,q
A

→ Hn,q+1
BC → Hn,q+1

∂̄
→ im(πA : Hn,q+1

∂̄
→ Hn,q+1

A ) → 0 .

We shall show that im(πA : Hn,q+1

∂̄
→ Hn,q+1

A )) = Kn,q+1. It is clear that

Kn,q+1 ⊆ im(πA : Hn,q+1
∂̄

→ Hn,q+1
A ) .

If [φ]A ∈ im(πA : Hn,q+1
∂̄

→ Hn,q+1
A ) then ∂̄φ = 0 and ∂φ = 0 since φ is an

n, q + 1-form. Thus [φ]A ∈ Kn,q+1 and

im(πA : Hn,q+1
∂̄

→ Hn,q+1
A ) ⊆ Kn,q+1 .
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Thus
im(πA : Hn,q+1

∂̄
→ Hn,q+1

A ) = Kn,q+1 .

We have then that

q∑

l=1

(−1)l−1(hn,lBC − (hn,l
∂̄

+ kn,l) + hn,lA )

+ (−1)q(hn,q+1
BC − (hn,q+1

∂̄
+ kn,q+1)+ kn,q+1) = 0

and hence,

hn,q+1
BC = hn,q+1

∂̄
+

q∑

l=1

(−1)q+l(hn,lBC − (hn,l
∂̄

+ kn,l) + hn,lA )(5)

and

hn−p,0
A = h0,p

∂̄
+

p−1∑

l=1

(−1)p−1+l(hn−l,0
A − (h0,n−l

∂̄
+ kn,l) + hn−l,0

BC ) .(6)

We now know hp,0BC and hp,0A in terms of h∗,∗
∂̄

, h∗,∗2 , and k∗,∗ for all p such that
0 ≤ p ≤ n.

5 - Decomposition of Hp,q
A

In this section we define some vector spaces associated with Hp,q
A and prove

some results with regard to these spaces. These will be helpful in some later sec-
tions in calculating further Bott-Chern/Aeppli cohomology of compact complex
3-folds.

Consider the map: ∂ : Hp,q
A → Hp+1,q

∂̄
where [θ]A �→ [∂θ]∂̄ . We define

Gp,q
∂ = ker(∂ : Hp,q

A → Hp+1,q
∂̄

) ,

Gp,q
∂ = Gp,q

∂ /im( πA : Hp,q
∂ → Hp,q

A ) ,

and
Lp,q
∂ = Hp,q

A /Gp,q
∂ .

Here, πA is the obvious projection map from Hp,q
∂ to Hp,q

A exactly similar to
πA : Hp,q

∂̄
→ Hp,q

A . Following terminology of Popovici [15], we suggest call-
ing Gp,q

∂ , strongly Gauduchon cohomology and calling Lp,q
∂ , weakly Gauduchon

cohomology. (Popovici [15] calls an hermitian metric on a complex n-fold,
strongly Gauduchon, if the n − 1 power of its associated 1, 1-form, ω, is such
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that ∂(ωn−1) = ∂̄η for some n, n− 2-form, η.) We also define the Hodge num-

bers, gp,q∂ = dimC(G
a,b
∂ ) and lp,q∂ = dimC(L

a,b
∂ ).

We define Gp,q
∂̄

, Gp,q
∂̄

, Lp,q
∂̄

, gp,q
∂̄

, and lp,q
∂̄

completely analagously:

Gp,q
∂̄

= ker(∂̄ : Hp,q
A → Hp,q+1

∂ ) ,

Gp,q
∂̄

= Gp,q
∂̄

/im( πA : Hp,q
∂̄

→ Hp,q
A ) ,

and

Lp,q
∂̄

= Hp,q
A /Gp,q

∂̄

with also gp,q
∂̄

= dimC(G
a,b

∂̄
) and lp,q

∂̄
= dimC(L

a,b

∂̄
). We note that gp,q∂ = gq,p

∂̄
,

lp,q∂ = lq,p
∂̄

, gp,q∂ = gp+1,q−1
∂̄

and ln−p−2,n−q
∂ = hp+1,q

∂̄
− lp,q∂ − kp+1,q. The first two

equations are obvious from the definitions. We shall give a proof of the last
equation later on. We give a proof of the third equation now.

P r o p o s i t i o n 5.1.

gp,q∂ = gp+1,q−1
∂̄

.

P r o o f. We shall show an isomorphism, φ, between Gp,q
∂ and Gp+1,q−1

∂̄
.

Indeed, let [µ]Gp,q
∂

∈ Gp,q
∂ , where µ is a p, q-form such that ∂µ = ∂̄ν for some

p+1, q− 1-form ν. Note that we may consider [ν]
Gp+1,q−1

∂̄

∈ Gp+1,q−1
∂̄

. Thus we

will show

φ : Gp,q
∂ → Gp+1,q−1

∂̄

φ( [µ]Gp,q
∂

) = [ν]
Gp+1,q−1

∂̄

is a well defined and bijective linear map. Let us proceed to show that it is well
defined.

If µ̃ is another p, q-form such that [µ̃]Gp,q
∂

= [µ]Gp,q
∂
, then µ̃ = µ+χ+∂σ+ ∂̄τ

where ∂χ = 0. Thus, ∂µ̃ = ∂̄(ν − ∂τ) and

φ( [µ̃]Gp,q
∂

) = [ν − ∂τ ]
Gp+1,q−1

∂̄

= [ν]
Gp+1,q−1

∂̄

.

Our map, φ is clearly linear. Now to show φ is one-to-one. If [µ̂]Gp,q
∂

is such

that φ( [µ̂]Gp,q
∂

) = [ν]
Gp+1,q−1

∂̄

then

∂µ− ∂µ̂ = ∂̄ν − ∂̄(ν + ∂τ) .

Thus µ̂ = µ+χ−∂̄τ for some p, q-form, χ such that ∂χ = 0 and [µ̂]Gp,q
∂

= [µ]Gp,q
∂

.
Thus our map is one-to-one.
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To show our map is onto, let [ν]
Gp+1,q−1

∂̄

∈ Gp+1,q−1
∂̄

. Then ∂̄ν = ∂µ for

some p, q-form µ. We see that [µ]Gp,q
∂

∈ Gp,q
∂ and that φ( [µ]Gp,q

∂
) = [ν]Gp+1,q−1

∂̄

.

Thus our map is onto. Thus we have that Gp,q
∂ is isomorphic to Gp+1,q−1

∂̄
. �

Underlying much of our analysis will be the following decompositions of
Hp,q

BC andHp,q
A (dependent on some, always existing, choice of hermitian metric):

L emma 5.1.

hp,qBC = dim(∂Gp−1,q) + dim(∂Lp−1,q) + dim(∂̄Lp,q−1) + kp,q ,

hp,qBC = dim(∂̄Gp,q−1) + dim(∂̄Lp,q−1) + dim(∂Lp−1,q) + kp,q ,

hp,qA = dim(Hp,q
∂ /(∂̄Lp,q−1

∂̄
) ) + gp,q∂ + lp,q∂ ,

hp,qA = dim(Hp,q
∂̄

/(∂Lp,q−1
∂ ) ) + gp,q

∂̄
+ lp,q

∂̄
,

and thus

Hp,q
BC

∼= ∂Gp−1,q ⊕ ∂Lp−1,q ⊕ ∂̄Lp,q−1 ⊕Kp,q ,

Hp,q
BC

∼= ∂̄Gp,q−1 ⊕ ∂̄Lp,q−1 ⊕ ∂Lp−1,q ⊕Kp,q ,

Hp,q
A

∼= Hp,q
∂ /(∂̄Lp,q−1

∂̄
)⊕Gp,q

∂ ⊕ Lp,q
∂ ,

Hp,q
A

∼= Hp,q
∂̄

/(∂Lp,q−1
∂ )⊕Gp,q

∂̄
⊕ Lp,q

∂̄
.

P r o o f. We shall just prove the first four statements with regard to equal-
ity of dimensions. The proof of the second two statements of these four is
straightforward from definitions. We give a proof of the first two statements:
We notice that

dimC(im(∂̄ : Hp,q
A → Hp,q+1

BC )) = gp,q
∂̄

+ lp,q
∂̄

since

hp,qA = dimC(ker(∂̄ : Hp,q
A → Hp,q+1

BC )) + dimC(im(∂̄ : Hp,q
A → Hp,q+1

BC )) ,

dimC(ker(∂̄ : Hp,q
A → Hp,q+1

BC )) = dimC(im(Hp,q
∂̄

→ Hp,q
A ))

and

hp,qA = dimC(im(Hp,q
∂̄

→ Hp,q
A )) + gp,q

∂̄
+ lp,q

∂̄
.

We also know that

lp−1,q+1
∂ + kp,q+1 = dimC(im(π∂̄ : Hp,q+1

BC → Hp,q+1
∂̄

)) .



[17] on compact complex 3-folds 41

By the exactness of our sequence at Hp,q+1
BC we have

dimC(ker( π∂̄ : Hp,q+1
BC → Hp,q+1

∂̄
) = gp,q

∂̄
+ lp,q

∂̄

and by the rank theorem,

hp,q+1
BC = gp,q

∂̄
+ lp,q

∂̄
+ lp−1,q+1

∂ + kp,q+1

= gp−1,q+1
∂ + lp−1,q+1

∂ + lp,q
∂̄

+ kp,q+1 .

or
hp,qBC = gp,q−1

∂̄
+ lp,q−1

∂̄
+ lp−1,q

∂ + kp,q

and
hp,qBC = gp−1,q

∂ + lp−1,q
∂ + lp,q−1

∂̄
+ kp,q .

�

We also give here the formulas from the decompositions for Hp,q
A :

hp,qA = hp,q∂ − lp,q−1
∂̄

+ gp,q∂ + lp,q∂

and
hp,qA = hp,q

∂̄
− lp,q−1

∂ + gp,q
∂̄

+ lp,q
∂̄

.

We have the following result which gives the formula:

L emma 5.2. For 0 ≤ p ≤ n− 2 and 0 ≤ q ≤ n, we have:

ln−p−2,n−q
∂ = hp+1,q

∂̄
− lp,q∂ − kp+1,q .

P r o o f. Consider the portion of our sequence

. . . → Hp+1,q−1
A → Hp+1,q

BC → Hp+1,q
∂̄

→ Hp+1,q
A → . . . .

We have by our exactness results

im(Hp+1,q
BC → Hp+1,q

∂̄
) = ∂Lp,q

∂ ⊕Kp+1,q .

Thus

0 → Hp+1,0
BC → . . . → Hp+1,q−1

A → Hp+1,q
BC → ∂Lp,q

∂ ⊕Kp+1,q → 0

and
lp,q∂ + kp+1,q = hp+1,q

BC − hp+1,q−1
A + . . .+ (−1)ǫ(q)hp+1,0

BC .



42 andrew mchugh [18]

In a similiar manner we consider the portion of our sequence:

. . . → Hn−p−1,n−q
BC → Hn−p−1,n−q

∂̄
→ Hn−p−1,n−q

A → . . .

and with Ker(Hn−p−1,n−q
∂̄

→ Hn−p−1,n−q
A ) = ∂Ln−p−2,n−q

∂ we have

0 → ∂Ln−p−2,n−q
∂ → Hn−p−1,n−q

∂̄
→ Hn−p−1,n−q

A → . . . → Hn−p−1,n
A → 0 .

Thus,

ln−p−2,n−q
∂ = hn−p−1,n−q

∂̄
− hn−p−1,n−q

A + . . .+ (−1)ǫ(q)+1hn−p−1,n
A

= hp+1,q
∂̄

− hp+1,q
BC + . . .+ (−1)ǫ(q)+1hp+1,0

BC .

Thus
ln−p−2,n−q
∂ = hp+1,q

∂̄
− lp,q∂ − kp+1,q .

�

We need a further decomposition of Hp,q
A that we develop here. Denote

Hp,q
∂̄

/im(∂) = Hp,q
∂̄

and similiarly, Hp,q
∂ /im(∂̄) = Hp,q

∂ . Define

Hp,q
∂̄

⊓Hp,q
∂ = Hp,q

∂̄
∩Hp,q

∂ = Kp,q .

We also have the short filtration:

Hp,q
∂̄

⊓Hp,q
∂ ⊆ Hp,q

∂̄
∩ Gp,q

∂ ⊆ Hp,q
∂̄

.

We also define

Hp,q
∂̄

⊓Gp,q
∂ = (Hp,q

∂̄
∩ Gp,q

∂ )/(Hp,q
∂̄

⊓Hp,q
∂ )

and
Hp,q

∂̄
⊓ Lp,q

∂ = (Hp,q
∂̄

)/(Hp,q
∂̄

∩ Gp,q
∂ ) .

Thus, we have the decomposition,

Hp,q
∂̄

= (Hp,q
∂̄

⊓Hp,q
∂ ) ⊕ (Hp,q

∂̄
⊓Gp,q

∂ ) ⊕ (Hp,q
∂̄

⊓ Lp,q
∂ ) .

Consider the filtration,

Hp,q
∂̄

∩Hp,q
∂ ⊆ Gp,q

∂̄
∩Hp,q

∂ ⊆ Gp,q
∂̄

∩ Gp,q
∂ ⊆ Gp,q

∂̄
.

We can define
Gp,q
∂̄

⊓Hp,q
∂ = (Gp,q

∂̄
∩Hp,q

∂ ) ,
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Gp,q
∂̄

⊓Hp,q
∂ = (Gp,q

∂̄
∩Hp,q

∂ )/(Hp,q
∂̄

∩Hp,q
∂ )

and
Gp,q
∂̄

⊓Gp,q
∂ = (Gp,q

∂̄
∩ Gp,q

∂ )/(Gp,q
∂̄

∩Hp,q
∂ ) .

Recall that

Hp,q
∂̄

⊓Gp,q
∂ = (Hp,q

∂̄
∩ Gp,q

∂ )/(Hp,q
∂̄

∩Hp,q
∂ )

and so we define

Gp,q
∂̄

⊓Gp,q
∂ = (Gp,q

∂̄
⊓Gp,q

∂ )/(Hp,q
∂̄

⊓Gp,q
∂ ) .

We also define
Gp,q
∂̄

⊓ Lp,q
∂ = Gp,q

∂̄
/(Gp,q

∂̄
∩ Gp,q

∂ ) .

Recall that

Hp,q
∂̄

⊓ Lp,q
∂ = Hp,q

∂̄
/(Hp,q

∂̄
∩ Gp,q

∂ )

and so we define

Gp,q
∂̄

⊓ Lp,q
∂ = (Gp,q

∂̄
⊓ Lp,q

∂ )/(Hp,q
∂̄

⊓ Lp,q
∂ ) .

Thus we can write the decomposition,

Gp,q

∂̄
= (Gp,q

∂̄
⊓Hp,q

∂ ) ⊕ (Gp,q

∂̄
⊓Gp,q

∂ ) ⊕ (Gp,q

∂̄
⊓ Lp,q

∂ ) .

Continuing, we define

Lp,q
∂̄

⊓Hp,q
∂ = (Hp,q

∂ )/(Gp,q
∂̄

∩Hp,q
∂ ) ,

Lp,q
∂̄

⊓ Gp,q
∂ = Gp,q

∂ /(Gp,q
∂̄

∩ Gp,q
∂ ) ,

Lp,q
∂̄

⊓Gp,q
∂ = (Lp,q

∂̄
⊓ Gp,q

∂ )/(Lp,q
∂̄

⊓Hp,q
∂ ) ,

and

Lp,q

∂̄
⊓ Lp,q

∂ = (Lp,q

∂̄
)/(Lp,q

∂̄
⊓ Gp,q

∂ ) .

Thus we have the decomposition

Lp,q
∂̄

= (Lp,q
∂̄

⊓Hp,q
∂ ) ⊕ (Lp,q

∂̄
⊓Gp,q

∂ ) ⊕ (Lp,q
∂̄

⊓ Lp,q
∂ ) .

We will use the following:

L emma 5.3.

Ker(∂ : Hp,q
∂̄

→ Hp+1,q
∂̄

) = Gp,q
∂ ⊓ (Hp,q

∂̄
/im(∂)) ⊕ Kp,q ⊕ ∂Lp−1,q

∂ .
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P r o o f. Recall from Lemma 5.1 the decompsoition of Hp,q
BC :

Hp,q
BC

∼= ∂̄Gp,q−1 ⊕ ∂̄Lp,q−1 ⊕ ∂Lp−1,q ⊕Kp,q ,

and thus that

im(π∂̄ : Hp,q
BC → Hp,q

∂̄
) ∼= Kp,q ⊕ ∂Lp−1,q .

We see that

im(π∂̄ : Hp,q
BC → Hp,q

∂̄
) ⊆ Ker(∂ : Hp,q

∂̄
→ Hp+1,q

∂̄
) .

We also have that

Hp,q
∂̄

∼= Hp,q
∂̄

/im(∂) ⊕ ∂Lp−1,q

∼= Hp,q
∂ /(im(∂̄)) ⊓Hp,q

∂̄
/im(∂) ⊕Gp,q

∂ ⊓Hp,q
∂̄

/im(∂)

⊕Lp,q
∂ ⊓Hp,q

∂̄
/im(∂) ⊕ ∂Lp−1,q

∼= Kp,q ⊕Gp,q
∂ ⊓Hp,q

∂̄
/im(∂) ⊕ Lp,q

∂ ⊓Hp,q
∂̄

/im(∂) ⊕ ∂Lp−1,q

where we have used the fact that

Kp,q = (Hp,q
∂ /im(∂̄)) ∩ (Hp,q

∂̄
/im(∂)) .

By the definitions of Gp,q
∂ and Lp,q

∂ we see that

Ker(∂ : Hp,q
∂̄

→ Hp+1,q
∂̄

) = Gp,q
∂ ⊓ (Hp,q

∂̄
/im(∂)) ⊕ Kp,q ⊕ ∂Lp−1,q

∂ .

�

6 - BC-A cohomology on generic compact complex 3-folds

We shall now complete a table for a generic compact complex 3-fold. Using
the formulas above for hp,0BC and hp,nBC , one obtains:

h0,0BC = 1, h1,0BC = k1,0, h2,0BC = h2,0
∂̄

, h3,3BC = 1,

h3,0BC = h3,0
∂̄

= k3,0,

h3,1BC = h3,1
∂̄

= h0,2
∂̄

,

h3,2BC = h0,1
∂̄

+ h2,0
∂̄

− k3,1 .
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Using the Bigolin resolution [7] [22] of the sheaf of pluri-harmonic functions,
PH, we can also derive a formula for h1,1BC for any compact complex manifold:

T h e o r em 6.1. For an n-dimensional compact complex manifold, H1,1
BC =

Ȟ1(PH) . Thus, h1,1BC = hn−1,n−1
A = dim(Ȟ1(PH)) .

P r o o f. Let Ep,q denote the sheaf of C∞ p, q-forms. The Bigolin resolution
for PH,

0 → PH →֒ E0,0 ∂∂̄
→ E1,1 d

→ E2,1 ⊕ E1,2 → Coker(d) → 0

is acyclic (except at the last term, Coker(d)). Thus

Ȟ1(PH) =
ker(d : Γ(E1,1) → Γ(E2,1 ⊕ E1,2))

im(∂∂̄ : Γ(E0,0) → Γ(E1,1))

=
ker(d : C∞ 1,1 → C∞ 2,1 ⊕ C∞ 1,2)

im(∂∂̄ : C∞ 0,0 → C∞ 1,1)

= H1,1
BC

�

Following Bigolin [7], we note that

PH = O + Ō

and that we have the short exact sequence

0 → C → O⊕ Ō → O + Ō → 0

or

0 → C → O⊕ Ō → PH → 0 .

Hence we have the following portion of the subsequent long exact sequence,

0 → Ȟ0(C) → Ȟ0(O ⊕ Ō) → Ȟ0(PH) →

Ȟ1(C) → Ȟ1(O ⊕ Ō) → Ȟ1(PH) → Ȟ2(C) → · · ·

which on a compact complex manifold becomes (using the fact that global
holomorphic, global anti-holomorphic and global pluri-harmonic functions are
constant)

0 → C → C⊕C → C → Ȟ1(C) →

Ȟ1(O)⊕ Ȟ1(Ō) → Ȟ1(PH) → Ȟ2(C) → · · · .
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Exactness at the first three terms of the sequence gives that the map C →
Ȟ1(C) must be the zero map. Hence we have the clipped long exact sequence,

0 → Ȟ1(C) → Ȟ1(O)⊕ Ȟ1(Ō) → Ȟ1(PH) → Ȟ2(C) → · · · .

We rewrite this as,

0 → H1(C) → H0,1

∂̄
⊕H1,0

∂ → H1,1
BC → H2(C) → · · · .

If b2 = 0 then H2(C) = 0 and we have the short exact sequence,

0 → H1(C) → H0,1
∂̄

⊕H1,0
∂ → H1,1

BC → 0 .

Thus,

T h e o r em 6.2. On a compact complex manifold with b2 = 0, we have

h1,1BC = hn−1,n−1
A = 2h0,1

∂̄
− b1 .

Our formula for h1,1BC generalizes even further by results of Tosatti [19]
which we follow here virtually verbatim . Tosatti gives the short exact sequence
of sheaves,

0 → R → O
Im
→ P → 0

where P is the sheaf of real valued pluriharmonic functions. He thus also gives
the resulting, long exact sequence in sheaf cohomoloby,

0 → H0(R) → H0(O) → H0(P)

→ H1(R) → H1(O) → H1(P) → H2(R) → · · · .

The first three terms form a short exact sequence,

0 → R → R2 → R → 0

so that one has,

0 → H1(R) → H1(O) → H1(P) → H2(R)
π0,2

→ H2(O) → · · · .

The map, π0,2, is the projection to the 0, 2 part of H2(R) ∼= H2
deRham(R)

followed by the isomorphism, H2(O) ∼= H0,2
∂̄

. We have

ker(π0,2) = H1,1(R)
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where H1,1(R) is the subgroup of H2(R) of deRham classes which have a rep-
resentative which is a real d-closed 1, 1-form. Thus one has the exact sequence
of real vector spaces,

0 → H1(R) → H1(O) → H1(P) → H1,1(R) → 0 .

Note that

dimR(H
1(R)) = dimC(H

1(C)) = b1

dimR(H
1(O)) = 2dimC(H

1(O)) = 2h0,1
∂̄

and

dimR(H
1(P)) = dimC(H

1(PH)) = h1,1BC .

Thus

b1 − 2h0,1
∂̄

+ h1,1BC − dimR(H
1,1(R)) = 0

and

Th e o r em 6.3. On a compact complex manifold, we have

h1,1BC = 2h0,1
∂̄

− b1 + dimR(H1,1(R)) .

On a compact complex 3-fold, if we can calculate h1,2BC or h2.2BC then we can
know the BC-A cohomology completely in terms of Dolbeault and Frölicher
terms. Consider the following expression of h2,1A ,

h2,1A = h2,1∂ − l2,0
∂̄

+ g2,1∂ + l2,1∂

= h1,2
∂̄

− l0,2∂ + g2,1∂ + l2,1∂ .

We know from the almost exact sequence

0 → L2,1
∂ → H3,1

∂
→ H3,1

A → H3,2
BC → H3,2

∂
→ H3,2

A → 0

(which we note is exact at each term except at H3,2

∂
) that

l2,1∂ = h3,1
∂̄

− h3,1A + h3,2BC − (h3,2
∂̄

+ k3,2) + h3,2A .

We have from equation (5) and equation (4) that

h3,2BC = h3,2
∂̄

+ (−1)2(h3,1BC − (h3,1
∂̄

+ k3,1) + h3,1A )
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= h0,1
∂̄

+ h3,1
∂̄

− h3,1
∂̄

− k2,0 + h2,0
∂̄

= h0,1
∂̄

− k2,0 + h2,0
∂̄

.

Plugging this into the expression for l2,1∂ just above, we have

l2,1∂ = h0,2
∂̄

− h2,0
∂̄

+ h0,1
∂̄

− k2,0 + h2,0
∂̄

− (h0,1
∂̄

+ k3,2) + k1,0

= h0,2
∂̄

− k2,0 .

Notice that this calculation follows through without using the assumptions,
b1 = 0 or b2 = 0. We have instead used the fact that k3,2 = k1,0, from a Serre
duality that can be proved using harmonic representations of HA and HBC :

Kp,q = Hp,q
∂̄

/im(∂) ∩Hp,q
∂ /im(∂̄) ⊆ Hp,q

A ,

and thus
⋆Kp,q = Kn−p,n−q ⊆ Hn−p,n−q

BC .

We will now show g2,1∂ = 0. We know that

g2,1∂ = g3,0
∂̄

= g0,3∂ .

Consider the following expression of h0,3A ,

h0,3A = h0,3∂ − l0,2
∂̄

+ g0,3∂ + l0,3∂

= h0,3
∂̄

− l2,0∂ + g0,3∂ + l0,3∂ .

Previously, we proved that for any n-dimensional complex manifold, X, a ∂̄-
closed, ∂-exact n, 0-form is zero. Explicitly, let φ be an n − 1, 0-form. If ∂φ
is ∂̄-closed, then ∂φ = 0. In other words, for any compact complex manifold,
ln−1,0
∂ = 0. Thus,we have above, l2,0∂ = 0. We also showed previously that

h0,3A = h0,3
∂̄

= k0,3. Thus g2,1∂ = g0,3∂ = 0 and l0,3∂ = 0.

We proceed to calculate l0,2∂ . Recall that

ln−p−2,n−q
∂ = hp+1,q

∂̄
− lp,q∂ − kp+1,q .

Thus
l0,2∂ = h2,1

∂̄
− l1,1∂ − k2,1 .

To calculate l1,1∂ we consider the equation,

Ker(∂ : Hp,q
∂̄

→ Hp+1,q
∂̄

) = Gp,q
∂ ⊓ (Hp,q

∂̄
/im(∂)) ⊕ Kp,q ⊕ ∂Lp−1,q

∂
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with p, q = 2, 1 . Thus

dim(Ker(∂ : H2,1
∂̄

→ H3,1
∂̄

)) = k2,1 + dim(G2,1
∂ ⊓ (H2,1

∂̄
/im(∂))) + l1,1∂ .

We have g2,1∂ = 0 so

dim(G2,1
∂ ⊓ (H2,1

∂̄
/im(∂))) = 0 .

Thus
l1,1∂ = dim(Ker(∂ : H2,1

∂̄
→ H3,1

∂̄
))− k2,1 .

Define as temporary shorthand,

kerp,q = dim(Ker(∂ : Hp,q
∂̄

→ Hp+1,q
∂̄

))

so that we have,
l1,1∂ = ker2,1 − k2,1 .

Also define as temporary shorthand,

imp,q = dim(im(∂ : Hp−1,q
∂̄

→ Hp,q
∂̄

)) .

We shall calculate ker2,1 from the Frölicher spectral sequence as we did above
for imp,0. We have

hp,q2 = kerp,q − imp,q

and
hp,q
∂̄

= kerp,q + imp+1,q = kerp,q + kerp+1,q − hp+1,q
2 .

Thus,

hp,q
∂̄

= kerp,q + kerp+1,q − hp+1,q
2

hp+1,q

∂̄
= kerp+1,q + kerp+2,q − hp+2,q

2

...

hn−1,q
∂̄

= kern−1,q + kern,q − hn,q2

hn,q
∂̄

= kern,q

and
n∑

j=p

(−1)j−phj,q
∂̄

= kerp,q −
n−1∑

j=p

(−1)j−phj+1,q
2 .

Thus,

kerp,q =
n∑

j=p

(−1)j−phj,q
∂̄

+
n−1∑

j=p

(−1)j−phj+1,q
2 .
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For n = 3 and p, q = 2, 1 this is simply,

ker2,1 = h2,1
∂̄

− h3,1
∂̄

+ h3,12 .

Hence,
l1,1∂ = h2,1

∂̄
− h3,1

∂̄
+ h3,12 − k2,1

and

l0,2∂ = h2,1
∂̄

− l1,1∂ − k2,1

= h2,1
∂̄

− (h2,1
∂̄

− h3,1
∂̄

+ h3,12 − k2,1)− k2,1

= h3,1
∂̄

− h3,12 .

Finally,

h2,1A = h1,2
∂̄

− l0,2∂ + g2,1∂ + l2,1∂

= h1,2
∂̄

− (h3,1
∂̄

− h3,12 ) + 0 + (h0,2
∂̄

− k2,0)

= h1,2
∂̄

+ h3,12 − k2,0 .

Thus

P r o p o s i t i o n 6.1. On a general compact complex three-fold,

h1,2BC = h1,2
∂̄

+ h3,12 − k2,0 .

Equation (1) with n = 3 and p = 2 gives

h2,2BC = −h2,0BC + (h2,0
∂̄

+ k2,0)− h2,0A + h2,1BC − (h2,1
∂̄

+ k2,1)

+h2,1A + (h2,2
∂̄

+ k2,2)− h2,2A + h2,3BC − (h2,3
∂̄

+ k2,3) + h2,3A

= −h2,0
∂̄

+ h2,0
∂̄

+ k2,0 − h0,2
∂̄

+ h1,2
∂̄

+ h3,12 − k2,0 − h2,1
∂̄

− k2,1

+h1,2
∂̄

+ h3,12 − k2,0 + h1,1
∂̄

+ k1,1 − 2h0,1
∂̄

+ b1

−dimR(H
1,1(R)) + h0,1

∂̄
+ h2,0

∂̄
− k2,0 − h1,0

∂̄
− k1,0 + k1,0

= h2,0
∂̄

+ h1,2
∂̄

− h0,2
∂̄

+ h1,1
∂̄

− h1,0
∂̄

− h0,1
∂̄

+ b1

−dimR(H
1,1(R)) + 2h3,12 − 2k2,0 + k1,1 − k1,2 .

So,

h2,2BC = −h0,1
∂̄

− h0,2
∂̄

− h1,0
∂̄

+ h1,1
∂̄

+ h1,2
∂̄

+ h2,0
∂̄

+ 2h3,12 + k1,1(7)

−k1,2 − 2k2,0 + b1 − dimR(H1,1(R)) .
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We also note for future use that we can just as easily write the formula for h2,2BC

in terms of h1,1BC = ȟ1(PH), Dolbeault, Frohlicher and ki,j :

h2,2BC = −h1,1BC + h0,1
∂̄

− h0,2
∂̄

− h1,0
∂̄

+ h1,1
∂̄

+h1,2
∂̄

+ h2,0
∂̄

+ 2h3,12 + k1,1 − k1,2 − 2k2,0 .

We summarize with a table of our results.

Bott-Chern cohomology on a compact complex 3-fold

hp,qBC q = 0 q = 1 q = 2 q = 3

p = 0 1 k1,0 h2,0
∂̄

k3,0

p = 1 k1,0 h1,1BC h1,2
∂̄

+ h3,12 − k2,0 h0,2
∂̄

p = 2 h2,0
∂̄

h1,2
∂̄

+ h3,12 − k2,0 h2,2BC h0,1
∂̄

+ h2,0
∂̄

− k2,0

p = 3 k3,0 h0,2
∂̄

h0,1
∂̄

+ h2,0
∂̄

− k2,0 1

where

h1,1BC = 2h0,1
∂̄

− b1 + dimR(H
1,1(R))

and h2,2BC is given in terms of b1, dimR(H1,1(R)), Dolbeault, Frölicher and kp,q

in equation (7) .

7 - Examples of Bott-Chern/Aeppli cohomology on compact com-
plex 3-folds

7.1 - BC-A cohomology on hypothetical complex S6

For a hypothetical complex structure on S6, it has been shown by Gray [12]
that h3,0

∂̄
= 0 and by Ugarte [21] that h0,1

∂̄
= 1+h0,2

∂̄
, h1,1

∂̄
= 1+h1,2

∂̄
+h1,0

∂̄
−h2,0

∂̄

and that h3,12 = h0,22 . (See also Brown [9].) We also note of course that since
bj = 0 for 0 < j < 6, we have kp,q = 0 for 0 < p+ q < 6 .

So for hypothetical complex S6 we can write from our results just above,
h1,2BC = h1,2

∂̄
+h0,22 . We can also write from our results just above, h1,1BC = 2h0,1

∂̄
=
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2 + 2h0,2
∂̄

and

h2,2BC = −h1,1BC + h0,1
∂̄

− h0,2
∂̄

− h1,0
∂̄

+ h1,1
∂̄

+ h1,2
∂̄

+ h2,0
∂̄

+ 2h3,12

= −2− 2h0,2
∂̄

+ 1 + h0,2
∂̄

− h0,2
∂̄

− h1,0
∂̄

+ h1,1
∂̄

+ h1,2
∂̄

+ h2,0
∂̄

+ 2h3,12

= −1− 2h0,2
∂̄

− h1,0
∂̄

+ (1 + h1,2
∂̄

+ h1,0
∂̄

− h2,0
∂̄

) + h1,2
∂̄

+ h2,0
∂̄

+ 2h0,22

= 2h1,2
∂̄

+ 2h0,22 − 2h0,2
∂̄

.

We note that these agree with the formula h1,1BC + h2,2BC = 2h1,2BC + 2 derived by
the author in [13]. We summarize this with a table:

Bott-Chern cohomology on hypothetical complex S 6

hp,qBC q = 0 q = 1 q = 2 q = 3

p = 0 1 0 h2,0
∂̄

0

p = 1 0 2 + 2h0,2
∂̄

h1,2
∂̄

+ h0,22 h0,2
∂̄

p = 2 h2,0
∂̄

h1,2
∂̄

+ h0,22 2h1,2
∂̄

+ 2h0,22 − 2h0,2
∂̄

1 + h0,2
∂̄

+ h2,0
∂̄

p = 3 0 h0,2
∂̄

1 + h0,2
∂̄

+ h2,0
∂̄

1

We note that a calculation of the Bott-Chern and Aeppli cohomologies on a
hypothetical complex structure on S6 can be made using the structure of its
double complex given in Angella [4]. Angella’s construction is based on the
triviality of the deRham cohomology and the computation of the Dolbeault
cohomology and the Frölicher spectral sequence done by Ugarte [21]. I would
again like to thank the anonymous referee for this observation.

7.2 - Bott-Chern Aeppli cohomology of a Calabi-Eckmann 3-fold

We shall compute the Bott-Chern/Aeppli cohomology for a more concrete
case. Consider the Calabi-Eckmann 3-fold, diffeomorphic to S3 × S3. We
will calculate the Bott-Chern/Aeppli cohomology in this case, replicating the
calculation of Angella and Tomassini [5]. The Dolbeault cohomology of Calabi-
Eckmann manifolds was originally calculated by Borel. For our particular
Calabi-Eckmann complex 3-fold ( see for example Cirici [10] ) the Dolbeault
cohomology is
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Dolbeault cohomology of the Calabi-Eckmann complex 3-fold

hp,q
∂̄

q = 0 q = 1 q = 2 q = 3

p = 0 1 1 0 0

p = 1 0 1 1 0

p = 2 0 1 1 0

p = 3 0 0 1 1

Note, that we have b1 = b2 = 0, h2,1
∂̄

= 1 and h0,2
∂̄

= h3,1
∂̄

= 0. Thus h3,12 = 0.

We also must have k1,2 = 0 or k1,2 = 1. We show that k1,2 = 0. Indeed, the
Dolbeault cohomology in this case (see [5]) has nonzero, θ ∈ H0,1

∂̄
and nonzero

∂θ ∈ H1,1
∂̄

. One can check that H2,1
∂̄

is generated by θ̄∂θ = ∂(θ̄θ). Thus the

map H2,1
∂̄

→ H2,1
A in our sequence above is the 0-map and we conclude that

k2,1 = k1,2 = 0. Thus our table for Bott-Chern cohomology is given by

Bott-Chern cohomology of the Calabi-Eckmann 3-fold

hp,qBC q = 0 q = 1 q = 2 q = 3

p = 0 1 0 0 0

p = 1 0 2 1 0

p = 2 0 1 1 1

p = 3 0 0 1 1

This agrees with the calculation of the Bott-Chern cohomology for the Calabi-
Eckmann 3-fold done by Angella and Tomassini [5].

7.3 - Comparison with Angella’s calculation on the Iwasawa manifold and
its small deformations

Angella [3] gives the De Rham and Dolbeault cohomologies and calculates
the Bott-Chern/Aeppli cohomolgies on the Iwasawa manifold, I3, and its small
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deformations in the Kuranishi family of deformations due to Nakamura [14].
We will be following this presentation closely, using similiar notation in order to
show agreement with our results. Thus please see Angella [3] for fuller details
and clarification.

The Iwasawa manifold is a holomorphically parallelizable compact complex
three-fold with a global holomorphic coframe given by (see Angella [3], p. 39 )

φ1 = dz1, φ2 = dz2, φ3 = dz1 − z1dz2

where z1, z2, z3 are local coordinates given from I3 being a quotient space of
C3 by a discrete group action. The structure equations are easily seen to be

dφ1 = 0, dφ2 = 0, dφ3 = −φ1 ∧ φ2 .

For small deformations in the Kuranishi family of deformations of I3, there is
a global coframe of

∧1,0 I3 ,
{φ1

t , φ
2
t , φ

3
t } ,

where t = (t11, t12, t21, t22, t31, t32) ∈ ∆(ǫ, 0) ⊂ C6 and ∆(ǫ, 0) denotes an

open ball of radius ǫ centered at 0 . Define D(t) =

(
t11 t12
t21 t22

)
. The different

classes of the small Kuranishi deformations of I3 are defined according to the
parameter, t :

(i) : t11 = t12 = t21 = t22 = 0 (note, generically, we have t3k �= 0) ;

(ii) : (t11, t12, t21, t22) �= (0, 0, 0, 0), D(t) = 0 ;

(iii) : D(t) �= 0 .

Define

S =

(
σ11̄ σ22̄ σ21̄ σ12̄
σ11̄ σ22̄ σ21̄ σ12̄

)

where σ12 and σij, i = 1, 2, j = 1, 2 will be defined below in the structure
equations for classes ii) and iii) (see equation (8)).

The subclasses (ii.a) and (ii.b) of class (ii) are defined by

(ii.a) : D(t) = 0 and S has rank 1.

(ii.b) : D(t) = 0 and S has rank 2.

Similiarly, the subclasses (iii.a) and (iii.b) of class (iii) are defined by

(iii.a) : D(t) �= 0 and S has rank 1.

(iii.b) : D(t) �= 0 and S has rank 2.
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Define ζjt = zj +
∑2

k=1 tjkz̄
k for j = 1, 2, and

ζ3t = z3+

2∑

k=1

(t3k+t2kz
1)z̄k+

1

2
(t11t21(z̄

1)2+2t11t22z̄
1z̄2+t12t22(z̄

2)2)+D(t)z̄3 .

Thus, define φj
t = dζjt for j = 1, 2 and

φ3
t = dζ3t − z1dζ2t − (t21z̄

1 + t22z̄
2)dζ1t .

The structure equations for class (i) are:

dφ1
t = 0, dφ2

t = 0, dφ3
t = −φ1

t ∧ φ2
t .

For classes (ii) and (iii), the structure equations are given by

dφ1
t = 0, dφ2

t = 0 ,(8)

dφ3
t = σ12φ

1
t ∧ φ2

t + σ11̄φ
1
t ∧ φ̄1

t + σ12̄φ
1
t ∧ φ̄2

t

+σ21̄φ
2
t ∧ φ̄1

t + σ22̄φ
2
t ∧ φ̄2

t

where σ12 ∈ C and σij ∈ C, i = 1, 2, j = 1, 2 are complex numbers depending
only on t.

We shall be using notation as in Angella [3]: φIJ = φi1 ∧ · · · ∧ φip ∧ φj1 ∧
· · · ∧ φjq for multi-indices, I and J .

One can check that h3,12 = 2 for all the classes of deformations of I3: One

can check that, a priori, H3,1
∂̄

= ker(∂) and that,

H3,1
∂̄

= C < φ1231̄
t , φ1232̄

t > .

Since, H2,1
∂̄

⊆ C < φ121̄
t , φ122̄

t , φ131̄
t , φ132̄

t , φ231̄
t , φ232̄

t > for class (i) and

H2,1
∂̄

⊆ C < φ121̄
t , φ122̄

t , φ131̄
t −

σ22̄
σ12

φ123̄
t , φ132̄

t −
σ21̄
σ12

φ123̄
t ,

φ231̄
t −

σ12̄
σ12

φ123̄
t , φ232̄

t −
σ11̄
σ12

φ123̄
t >

for classes (ii) and (iii), we see that ∂ acts on H2,1
∂̄

as the zero map. Thus

im(∂ : H2,1
∂̄

→ H3,1
∂̄

) = 0 and h3,12 = 2.

We see from the 2, 1 -forms above, that φ121̄
t = ∂φ31̄

t and φ122̄
t = ∂φ32̄

t and
thus k2,1 ≤ 4. We shall show that k1,2 = 4 on the Iwasawa manifold and its
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classes of deformations (i), (ii) and (iii). In fact, Angella [3] shows that the
2, 1 -forms,

{φ131̄
t , φ132̄

t , φ231̄
t , φ232̄

t }

for class (i) and

{φ131̄
t −

σ22̄
σ12

φ123̄
t , φ132̄

t −
σ21̄
σ12

φ123̄
t , φ231̄

t −
σ12̄
σ12

φ123̄
t , φ232̄

t −
σ11̄
σ12

φ123̄
t }

for classes (ii) and (iii), are ∂̄Jt-harmonic with respect to the hermitian metric
gt = φ1

t ⊙ φ̄1
t + φ2

t ⊙ φ̄2
t + φ3

t ⊙ φ̄3
t .

We can show that for the class of deformations (i), the 2, 1-forms

{φ131̄
t , φ132̄

t , φ231̄
t , φ232̄

t }

are also ∂Jt-harmonic: It is easy to see from the structure equations that these
are ∂-closed. Now observe that (using the notation of Wells [22])

∗̄φ131̄
t = φ22̄3̄

t , ∗̄φ132̄
t = −φ21̄3̄

t

∗̄φ231̄
t = −φ12̄3̄

t , ∗̄φ232̄
t = φ11̄3̄

t

and that these are also ∂-closed. Thus these 2, 1-forms for class (i)- are ∂∗-
closed and hence ∂Jt-harmonic. Since they are also ∂̄Jt-harmonic, we know
that C < φ131̄

t , φ132̄
t , φ231̄

t , φ232̄
t > is orthogonal to im(∂̄) + im(∂). We conclude

that k2,1 ≥ 4 for the class (i). Thus, k2,1 = 4 for class (i).
For deformation classes, (ii) and (iii), consider the five dimensional complex

vector space,
W = C < φ123̄

t , φ131̄
t , φ132̄

t , φ231̄
t , φ232̄

t > .

One can check that this is also

W = C < ∂̄∗φ121̄2̄
t , φ131̄

t −
σ22̄
σ12

φ123̄
t , φ132̄

t −
σ21̄
σ12

φ123̄
t ,

φ231̄
t −

σ12̄
σ12

φ123̄
t , φ232̄

t −
σ11̄
σ12

φ123̄
t > .

Recalling the orthogonal decomposition, E2,1 = H2,1
∂̄

⊕ im(∂̄)⊕ im(∂̄∗) , we see

that W is orthogonal to im(∂̄).
We also have

W = C < ∂φ33̄
t , φ131̄

t +
σ11̄
σ12

φ123̄
t , φ132̄

t +
σ21̄
σ12

φ123̄
t ,

φ231̄
t +

σ12̄
σ12

φ123̄
t , φ232̄

t +
σ22̄
σ12

φ123̄
t >
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noting that for the first basis element we have

∂φ33̄
t = σ12φ

123̄
t + σ11̄φ

131̄
t + σ21̄φ

132̄
t + σ12̄φ

231̄
t + σ22̄φ

232̄
t

and that the other four basis elements are ∂-harmonic. Thus we see that W ∩
im(∂) = C < ∂φ33̄

t >. We also have that

W = C <
1

σ12
∂φ33̄

t , φ131̄
t −

σ22̄
σ12

φ123̄
t , φ132̄

t −
σ21̄
σ12

φ123̄
t ,

φ231̄
t −

σ12̄
σ12

φ123̄
t , φ232̄

t −
σ11̄
σ12

φ123̄
t >

since for small t, the matrix,




1 −
σ22̄
σ12

−
σ22̄1
σ12

−
σ12̄
σ12

−
σ11̄
σ12

σ11̄
σ12

1 0 0 0

σ21̄
σ12

0 1 0 0

σ12̄
σ12

0 0 1 0

σ22̄
σ12

0 0 0 1




has non-zero determinant. Note that the basis elements

{φ131̄
t −

σ22̄
σ12

φ123̄
t , φ132̄

t −
σ21̄
σ12

φ123̄
t , φ231̄

t −
σ12̄
σ12

φ123̄
t , φ232̄

t −
σ11̄
σ12

φ123̄
t }

are ∂̄-closed and ∂-closed. Denote,

V = C < φ131̄
t −

σ22̄
σ12

φ123̄
t , φ132̄

t −
σ21̄
σ12

φ123̄
t , φ231̄

t −
σ12̄
σ12

φ123̄
t , φ232̄

t −
σ11̄
σ12

φ123̄
t > .

Thus, V/(V ∩ (im(∂̄) + im(∂))) ⊆ K2,1 . Since

V/(V ∩ (im(∂̄) + im(∂))) = V/(V ∩C < ∂φ33̄ >)

we have that dimC(V/(V ∩ (im(∂̄) + im(∂)))) = 4 and k2,1 ≥ 4. We conclude
that k2,1 = 4 for deformation classes, (ii) and (iii).

It is clear from H0,1
∂̄

= C < φ̄t
1
, φ̄t

2
> that k1,0 = k0,1 = 2.
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We now calculate k2,0 for each of the three classes. For class (i), we have
that

H2,0
∂̄

= C < φ12
t , φ13

t , φ23
t >

where we note that these basis elements are also ∂-closed and that φ12
t = ∂φ3

t .
Thus for class (i), k2,0 = 2.

For class (ii), we have that

H2,0
∂̄

= C < φ12
t , αφ13

t + βφ23
t >

with α and β not both zero. As before, the generators are also ∂-closed and
φ12
t = ∂φ3

t . Thus for class (ii), k
2,0 = 1.

For class (iii), we have that H2,0
∂̄

= C < φ12
t > and as before, φ12

t = ∂φ3
t .

Thus for class (iii), k2,0 = 0.

We now calculate k1,1 for each of the three classes. For class (i), K1,1 has

a basis consisting of {φ11
t , φ12

t , φ21
t , φ22

t }. Thus, k1,1 = 4 for class (i).
For classes (ii.a) and (iii.a),

∂̄φ3
t = σ11̄φ

11̄
t + σ12̄φ

12̄
t + σ21̄φ

21̄
t + σ22̄φ

22̄
t

and
∂φ3

t = −(σ11̄φ
11̄
t + σ21̄φ

12̄
t + σ12̄φ

21̄
t + σ22̄φ

22̄
t )

are non-zero but linearly dependent over C (since S has rank 1) and thus a

non-zero linear combination of {φ11
t , φ12

t , φ21
t , φ22

t } is in im(∂) + im(∂̄). Hence,
k1,1 = 3 in classes (ii.a) and (iii.a).

For classes (ii.b) and (iii.b),

∂̄φ3
t = σ11̄φ

11̄
t + σ12̄φ

12̄
t + σ21̄φ

21̄
t + σ22̄φ

22̄
t

and
∂φ3

t = −(σ11̄φ
11̄
t + σ21̄φ

12̄
t + σ12̄φ

21̄
t + σ22̄φ

22̄
t )

are non-zero and linearly independent over C. Thus two linearly independent
non-zero linear combinations of {φ11

t , φ12
t , φ21

t , φ22
t } are in im(∂)+im(∂̄). Hence,

k1,1 = 4− 2 = 2 in classes (ii.b) and (iii.b).
Clearly, k3,0 = h0,3

∂̄
= 1 for all the classes of small deformations of the

Iwasawa manifold being considered. We summarize the ki,j with the table,
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Table of ki,j for Classes of Deformations of the Iwasawa manifold

ki,j k1,0 k1,1 k1,2 k2,0 k3,0

(i) 2 4 4 2 1

(ii.a) 2 3 4 1 1

(ii.b) 2 2 4 1 1

(iii.a) 2 3 4 0 1

(iii.b) 2 2 4 0 1

We also include here the calculation of the Dolbeault cohomology for the
classes of small deformations of the Iwasawa manifold originally done by Naka-
mura [14]. (See also Angella [3]),

Table of hi,j

∂̄
for Classes of Deformations of the Iwasawa manifold

hi,j
∂̄

h1,0
∂̄

h0,1
∂̄

h1,1
∂̄

h1,2
∂̄

h0,2
∂̄

h2,0
∂̄

h3,0
∂̄

(i) 3 2 6 6 2 3 1

(ii.a) 2 2 5 5 2 2 1

(ii.b) 2 2 5 5 2 2 1

(iii.a) 2 2 5 4 2 1 1

(iii.b) 2 2 5 4 2 1 1

Let us calculate h1,1BC for all the classes of small Kuranishi deformations of
I3. We have

h1,1BC = 2h0,1
∂̄

− b1 + dimR(H1,1
dR (R)) .

One can check that for all five classes of deformations we have that

R < iφ11̄
t , iφ22̄

t , φ12̄
t − φ21̄

t , i(φ12̄
t + φ21̄

t ) > ⊆ H1,1
dR (R) .

Thus, dimR(H
1,1
dR (R)) ≥ 4. We wish to show dimR(H

1,1
dR (R)) = 4 for all the
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classes of deformations. Any d-closed 1, 1-form must also be ∂̄-closed and ∂-
closed. Such a 1, 1-form independent of

R < iφ11̄
t , iφ22̄

t , φ12̄
t − φ21̄

t , i(φ12̄
t + φ21̄

t ) >

will be written as

ψ = αφ13̄ + βφ23̄ + γφ31̄ + δφ32̄ + ǫφ33̄

where the α, β, γ, δ and ǫ are global smooth complex valued functions. Applying
∂̄ and ∂-closedness and projecting onto

C < φ11̄2̄, φ21̄2̄, φ121̄, φ122̄ >

gives the matrix equation




−σ12 0 −σ12̄ −σ11̄

0 −σ12 −σ22̄ −σ21̄

σ12̄ −σ11̄ σ12 0

σ22̄ −σ21̄ 0 σ12







α

β

γ

δ


 =




0

0

0

0


 .

We note that this is similiar to the equation in Angella [3], p.47. The matrix
above has rank 4 for small deformations in classes (i), (ii), and (iii). Thus we
must have α = β = γ = δ = 0. We then can easily show that ǫ = 0:

∂(ǫφ33̄) = (∂ǫ) ∧ φ33̄ − ǫφ123̄ + ǫφ3 ∧ (∂φ3) = 0 .

Each of these three terms are linearly independent, i.e. the only term in φ123̄,
when all expanded, is the middle term. Thus we must have ǫ = 0. Hence
we conclude that for the Iwasawa manifold and its small deformations in the
Kuranishi family, dimR(H

1,1
dR (R)) = 4. One can see that we obtain for all the

classes of deformation (i), (ii), and (iii),

h1,1BC = 2h0,1
∂̄

− b1 + dimR(H1,1
dR (R)) = 2 ∗ 2− 4 + 4 = 4 .

This agrees with Angella [3] p. 49.

Using this value of h1,1BC , the values for ki,j in the table above, Angella’s

calculations of hp,q
∂̄

in the above table for hi,jBC , we get agreement with Angella’s
calculation of the rest of the Bott-Chern cohomology. For example,

h2,2BC = −h1,1BC + h0,1
∂̄

− h0,2
∂̄

− h1,0
∂̄

+ h1,1
∂̄

+ h1,2
∂̄

+ h2,0
∂̄

+2h3,12 + k1,1 − k1,2 − 2k2,0 .



[37] on compact complex 3-folds 61

For the different classes of deformations, the reader can check that this is:

Class (i) (iia) (iib) (iiia) (iiib)

h2,2BC 8 7 6 7 6

The reader can also check the calculation of h1,2BC , for each of the three classes

(i), (ii), and (iii) using the equation, h1,2BC = h1,2
∂̄

+ h3,12 − k2,0 which produces
the following values:

Class (i) (ii) (iii)

h1,2BC 6 6 6
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