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that if a sequence of potentials in X are representable by G and ma-
jorized by some potential converges in the natural topology to a super-
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1 - Introduction

The integral representation of potentials in the classical Potential Theory
was established by F. Riesz [21] in 1925. The result of Riesz affirms that if p
is a potential (that is, a nonnegative superharmonic function whose the only
nonnegative harmonic minorant is 0) in a Green domain Ω of Rn, n ≥ 2, then
p has a representation of the form p = Gµ :=

∫
G(�, y)dµ(y), where G is the

Green kernel of Ω and µ is a nonnegative Radon measure on Ω. A similar
representation was given by R. S. Martin [18] in 1941 for the nonnegative
harmonic functions on Ω by means of the boundary ∆(Ω) of Ω (the Martin
boundary of Ω) in a suitable compactification Ω̂ of Ω and a kernel K : Ω ×
∆(Ω) →]0,+∞], called the Martin kernel of Ω. Any nonnegative harmonic
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function h on Ω has a representation h = Kµ :=
∫
K(., y)dµ(y), where µ is a

measure on ∆(Ω). This representation is unique if the measure µ is supposed to
be carried by ∆1(Ω), the minimal Martin boundary of Ω (in general �= ∆(Ω)).

Choquet [8] established in 1956 that any point of a metrizable compact
convex K of a locally convex topological vector space is the barycenter of a
probability measure µ carried by the extreme elements of K [8, Theor. 30.20].
This representation is not unique in general, but if the cone S = R+.K is a
lattice in its own order (that is, the order on S defined by: u ≺ v if and only
if there exists w ∈ S such that v = u + w) then µ is unique. Since a convex
compact appears as a compact base of a convex cone, this leads to the study
the integral representation in the convex cones with compact bases of locally
convex topological vector spaces by Choquet. The integral representation in
the cones with compact base was extended by Choquet to the more general
framework of weakly complete convex cones which do not have necessarily a
compact base by means of the concept of conical measure.

The Choquet integral representation theorem in a convex cone with com-
pact base allows to retrieve the result of Riesz. Indeed, there is on the cone
S+(Ω) of the nonnegative superharmonic functions on a Green domain Ω of Rn

(with Green kernel G) a topology for which it has a compact base and whose
extreme elements are nonnegative harmonic functions (minimal nonnegative
harmonic function), or the functions of the form α(y)G(�, y), y ∈ Ω, where α
is a nonnegative continuous function on Ω. It was also used by R.-M Hervé in
1960 to establish in her thesis ([16, Chap. IV]) the integral representation for
the nonnegative superharmonic functions in the setting of the Brelot axiomatic
theory by means of the extreme elements of the cone S+(Ω) of the nonnegative
superharmonic functions on a locally compact space Ω with countable base,
endowed with a suitable topology for which it has a compact base. Moko-
bodzki [19] obtained this integral representation in the cone S+(Ω) endowed
with the topology of convergence in graph (which coincides with that of R.-M
Hervé) by using the ”reduite” functions.

These methods and results apply to the standard H-cones of Boboc, Bucur
and Cornea [5] and it seems that they can be extended to the nonnegative su-
perharmonic functions in a balayage spaces introduced by Bliedtner and Hansen
at the early 1980’s.

In a balayage space (X,W) admitting a Green kernel G, Hansen and Netuka
recently established in [15] that if a sequence of nonnegative Radon measures
(µn) on X is such that the functions Gµn =

∫
G(�, y)dµn are bounded by some

potential q on X and converges (pointwise) to a potential p outside a polar set
(a semi-polar set if (X,W) is a harmonic space), then the potential p admits an
integral representation of the form p = Gµ (the measure µ is the (weak) limit



[3] on the integral representation 3

of the sequence (µn)).

Our purpose in this paper is to study the question of the integral repre-
sentation in the framework of balayage spaces (X,W) by using the Choquet
method. This will allow us to get the integral representation of the nonnegative
superharmonic functions and that of the nonnegative harmonic functions in X.
As an application, we prove that, if the space X has a Green kernel G, then any
potential which is a limit in the topology of the cone S+(X) of nonnegative su-
perharmonic ≥ 0 on X (the natural topology) or almost everywhere (relatively
to a resolvent whose cone of excessive functions is equal to W) of a sequence of
potentials representable by G, can be represented by G. This result is stronger
than a recent result of Hansen-Netuka [15, Theor. 1.1].

We also show that if the cone S+(X) is closed in the cone of the excessive
functions which are finite V-a.e. of a resolvent family V of (Borel) kernels on
X and whose cone of excessive functions is equal to W and if the space X has
a Green kernel G and the potentials of support superharmonic reduced to a
single point are proportional, then any potential on X is the Green potential
of a nonnegative Radon measure on X.

Notation and definitions. Let X be a locally compact space with count-
able base, we denote C(X) (resp. C+(X), resp. C0(X)) the set of all real
continuous (resp. nonnegative and continuous, resp. continuous and vanishing
at infinity) functions on X, and by B(X) (resp. B+(X), resp. B+

b (X)) the set
of all (resp. nonnegative, resp. nonnegative and bounded) Borel measurable
functions on X with values in R. We denote by K+(X) and M+(X) respec-
tively the set of all nonnegative real continuous functions with compact support
and that of all nonnegative Radon measures on X. If µ ∈ M+(X) we denote
by Supp(µ) the support of µ. For any function f : U → R, where U is an open
subset of X, we denote by f̂ the lower semi-continuous (l.s.c. in abbreviated
form) regularized of f . Recall that f̂ is defined by f̂(x) = lim infy→x f(y) for

any x ∈ U and that f̂ is the greatest l.s.c. minorant of the function f on U . If
(ui) is a family of functions on an open subset U of X (with values in R), we

denote înfui the function �inf ui.

2 - Some background of the theory of balayage spaces

2.1 - Balayage spaces

Let X be a locally compact space with countable base, andW a convex cone
of l.s.c. functions on X with values in [0,+∞]. The coarsest topology on X
which is at least as fine as the initial topology and for which all functions of W
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are continuous will be called the W-fine topology or simply the fine topology
if there is no risk of confusion. We will use the prefix ”fine(ly)” or ”f-” to
distinguish topological concepts related to the fine topology from those relative
to the initial topology.

D e f i n i t i o n 2.1. The pair (X,W) is called a balayage space if the following
axioms are satisfied:

(b1) sup vn ∈ W for any increasing sequence (vn) of elements of W.

(b2) înf V
f
∈ W for every non-empty subset V of W (where ĝf denotes the

finely l.s.c. regularized function of g).

(b3) If u, v′, v′′ ∈ W are such that u ≤ v′+v′′, then there exist u′, u′′ ∈ W such
that u = u′+u′′, u′ ≤ v′ and u′′ ≤ v′′ (the Riesz decomposition property).

(b4) (i) The functions of W are linearly separating (i.e., for any x, y ∈ X,
x �= y and for any λ ∈ [0,+∞[, there exists v ∈ W such that v(x) �=
λv(y)).

(ii) For any w ∈ W, we have w = sup{v ∈ W ∩ C(X) : v ≤ w}.

(iii) There exist u0, v0 ∈ W ∩ C(X) and > 0 such that u0/v0 ∈ C0(X).

The elements of W will be called the nonnegative hyperharmonic functions
on X, the set of continuous real potentials on X is defined by

P := {p ∈ W ∩ C(X) : ∃v ∈ W ∩ C(X), v > 0 and
p

v
∈ C0(X)}.

A potential p ∈ P is called strict if the measures µ, ν ∈ M+(X) coincide
provided that

∫
pdµ =

∫
pdν < +∞ and

∫
udµ ≤

∫
udν, for all u ∈ W.

A convex cone F ⊂ C+(X) is called a function cone if F is linearly sepa-
rating and if, for any function f ∈ F , there exists g ∈ F such that g > 0 and
f/g ∈ C0(X). A function f ∈ F is called strict, if measures µ, ν ∈ M+(X)
coincide provided that µ(f) = ν(f) < +∞ and µ(g) = ν(g), for any function
g ∈ W. Given an ∧-stable function cone F and an increasing additive func-
tional T : F → [0, +∞), there exists a unique measure µ ∈ M+(X) such that
T (f) =

∫
fdµ for any function f ∈ F . If (X,W) is a balayage space, then P is

an ∧-stable function cone and

W = S(P) := {sup pn : (pn) ⊂ P increasing},

P is the greatest function cone in W and there exists a strict p ∈ P (obtained

by taking sums

∞∑

n=1

αnpn, where (pn) is a sequence in P separating M+(X) and

(αn) is a suitable sequence of real numbers > 0).
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R ema r k 2.2. If the axiom (b2) in the above definition is satisfied, then

înfV = înf
f
V ∈ W, moreover, the set {înfV < inf V} is finely meager for any

family V ⊂ W ([4, Chap. II, Prop. 4.3, p. 58]).

We define the reduite of a function u ∈ W on a subset A of X by

RA
u := Ru1A

= inf{v ∈ W, v ≥ u on A};

its l.s.c regularized function R̂A
u := R̂A

u is called the balayage of u on A.

The following properties are immediate:

1. RA
u ≤ u, RA

u = u on A.

2. RA
αu = αRA

u for all α ∈ R+.

3. If u ≤ v and A ⊂ B then RA
u ≤ RB

v and RA
u+v ≤ RA

u +RA
v .

4. If (An) is an increasing sequence of subsets of X and (sn) is an increasing
sequence in W, then supnR

An
sn = RA

s and supn R̂
A
sn = R̂A

s , where s =
supn sn and A =

⋃
nAn.

It follows from the above results and from the property (b3) (the Riesz
decomposition property) of the above definition of a balayage space that, for
any subset A of X, the mappings RA

� : W → [0,+∞]X , u �→ RA
u and R̂A

� :
W → W, u �→ R̂A

u are affine, that is,

5. for any u1, u2 ∈ W and α ∈ R+, we have RA
αu1+u2

= αRA
u1

+ RA
u2

and

R̂A
αu1+u2

= αR̂A
u1

+ R̂A
u2

(see [4, Ch.VI, Prop. 1.1, p. 243 ]), where it is
understood that 0.u = 0 for any u ∈ W.

We denote by M+(P) the set of measures µ ∈ M+(X) such that
∫
pdµ <

+∞ for any potential p ∈ P, p > 0. If µ ∈ M+(X) is of compact support, then
µ ∈ M+(P). Given a measure µ ∈ M+(P) and a set A ⊂ X, then, according
to ([4, Chap.VI, p. 256]), there exists a unique measure µA ∈ M+(X) such
that for any function u ∈ W, we have

∫
R̂A

u (x)dµ =

∫
udµA

x .

The measure µA is called the balayage measure of µ on A.
The balayage of measures allows us to characterize the hyperharmonic func-

tions, namely: a l.s.c. function u : X → R
+

belongs to W if and only if, for
any x ∈ X and for any neighborhood U of x, there exists a set V ⊂ U such

that x ∈ V , ε
X\V
x �= εx and

∫
uε

X\V
x ≤ u(x) ([4, Chap. II, Prop. 5.5, p. 68]).
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Let A ⊂ X, the base of A is the set b(A) = {x ∈ X : εAx = εx}. The set
A is called polar if εAx = 0 for any x ∈ X. It is called totally thin, respectively
semi-polar, if b(A) = ∅, respectively A is the countable union of totally thin
sets. Then A is polar ⇒ A is totally thin ⇒ A is semi-polar.

One can show that every point of X has a fundamental system of fine
neighborhoods which are compact in the initial topology. In particular, X
endowed with the fine topology is a Baire space.

2.2 - Resolvent associated with a balayage space.

Let X be a locally compact space with countable base. A kernel (or a Borel
kernel) on X is a function N : X × B(X) → [0,+∞] such that

1. For any A ∈ B(X), the function x �→ N(x,A) is B(X)-measurable.

2. For any x ∈ X, the function of sets A ∋ B(X) �→ N(x,A) is a (nonnega-
tive) measure on (X,B(X)).

If N is a Borel kernel on X and f ∈ B+(X), we denote Nf or N(f) the
function defined on X by

Nf(x) =

∫
f(y)N(x, dy), ∀x ∈ X,

where the integral is taken relatively to the measure N(x, �).
Let V = (Vλ)λ>0 be a family of (Borel) kernels on X. The family V is called

a resolvent (family) if,

Vα = Vβ + (α− β)VαVβ,∀α ≥ β > 0.

The resolvent V = (Vλ) it is said to be sub-markovian if λVλ1 ≤ 1,∀λ > 0.

The potential kernel of the resolvent V = (Vλ)λ>0 is the kernel on X defined
by V0 := supλ>0 Vλ. A (Borel) kernel V on X is said to be proper if V 1K is
bounded for every compact subset K of X. We say that a function u ∈ B+(X)
is V-supermedian if supλ>0 λVλu ≤ u. A V-supermedian function is said to be
V-excessive if supλ>0 λVλu = u. We denote by SV and EV respectively, the set
of all V-supermedian functions and that of all V-excessive functions associated
with V.

A semigroup P of Borel kernels on X is a family P = (Pt)t>0 of Borel
kernels Pt on X such that PsPt = Ps+t, ∀s, t > 0. The set of all the P-excessive
functions associated with P is

EP := {u ∈ B+(X) : sup
t>0

Ptu = u}.
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If P = (Pt) is a semigroup of Borel kernels on X, the family V = (Vλ) of
kernels defined by

Vλf(x) =

+∞∫

0

e−λtPtf(x)dt

for any λ > 0, any function f ∈ B+(X) on X and any x ∈ X, is a resolvent,
called resolvent associated with the semigroup P.

If V is the resolvent associated with the semigroup of kernels P = (Pt), then
EP = EV and, in this case, the potential kernel V0 of V is given by V0f(x) =∫ +∞
0 Ptf(x)dt, for any f ∈ B+(X).

Given a sub-markovian resolvent V = (Vλ)λ>0, resp. a sub-markovian semi-
group P = (Pt)t>0, on X such that limλ→0 λVλf = f , resp. limt→0 Ptf = f ,
for any f ∈ K+(X) and that there exists functions u, v ∈ EV, resp. u, v ∈ EP,
such that u, v > 0 and u/v ∈ C0(X), then (X,EV), resp. (X,EP), is a balayage
space if EV, resp. EP, separates the points of X or if the potential kernel V0 of
V, resp. P, is proper ([4, Chap. II, Sections 7 et 8]).

Conversely, if p is a bounded continuous potential in a balayage space
(X,W) satisfying 1 ∈ W (which is not really a restriction since we can always
be reduced to this case by considering the f -hyperharmonic functions, that is,
functions of the form u/f , u ∈ W, where f is a fixed continuous and finite func-
tion > 0 on X), then there exists a unique sub-markovian resolvent V, resp.
a sub-markovian semigroup P, such that EV ⊂ W ⊂ SV, resp. EP ⊂ W ⊂ SP,
and V01 = p, where V0 is the potential kernel associated with V . Moreover
EV = W, resp. EP = W, if and only if p is strict [4, Chap. II, Theor. 7.8 and
Theor. 8.6].

Let V = (Vλ) be a resolvent family of Borel kernels on X. We say that a
function f ∈ B(X) is finite V-a.e. if the function V0(1{f=±∞}) is identically
zero. In the following, we denote by EV the cone of all nonnegative excessive
functions of V which are finite V-a.e.

E x amp l e s 2.3. 1. Let P = (Pt)t>0 be the brownian semigroup on Rn,
n ≥ 3, defined by:

Ptf(x) =

∫
gt(x− y)f(y)λn(dy), ∀f ∈ B+(Rn),

where gt(x) := ( 1
2πt )

1/2 exp(−||x||2/2t), x ∈ Rn, and where λn is the Lebesgue
measure on Rn. Let W = EP, then (Rn,W) is a balayage space. Moreover,
every hyperharmonic function p ∈ C+

0 (R
n) is a potential.

2. Consider the semigroup T = (Tt)t>0 on R defined by: Tt(x, �) := εx−t,
t > 0, x ∈ R, (T is called a translation on R). Then (R,W) is a balayage space
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with W = ET. Furthermore, any increasing function p ∈ C+(R) is a potential if
and only if limx→−∞ p(x) = 0, (i.e. P is the set of all functions x �→ µ(]−∞, x])
where µ ∈ M+(R) is non atomic such that µ(]−∞, 0]) < +∞).

2.3 - Balayage spaces and harmonic kernels.

Let (X,W) be a balayage space and U a base of relatively compact open
subsets of X.

Let (HU )U∈U be a family of sweeping kernels on X, that is, for any U ∈ U ,
we have HU (x,U) = 0 for every x ∈ U and HU (x, �) = εx for every x ∈ X �U .

For any open subset U of X, we define the set of all nonnegative Borel
measurable functions which are hyperharmonic, resp. superharmonic, resp.
harmonic, on U by

H∗
+(U) : = {u ∈ B+(X) : u|U is l.s.c, HV u ≤ u ∀V ∈ U , V ⊂ U},

S+(U) : = {s ∈ H∗
+(U) : HV s is continuous on every open setV ∈ U , V ⊂ U},

H+(U) : = {h ∈ S+(U) : HV h = h for every open set V ∈ U , V ⊂ U}

= {h ∈ B+(X) : h|U ∈ C(U), HV h = h, ∀V ∈ U , V ⊂ U}.

The family of kernels (HU )U∈U will be called harmonic if:

(a) ∀x ∈ X, limU∈U ,x∈U HU(x, �) = εx, or R
{x}
1 is l.s.c. at x.

(b) HV HU = HU , for every open subset V ⊂ V ⊂ U .

(c) If f ∈ Bb(X) is zero outside a compact set, then HUf is continuous and
bounded on U .

(d) ∀x ∈ U , there exists w ∈ H∗
+(X) such that w(x) < ∞ and w(xn) →

+∞ for every purely irregular sequence (xn) in U (that is, (xn) has
a limit z ∈ ∂U and there is no subsequence (xϕ(n)) of (xn) satisfying:
limn→+∞HU (xϕ(n), .) = εz).

(e) H∗
+(X) is linearly separating and there exists a function s ∈ H∗

+(X) ∩
C(X), s > 0, such that for every open subset V ⊂ V ⊂ U , V ∈ U , the
function HV s is continuous on V .

Let U be an open subset ofX andHU the kernel defined byHU(x, �) :=
◦
ε
X\U

x

(cf. [4, Chap. II, Cor. 5.4, p. 67]) which coincides with ε
X\U
x if x ∈ U, and

HU(x, �) := εx, if x ∈ X � U . Then the family of kernels (HU)U∈U is harmonic
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([4, Chap. III, Theor. 2.8, p. 101]), and we have W = H∗
+(X). Furthermore, a

function p ∈ W ∩ C(X) is a potential if and only if inf{R
X\K
p : K compact ⊂

X} = 0, if and only if, (∀h ∈ H+(X), 0 ≤ h ≤ p ⇒ h = 0).

Conversely, if (X,H∗
+(X)) is a balayage space, then HU(x, �) :=

◦
ε
X\U

x =

ε
X\U
x for any U ∈ U and for any x ∈ U ([4, Chap. II, Theor. 7.8 et Theor. 8.6]).

R ema r k 2.4. A harmonic space (in the sense of Constintinescu and Cornea
[11]) is a balayage space. However, a balayage space (X,W) is not in general
a harmonic space, a counter-example is given in [14, p. 78]. If W = H∗

+(X),
then (X,W) is a harmonic space if and only if X has no finely isolated points
and if W has the local truncation property (that is, for any u, v ∈ W such that
u ≥ v on ∂U , the function w defined by: w = u ∧ v on U and w = u on X �U
belongs to W [4, Chap. III, p. 130]), if and only if, for any U ∈ U , and for
any x ∈ U , the measure HU (x, �) is supported by the boundary ∂U of U (i.e.,
HU(x,X � ∂U) = 0 for any U ∈ U and any x ∈ U) and, for any x ∈ X, there
exists U ∈ U such that x ∈ U and HU(x, ∂U) > 0 ([4, Chap. III, Theor. 8.5,
p. 130]).

3 - Integral representation in the cone S(X)

In the following (X,W) is a balayage space. According to [4, Remark 7.9,
p. 81] we may assume that 1 ∈ W. Let p be a bounded and strict potential
on X, V = (Vλ) the resolvent associated with p (cf. 2.2) and EV the cone of
all excessive functions of V which are finite V-a.e., that is outside of a set of
potential zero (the potential of A ∈ B(X) is the function V0(1A) where V0 is
the potential kernel of V, a subset A of X is of potential zero if, for any x ∈ X,
A is contained in a set B ∈ B(X) such that V0(x,B) = 0). We also recall that
the resolvent V is said to be basic if it is absolutely continuous with respect to
a σ-finite measure τ on (X,B(X)) (we will then say that V is of base τ). We
shall say that a property P (x), x ∈ X, holds V-almost everywhere (V-a.e. in
abbreviated form) if it holds for all x in the complement of a set of potential
zero.

Let f be a V-supermedian function. We denote f̃ the excessive regularized
function of f , that is, the excessive function of V defined by f̃ = supλ>0 λVλf .
It is the greatest excessive minorant of f . In [5] and [12], this function is
denoted f̂ which means in our notations the l.s.c. regularized of f , but one can
show that it is the same. Indeed, the function f̃ is l.s.c. (as any V-excessive
function) and we have f̃ ≤ f , then f̃ ≤ f̂ ≤ f . The set A = {f̃ < f̂} is of
potential zero according to [12, Théor. 12, p. 8]. Since A is a finely open subset
of X, we deduce that it is empty because, since p is strict, the nonempty finely
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open subsets of x are of nonzero potentials. Then f̃ = f̂ .
The excessive functions of the resolvent V are l.s.c., then the resolvent V is

absolutely continuous with respect to a nonnegative Borel measure σ-finite τ on
X according to [12, no 41, p. 25]. Replacing τ by an equivalent measure, we can
suppose that it is finite (and then τ ∈ M+(X)). We deduce from [5, Example
3, p. 113], that the cone EV of excessive functions which are finite V-a.e. is a
standard H-cone of functions. We then endow EV with the natural topology in
the sense of Boboc, Bucur and Cornea ([5, Chap. IV, p. 141]). This topology is
induced on EV by that one of a locally convex topological vector space (l.c.s in
abbreviated form) E in which EV is a convex cone of vertex 0. Let us recall here
that this topology is metrizable and if a filter F on EV converges to u, then
u = supM∈F înfv∈Mv ( [5, Theor. 4.5.2, p. 143]). In particular, if a sequence
(sn) ⊂ EV is a convergent in EV with respect to the natural topology (we shall

say naturally convergent), then we have lim sn = lim înfsn with sup înfsn :=

supn∈N înfp≥nsp.
We denote S+(X) the subcone of EV formed by the nonnegative superhar-

monic functions on X. It is clear that S+(X) is an H-cone of functions in the
sense of [5].

P r o p o s i t i o n 3.1. Let V = (Vλ) be a basic resolvent whose cone of ex-
cessive functions is equal to W. Then the cone EV of excessive functions which
are finite V-a.e. does not depend on the resolvent V.

P r o o f. Let V1 and V2 are two basic resolvents whose cones of excessive
functions are equal to W. Let s be an element of EV1

and let A = {s = +∞}.
Then R̂A

s = 0 and RA
s = +∞ on A, hence A ⊂ {R̂A

s < RA
s }, so A is of V2-

potential zero according to [12, Théor. 12, p. 8] and therefore s ∈ EV2
. We

deduce that EV1
⊂ EV2

. By exchanging V1 and V2, we obtain the inverse
inclusion. �

The cone EV, which does not depend on the resolvent V, will be denoted
simply by S(X).

R ema r k 3.2. If (X,W) is a harmonic space, then an excessive function
of the resolvent V is finite V-a.e. if and only if it is superharmonic. Hence we
have S(X) = S+(X).

Rema r k 3.3. The (natural) topology of S(X) is independent of the resol-
vent V.

P r o p o s i t i o n 3.4. For any point x ∈ X and any subset A of X, the func-
tions s �→ s(x) and s �→ R̂A

s (x), with values in R+, are l.s.c. affine functions
on S(X).
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P r o o f. For any x ∈ X and for any A ⊂ X, the function s �→ R̂A
s (x) is affine

(cf. subsection 2.1). Let (sn) be a sequence in S(X) which converges (in the

natural topology) to s ∈ S(X). We have s = limn înfsn = supn înfk≥nsk and

then R̂A
s (x) = R̂A

supn înfk≥nsk
(x) = supn R̂

A
înfk≥nsk

(x) ≤ supn înfk≥n R̂A
sk
(x) ≤

supn infk≥n R̂
A
sk
(x) = lim infn R̂

A
sn(x) (the first equality follows from properties

of the reduite of functions and the second inequality follows from the fact that
for any n one has R̂A

înfk≥nsk
(x) ≤ R̂A

sn). We deduce that the function s �→ R̂A
s (x)

is l.s.c. on S(X). For the function s �→ s(x), it suffices to apply the above result
for A = X. �

P r o p o s i t i o n 3.5. Let U be a relatively compact open subset of X and
x ∈ U . Then the function s �→ HU (s)(x) from S(X) into R+ is l.s.c.

P r o o f. Let (sn) ⊂ S(X) be a convergent sequence to s ∈ S(X), we have

s = lim înfsn = supm înfn≥msn. Then by Fatou’s lemma we have HU (s)(x) =

HU(lim înfsn)(x) ≤ HU (lim inf sn)(x) ≤ lim infHU (sn)(x), which clearly proves
that the function s �→ HU (s)(x) is l.s.c. on S(X). �

Let S be a convex cone of a locally convex topological vector space. We
will say by abuse of language that an element of S is extreme if it belongs to
an extremal ray of S. We denote Ext(S) the union of extremal rays of S. We
say that a subset C of S is a cap of S if C is a convex compact containing 0
whose complementary (in S) is convex. The cone S is said to be well capped
if S is the union of its caps. The set of the extreme points of C is denoted by
Ext(C).

According to [5, Cor. 4.2.5, p. 107 and Theor. 4.5.8, p. 147], the cone S(X)
is well capped.

The natural topology of S(X) is metrizable by [5, Sect. 4.5, p. 141], then if
C is a cap of S(X), the set Ext(C) of extreme points of C is by [8, Cor. 27.3] a
Gδ subset of C. Furthermore, the cone S(X) = EV is a lattice in its own order
(the specific order) according to [5, Example 5, p. 38, and Theor. 2.1.5, p. 41].

Let C be a cap of S(X) and µ be a nonnegative Radon measure on C. For
any point x ∈ X and for any subset A of X, it follows by Proposition 3.9 that
the integrals

∫
p(x)dµ(p) and

∫
R̂A

p (x)dµ(p) are well defined and the functions

x �→
∫
p(x)dµ(p) and x �→

∫
R̂A

p (x)dµ(p) on X belong to S(X). We denote

them simply by
∫
pdµ(p) and

∫
R̂A

p dµ(p) respectively.

T h e o r em 3.6. Let C be a cap of S(X). Then for any function s ∈ C,
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there exists a unique Radon measure µ ≥ 0 on C supported by Ext(C) such that

s =

∫
udµ(u).

P r o o f. According to Choquet’s integral representation theorem [8,
Theor. 30.20]), s is the barycenter of a unique measure µ on C supported by
Ext(C). Let x ∈ X, the function f : u �→ u(x) is affine and l.s.c. (taking
values in [0,+∞]) on C, then by [1, Cor. I.1.4] we can find an increasing se-
quence (ln) of continuous affine forms on C such that f = sup ln, and hence,
according to the monotone convergence theorem, we have f(s) = supn ln(s) =
supn

∫
C ln(u)dµ(u) =

∫
C f(u)dµ(u), and then s(x) =

∫
C u(x)dµ(u). �

The measure µ associated with s in the precedent theorem will be called
the maximal measure on C representing s.

P r o p o s i t i o n 3.7. Let C be a cap of S(X), µ a positive (Radon) mea-
sure on C and u =

∫
C qdµ(q). Then, for any subset A of X, we have R̂A

u =∫
R̂A

q (x)dµ(q).

P r o o f. The case where µ = 0 being trivial, let us suppose that µ �= 0. The
measure µ is necessarily finite, we can then suppose that it is a probability mea-
sure on C. For any x ∈ X, the function g : q �→ R̂A

q (x) (with values in [0,+∞])
is affine and l.s.c. on C, we can find as in the proof of the precedent theorem an
increasing sequence (ln) of continuous affine forms on C such that g = supn ln.
Then we have R̂A

u (x) = supn ln(u) = supn
∫
ln(q)dµ(q) =

∫
R̂A

q (x)dµ(q), and,

since x is an arbitrary point in X, it follows that R̂A
u =

∫
R̂A

q dµ(q). �

P r op o s i t i o n 3.8. Let s ∈ Ext(S(X)). For any subset A of X we have
R̂A

s = s or R̂X�A
s = s.

P r o o f. Suppose that s �= R̂A
s (then in particular s > 0 on a set of

nonempty fine interior), and denote u the function defined on X by u(x) =
s(x) − R̂A

s (x) if R̂A
s (x) < +∞ and u(x) = +∞ otherwise. Then, according

to [5, Prop. 1.1.6, p. 14]), we have R̂u ≺ s (≺ designed the specific order in
S(X)). Since s ∈ Ext(S(X)) and R̂u �= 0, there exists α > 0 such that,

s = αR̂u, and, since u = 0 on a finely dense subset in A, we have R̂u = R̂
X\A
u ,

and consequently R̂u = R̂X�A

R̂u
, so that s = R̂X�A

s . �

P r op o s i t i o n 3.9. Let C be a cap of the cone S(X) and A ⊂ X. Then
the set ExtA(C) = {s ∈ Ext(C) : R̂A

s = s} is Borel measurable subset of C.
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P r o o f. Let τ be a σ-finite measure on (X,B(X)) such that the resolvent
V is of base τ (see the beginning of the present section). Replacing the mea-
sure τ by an equivalent measure, we may suppose that the constant functions
are τ -integrable. As two superharmonic functions which are equal τ -a.e. are
necessarily equal everywhere, we see that ExtA(C) =

⋂
nCn, where for every

integer n, Cn = {s ∈ Ext(C) :
∫
s∧ ndτ =

∫
R̂A

s ∧ ndτ}. For any integer n, the
set Cn is Borel measurable subset of C because the functions s �→

∫
s ∧ ndµ

and s �→ R̂A
s ∧ndµ are l.s.c. on C (which easily follows from the Fatou lemma).

On the other hand, Ext(C) is a Borel subset (a Gδ) of C, then ExtA(C) is a
Borel measurable subset of C. �

As an application of the integral representation in S(X) we shall prove a
Brelot decomposition type (see [7]) in S(X), namely: for any subset A of X,
every element s of S(X) has a decomposition s = s1 + s2, where R̂A

s1 = s1 and

R̂
X\A
s2 = s2 (with uniqueness of the decomposition if we take u2 the greatest

specific minorant v of u such that RX�A
v = v). Any element s of S+(X) has

this property, with s1, s2 ∈ S+(X).

A function s ∈ S(X) will be called autoreduite on a subset A of X if R̂A
s = s.

It is clear that s ∈ S(X) is autoreduite on A if and only if RA
s = s.

T h e o r em 3.10. Let s ∈ S(X) and A ⊂ X. Then there exists a decom-
position s = s1 + s2 of s in S(X) such that s1 is autoreduite on A and s2 is
autoreduite on X �A.

P r o o f. Let s ∈ S(X), C a cap of S(X) containing s and µ be the
maximal measure on C representing s. Putting s1 =

∫
ExtA(C) udµ(u) and

s2 =
∫
ExtX�A(C) udµ(u), we have s =

∫
Ext(C) udµ(u) =

∫
ExtA(C) udµ(u) +∫

Ext(C)�ExtA(C) udµ(u) = s1 + s2 and, according to Proposition 4.5,

R̂A
s1 =

∫

ExtA(C)

R̂A
u dµ(u) =

∫

ExtA(C)

udµ(u) = s1, and

R̂X�A
s2 =

∫

Ext(C)�ExtA(C)

R̂X�A
u dµ(u) =

∫

Ext(C)�ExtA(C)

udµ(u) = s2.

�

Rema r k 3.11. We have the uniqueness of the decomposition of s ∈ S(X)
in the previous theorem if we impose to s2 (respectively s1) to be the specific
greatest minorant of s which is autoreduite on X �A (respectively on A).
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According to [4, Cor. 4.5.1, p. 108], the union of all open subsets U of X
where a nonnegative superharmonic function (u ∈ S+(X)) is harmonic is the
greatest open subset of X in which u is harmonic; its complementary S(u) is
called the harmonic support of u. It is also the smallest closed set in X in the
complement of which u is harmonic.

As an application of the above decomposition, we have the following result:

T h e o r em 3.12. Every extreme potential p of S+(X), p �≡ 0, is of harmonic
support reduced to a single point.

P r o o f. Let p be an extreme potential not identically zero in X. Suppose
that S(p) contains two points y1 and y2 such that y1 �= y2. Then according to
Theorem 3.10, applied to p and to a relatively compact open subset V ⊂ X, such
that y1 ∈ V and y2 ∈ X � V , we have p = p1 + p2 in X, where p1, p2 ∈ S+(X)
are such that p1 = R̂V

p1 and p2 = R̂X�V
p2 . It follows from [4, Prop. 2.3, p. 345

and Cor. 2.8, p. 347] that p1, resp. p2, is harmonic on an open neighborhood
of y2, resp. y1, and then p1 and p2 are two nonproportional potentials. This
contradicts the fact that p is an extreme potential. Hence the support of p is
necessarily reduced to a single point. �

Let C be a cap of S(X). We denote Extp(C) and Exth(C) respectively
the set of extreme potentials and that of extreme harmonic functions of C.
Then we have Exth(C) = Ext(C)∩H+(X) and Extp(C) = (Ext(C)∩S+(X)�
Exth(C))∪{0}. We shall show that Exth(C) and Extp(C) are Borel measurable
subsets of C.

P r o p o s i t i o n 3.13. The sets S+(X) and H+(X) are Borel measurable
subsets of S(X).

P r o o f. Let (Un) be an increasing sequence of relatively compact open
subsets of X such that Un ⊂ Un+1 for any n and

⋃
n Un = X. For any n ∈ N,

consider a sequence (xjn) of points of Un which is dense in Un. Then, a function
s ∈ S(X) belongs to S+(X) if and only if for any integer n there exists a
constant k ∈ N such that HUn+1

(xjn) ≤ k for any j. We deduce that

S+(X) =
⋂

n

⋃

k

⋂

j

{s ∈ S(X) : HUn+1
(s)(xjn) ≤ k}.

As well, a function s ∈ S(X) belongs to H+(X) if and only if s ∈ S+(X) and
if for any integer n we have HUn(s)(x

j
n) = s(xjn) for any j, and then

H+(X) =
⋂

n

⋂

j

{s ∈ S(X) : HUn(s)(x
j
n) = s(xjn)} ∩ S+(X).
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The sets {s ∈ S(X) : HUn+1
(s)(xjn) ≤ k}, {s ∈ S+(X) : Hn(s)(x

j
n) = s(xjn)},

j, k, n ∈ N, are Borel measurable subsets of S(X) according to Proposition 3.5.
It follows that S+(X) and H+(X) are Borel measurable subsets of S(X). �

Co r o l l a r y 3.14. Let C be a cap of S(X). Then Exth(C) and Extp(C)
are Borel measurable subsets of C.

P r o o f. Indeed, we have Exth(C) = Ext(C) ∩H+(X) and Ext(C) is a Gδ

of C (C being a metrizable compact convex set), then Exth(C) is a Borel subset
of C. We deduce that Extp(C) = (Ext(C)∩S+(X)�Exth(C))∪{0} is a Borel
subset of C. �

The o r em 3.15. Suppose that S(X) = S+(X) (which is the case if (X,W)
is a harmonic space) and let C be a cap of S(X) and s ∈ C admitting the
integral representation s =

∫
udµ(u), where µ is the maximal measure on C

representing s. If s is an harmonic function (resp. a potential), then the
measure µ is supported by Exth(C) (resp. Extp(C)).

P r o o f. The measure µ is supported by Ext(C) = Exth(C)∪Extp(C), and
the sets Exth(C) and Extp(C) are Borel measurable subsets of C according to
the precedent corollary, hence s =

∫
udµ(u) =

∫
Extp(C) udµ(u)+

∫
Exth(C) udµ(u).

Suppose that s is harmonic and let (Un) be an increasing sequence of relatively
compact open subsets of X such that

⋃
n Un = X. Then, for any n ∈ N, we

have

s = R̂X�Un
s =

∫
R̂X�Un

u dµ(u)

=

∫

Extp(C)

R̂X�Un
u dµ(u) +

∫

Exth(C)

R̂X�Un
u dµ(u)

=

∫

Extp(C)

R̂X�Un
u dµ(u) +

∫

Exth(C)

udµ(u).

Passing to the infimum over n, we obtain according to the dominated conver-
gence theorem that s =

∫
Exth(C) udµ(u) on the set {s < +∞} (since infn R̂

X�Un
u

= 0 for any potential u), then everywhere, and by the uniqueness of the integral
representation we have µ = 1Exth(C)µ, so that µ is supported by Exth(C). �

Co r o l l a r y 3.16. Suppose that S(X) = S+(X) and let h ∈ H+(X) (resp.
p be a potential on X) and C a cap of S+(X) containing h (resp. p), then



16 mohamed el kadiri, abderrahimaslimani and sabah haddad [16]

there exists a unique Radon measure µ ≥ 0 on C supported by Exth(C) (resp.
Extp(C)) such that p =

∫
qdµ(q).

4 - Potentials representable by a Green kernel of X

A Green kernel on the balayage space (X,W) (when it exists) is a Borel

measurable function G : X × X → R
+

: (x, y) �→ G(x, y) with the following
properties:

(a) G is locally bounded outside of the diagonal X ×X.

(b) For any y ∈ X, the function Gy : x �→ G(x, y) is a potential of harmonic
support S(Gy) = {y}.

(c) For any x ∈ X, the function Gx : y �→ G(x, y) is l.s.c. on X, and
continuous on X � {x}. If x is a finely isolated (that is, isolated with
respect to the fine topology) and not isolated, then G(x, �) is continuous
on X.

If µ ∈ M+(X), we denote by Gµ the function defined on X by Gµ :=∫
G(�, y)dµ(y). We say that a function s ∈ S+(X) is representable by G if

we can find a measure µ ∈ M+(X) such that s = Gµ.

P r o p o s i t i o n 4.1 ( [15, Lemma 2.1]). Let µ be a nonnegative Radon mea-
sure on X such that p = Gµ is a potential, then S(Gµ) = Supp(µ).

There exists a σ-finite measure τ on X such that the resolvent V (see the
beginning of Section 3) is of base τ and that any subset of X is of potential zero
if and only if it is τ -negligible. In fact, let (xn) be a sequence dense in X and
let (αn) be a sequence of real numbers > 0 such that

∑
n αnV0(1)(xn) < +∞,

the measure τ =
∑

n αnV0(xn, �) satisfies the required condition, V0 being the
potential kernel of V.

P r o p o s i t i o n 4.2. Let (hn) be a sequence of functions in S+(X), har-
monic on an open subset U of X and converging τ -a.e. to a function h l.s.c.
on X. Suppose that there exists s ∈ S+(X) such that hn ≤ s for any n, then h
is harmonic on U .

P r o o f. We have h = supn înfj≥nhj ∈ W and h is majorized by an element
of S+(X), then h ∈ S+(X). Let V be an open subset ofX such that V ⊂ V ⊂ U
and W,W ′ two open subsets of X such that V ⊂ W ⊂ W ⊂ W ′ ⊂ W ′ ⊂ U . By
Dini’s Lemma the sequence ((h− înfj≥nhj)|V ) of u.s.c. functions on V converges

uniformly to 0 on V . Hence, for any ǫ > 0, there exists an integer n1 such that
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n ≥ n1 ⇒ h − hn < ǫ on V . On the other hand, the function HW ′(s) is finite
and continuous on V , hence there exists a nonnegative constant c such that for
any n we have hn ≤ HW ′(s) ≤ c on W . By applying the above proceeding to
the sequence of the restrictions of the functions c − hn to W we can find an
integer n2 such that n ≥ n2 ⇒ hn − h < ǫ on V . For any n ≥ max(n1, n2)
we have |h − hn| < ǫ on V . Hence the sequence (hn) converges to h uniformly
on V and therefore HV (h) = h on V . Since V is arbitrary it follows that h is
harmonic on U . �

Co r o l l a r y 4.3. Let (hn) be a sequence of harmonic functions ≥ 0 in X
which converges in S(X) (in the natural topology on S(X)) to a function h.
If the functions hn, n ∈ N, are bounded from above by a function s ∈ S+(X),
then h is harmonic on X.

P r o o f. In fact, by [12, Lemme94, p. 81] we can find a subsequence (hnk
)

of (hn) which converges τ -a.e. to h. The corollary follows from the previous
proposition applied to the sequence (hnk

). �

L emma 4.4. Let K be a compact of X. Then the maps ϕK : y �→ G(�, y)
is an homeomorphism from K on its image A = ϕK(K) in S(X).

P r o o f. The map ϕK is injective because for any y ∈ X the function G(�, y)
is a potential harmonic on X � {y}. It remains to prove that ϕ is continuous.
Let (yn) be a sequence of points in K converging to y ∈ K. Let U an ultrafilter
finer than the filter of sections of N. Since for any x ∈ X � {y} the function

G(x, �) is continuous at y, we have lim înfUG(�, yn) = G(�, y) on X � {y}. If y

is not isolated point of X we necessarily have lim înfUG(�, yj) = G(�, y) on X.
If y is an isolated point of X, then yn = y for any n large enough, and hence
lim înfUG(�, yn)(y) = G(y, y). It follows that in any case limU G(�, yn) = G(�, y).
Hence ϕK is continuous. �

For any Borel subset E of X and any Borel measure β on E, we also denote
by β the measure image of β by the inclusion map from E into X.

P r o p o s i t i o n 4.5. Let K be a compact subset of X and (µn) a sequence
of measures in M+(X) supported by K and converging (weakly) to a measure
µ ∈ M+(X) (necessarily supported K). Then limGµn = Gµ in S(X).

P r o o f. Let β ∈ M+(X) such that β(K) > 0 and Gβ ∈ S+(X) and
ǫ a real > 0. Let us denote again by µn, µ the restrictions of µn, µ to
K, n ∈ N, and by νn, ν the images of µn + ǫβ and µ + ǫβ by ϕK . Since
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ϕK is continuous, it follows that the sequence (νn) converges (weakly) to the
(finite) measure ν on the compact subset A = ϕK(K) of S(X). The se-
quence of reals |νn| > 0 converges to |ν| > 0, and the sequence of barycen-
ters b((1/|νn|)νn) (in the convex hull conv(A) of A in S(X)) of the proba-
bility measures (1/|νn|)νn converges to b((1/|ν|))ν). It follows that the se-
quence of the functions G(µn + ǫβ) =

∫
A qdνn(q) converges in S(X) and that

lim(Gµn + ǫGβ) = lim
∫
A qdνn(q) =

∫
A qdν(q) = Gµ + ǫGβ. By letting ǫ → 0,

we obtain limGµn = Gµ. �

L emma 4.6. Let s be a nonnegative superharmonic function on X. Then
the set {u ∈ S(X) : u ≤ s} is compact in S(X).

P r o o f. The lemma follows easily from [5, Theor. 4.5.8]. �

The o r em 4.7. Let (µn) be a sequence of measures in M+(X) converging
weakly to a measure µ ∈ M+(X) and suppose that there exists a potential q
such that Gµn ≤ q for any integer n. Then the sequence of potentials Gµn

converges to Gµ in S(X).

P r o o f. By Fubini’s theorem and the hypothesis on G, we have lim inf Gµn

≥ Gµ and therefore lim înfGµn ≥ Gµ. Let (Uj) be an increasing sequence of
relatively compact open subsets of X such that Kj = Uj ⊂ Uj+1 for any j and⋃

j Uj = X. For each j ∈ N we have Gµn = G(1Kjµn)+G(1X�Kj
µn). By using

the fact that the total masses of the measures µn are uniformly bounded on
each compact of X, the above lemma and the diagonal proceeding, we can find
a strictly increasing sequence (nk) of integers such that (1Kj

µnk
) converges to a

measure λj, the sequence (G(1Kj
µnk

)) converges in S+(X) and (G(1X�Kj
µnk

))
converges in S+(X) to a function hj (and hence a potential since hj ≤ q). By

Proposition 4.5 we have lim înfGµnk
= Gλj + hj ≤ Gµ + hj . Since 1Kj

µnk
≤

1Kj+1
µnk

≤ µnk
we have λj ≤ λj+1 ≤ µ and hence Gλj ≤ Gµ. On the

other hand the sequence (hj) is decreasing and each hj is harmonic on Uj

(by Corollary 4.3) and hj ≤ Gµ for each j. It follows that the sequence (hj)

converges in S(X) to h = înfhj . According to Corollary 4.3, the function h
is harmonic on X and majorized there by a potential, hence h = 0 and then
lim înfGµnk

≤ Gµ. It follows that lim înfGµn ≤ Gµ and therefore lim înfGµn =
Gµ. By applying this to any convergent subsequence of (Gµn), we deduce that
the sequence (Gµn) is convergent in S(X) and its limit is equal to Gµ. �

The following result of representability of potentials by G is bit stronger
than the result of Hansen-Netuka [15, Theor. 1.1].
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Th e o r em 4.8. Let (pn) be a sequence of potentials pn = Gµn representable
by G and converging in S+(X) (naturally) to p, where for every n ∈ N, µn ∈
M+(X). Suppose that there is a potential q such that pn ≤ q on X, then p
is a potential representable by G. More precisely, the sequence (µn) converges
weakly on X to a measure µ ∈ M+(X) and one has p = Gµ.

P r o o f. We have p = lim înfpn ≤ q and hence p is a potential. Now let
y ∈ X. If y is an isolated point of X, then µn({y})G(y, y) ≤ Gµn(y) ≤ q(y) <
+∞ for any n ∈ N. If y is not isolated in X there exists a point xy ∈ X such
that G(xy, y) > 0 and q(xy) < +∞. Since the function G(xy, �) is l.s.c. on
X, there exists a compact neighborhood V of xy and a real α > 0 such that
G(xy, z) ≥ α on V . Hence µn(V ) ≤ 1/αGµn(xy) ≤ 1/αq(xy) for any n ∈ N.
Since X is separable, it follows that the sequence (µn) converges weakly to a
measure µ ∈ M+(X). By Theorem 4.7 we have p = Gµ. �

P r o p o s i t i o n 4.9. Let (sn) be a sequence of functions in S(X) converging
pointwise to s ∈ S(X). Then (sn) converges to s in the natural topology on
S(X).

P r o o f. Let U be an ultrafilter on N which is finer than the filter of sections
of N. Then we have lim înfU ≤ s. According to Choquet’s lemma [4, Lemma1.8,

p. 19], we have lim înfU ∈ S+(X). On the other hand, we have lim înfsn ≤

lim înfU ≤ s = lim inf sn. Since lim înfsn = lim inf sn V-a.e., then lim înfU = s
V-a.e., hence everywhere because two V-excessive functions which are equal
V-a.e. are equal everywhere. It follows that U converge to s according to [5,
Theor. 4.5.8, p. 147]. Since U is an arbitrary ultrafilter, we deduce that the
sequence (sn) converges to s in the natural topology on S(X). �

As a corollary of the previous theorem, we have the following result of
Hansen-Netuka:

C o r o l l a r y 4.10. Let (pn) be a sequence of potentials which representable
by G, majorized by a potential q and converging pointwise to a potential p
outside a semi-polar set, then p is representable by G.

5 - Integral representation of the potentials and the hypothesis of
uniqueness

In a P-harmonic space X, the integral representation of potentials and its
relationship with the hypothesis of uniqueness, also called axiom of proportion-
ality, (that is, the potentials with the same harmonic support reduced to one
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point are proportional) has been studied by many authors. In [17], Janssen
showed that if the space X satisfies the hypothesis of uniqueness and a condi-
tion (A) (see [17]), then it has a Green function and any potential is the Green
potential of a positive Radon measure on X. When the harmonic space X has a
Green potential G, Boukricha [6] showed that if any continuous finite potential
of compact support can be represented by the function G, then the hypothesis
of uniqueness is satisfied. Schirmeier in [22] established that, if at least one
strict bounded continuous potential can be represented by the function G, then
the hypothesis of uniqueness is satisfied. El Kadiri [13] showed that if the space
X admits a Green function G, and if the hypothesis of uniqueness is satisfied,
then any potential is representable by G.

In the present section we shall study the integral representation and its
relationship with the hypothesis of uniqueness in a balayage space. Throughout
this section, we assume that the constant function 1 is superharmonic in the
space (X,W), that the potentials on X of superharmonic support reduced to a
single point are proportional (the hypothesis of uniqueness or proportionality),
and that there is a Green kernel G on X. We also assume that S+(X) = S(X),
so that the cone S+(X) is well capped (which is the case if (X,W) is a harmonic
space).

P r o p o s i t i o n 5.1. For any y ∈ X, the function G(�, y) is an extreme
potential (in the cone S+(X)).

P r o o f. Let p1, p2 ∈ S+(X) such that G(�, y) = p1+p2, then the functions
p1 and p2 are two potentials, harmonic on X � {y} and proportional to G(�, y)
according to the hypothesis of uniqueness. �

P r op o s i t i o n 5.2. Every extreme potential p �≡ 0 of S+(X) is of the form
α.G(�, y) with α ≥ 0.

P r o o f. Let p �≡ 0 be an extreme potential of S+(X). According to Theo-
rem 3.12, p is of harmonic support reduced to a single point, then proportional
to G(�, y), where {y} is the harmonic support of p. �

Let C be a cap of S+(X), then for any extreme potential p �≡ 0 of C
there exists a unique real α > 0, such that p = αG(�, y), where {y} is the
harmonic support of p. Let us recall that the gauge l of C is the function
on S+(X) with values R

+
defined by l(u) := inf{λ > 0, u/λ ∈ C} for every

u ∈ S+(X). It follows from [8, p. 202] that l is a l.s.c. affine form and we have
C = {u ∈ S+(X) : l(u) ≤ 1}. Moreover, since C is compact we have l(u) > 0
for any u ∈ C except for u = 0.
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To establish the theorem of the integral representation of potentials, we still
need some lemmas:

L emma 5.3. The function y �→ G(�, y) from X into S+(X) is continuous
on X.

P r o o f. Let U be an ultrafilter on X finer than the filter of neighborhoods
of y, then limz,U G(x, z) = G(x, y) for any x ∈ X � {y} according to the
assumptions made on G. Hence limz,U G(�, z) ∈ S+(X) (the last limit is taken
in the sense of natural topology). Let h ∈ H+(X) such that h ≤ limz,U G(�, z)
on X and U a relatively compact open subset of X containing y, then we have
h ≤ G(�, y) on X � {y}, and h(y) = HU(h)(y) =

∫
hdǫX�U

y ≤
∫
G(�, y)dǫX�U

y ≤

G(y, y), the second inequality follows from the fact that the measure ǫX�U
y

is supported by X � U according to [4, Cor. 5.4, pp. 64-68]. We deduce that
h ≤ G(�, y) on X and then h ≡ 0. Hence limz,U G(�, z) is a potential, harmonic
on X � {y} following Corollary 4.3, and then limz,U G(�, z) = αG(�, y) for some
α > 0. It follows from the beginning of the proof that α = 1, and hence
limz,U G(�, z) = G(�, y). We deduce that G(�, z) converges naturally (in the
sense of natural topology) to G(�, y) as z → y, and this completes the proof. �

L emma 5.4. The set A = {y ∈ X : l(G(�, y)) < +∞} is a Borel measurable
subset of X and the mapping ϕ from Extp(C) � {0} into X which associates
to each point p ∈ Extp(C) � {0} the unique point of its harmonic support, is
a bijective Borel measurable function from Extp(C)� {0} into A, and so is its
inverse.

P r o o f. The mapping ϕ is obviously a bijection from Extp(C)�{0} into A.
The first part of the lemma follows from the preceding lemma and the fact that
the function l is l.s.c. on S+(X). Let us prove the second part. Let (Vn) be a
sequence of relatively compact open subsets of X such that

⋃
n Vn = X. Note

that Extp(C) =
⋃

nEn ∪ {0}, where En = {αG(�, y) ∈ C : y ∈ V n and 1/n ≤
α ≤ n}∩Ext(C). Let (αjG(�, yj)) be a sequence of points of En which converges
to a function αG(�, y) ∈ En. Consider a subsequence (yjk) of (yj) converging to
a point z ∈ V n. By replacing the sequence (αj) by a convergent subsequence, we
may suppose that it is convergent to a real β ∈ [1/n, n] and then the sequence

(G(�, yjk)) is convergent to α
βG(�, y). Then α

βG(�, y) = lim înfG(�, yjk) = G(�, z)
by the above lemma. It follows from the hypothesis of uniqueness that y = z
and therefore α = β. Thus, we proved that any convergent subsequence of (yj)
has limit y and hence it follows that (yj) converges to y and, consequently,

lim înfG(�, yj) = G(�, y) according to the above lemma. Then the restriction of
ϕ to En is continuous. The lemma is proved. �
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L emma 5.5. For any y ∈ X, there exists at least one point x ∈ X such
that G(x, y) > 0..

P r o o f. The lemma follows easily from the fact that G(�, y) is of harmonic
support the set reduced to the point y. �

We will also need the following lemma of uniqueness:

P r o p o s i t i o n 5.6 ([15, Prop. 5.2]). If σ and ν are two nonnegative Radon
measures on X such that Gσ = Gν , then σ = ν.

Now we can now prove the following result:

T h e o r em 5.7. For any potential p on X, there exists a unique Radon
measure µ ≥ 0 on X such that p = Gµ.

P r o o f. The uniqueness of the measure µ follows from Proposition 5.6. Let
us prove the existence of µ. Let C be a cap of S+(X) containing p, l its gauge
and ν the nonnegative Radon measure on C associated with p in Corollary 3.16.
Let µ be the (Borel) measure on X with density the function y �→ 1/l(G(�, y))
with respect to the image measure by the mapping ϕ of Lemma 5.4 of the
restriction of the measure ν to Extp(C) � {0}. Then we have p = Gµ. It
remains to show that µ is a Radon measure on X, and as X is with countable
base, it suffices to show that it is finite on the compact subsets of X. Let y ∈ X,
then, according to Lemma 5.5, there exists at least a point x ∈ X such that
G(x, y) > 0 so that the set {x ∈ X : G(x, y) > 0} is a nonempty open subset
of X, and therefore there exists a point x′ ∈ X such that p(x′) < +∞ and
G(x′, y) > 0 because the set {x ∈ X : p(x) < +∞} is dense in X. The function
z �→ G(x′, z) is l.s.c. on X, then the set Uy = {z ∈ X : G(x′, z) > 0} is an open
subset of X containing y. For any y ∈ X, let Oy be a relatively compact open
subset of X containing y such that Oy ⊂ Uy; then X =

⋃
y∈X Oy and for any

y ∈ X, we have infz∈Oy G(x′, z) = c(y) > 0 and, consequently,

µ(Oy) ≤
1

c(y)

∫
G(x′, z)dµ(z) =

p(x′)

c(y)
< +∞.

It follows that any compact subset of X is of finite µ-measure, and hence µ is
a Radon measure on X. �

Now we prove the converse of the previous theorem:

Th e o r em 5.8. If any potential on X is representable by the Green func-
tion G, then the potentials of harmonic support reduced to a single point are
proportional.
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P r o o f. Let p be a potential on X of harmonic support reduced to the
point y ∈ X. We have p = Gµ, where µ is a nonnegative Radon measure.
According to Proposition 4.1 we have S(Gµ) = Supp(µ) = {y} and then the
measure µ and the Dirac measure at the point y are proportional, so that there
exists a real α ≥ 0 such that µ = α.εy and consequently p = α.G(�, y). �

Here is an application of the integral representation theorem (Theorem 5.7):

C o r o l l a r y 5.9. Let (X,W) be a balayage space admitting a Green kernel
G. Then the following two assertions are equivalent:

1. Every potential p is representable by means of G.

2. For any y ∈ X, every extreme potential p of support {y} is of the form
p = αG(., y), α ≥ 0.
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