Riv. Mat. Univ. Parma, Vol. 15, No. 1, 2024
Giuseppe Mulone[a]
Monotone energy stability for Poiseuille flow in a porous medium
Pages: 175-183
Received: 21 March 2023
Accepted: 18 September 2023
Mathematics Subject Classification: 76E05, 76S05.
Keywords: Porous media, Poiseuille flow, Brinkman equation, monotone energy stability
Author address:
[a]: University of Catania (retired), Department of Mathematics and Computer Science, Viale andrea Doria 6, Catania, 95125, Italy
Full Text (PDF)
Abstract:
We study the monotone energy stability of ''Poiseuille flow" in a plane-parallel channel with a saturated
porous medium modeled by the Brinkman equation, on the basis of an analogy with a magneto-hydrodynamic
problem (Hartmann flow) (cf. [2], [8]).
We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional
spanwise perturbations. This result implies a Squire theorem for monotone nonlinear energy stability.
Moreover, for Reynolds numbers less than the critical Reynolds number \(R_E\) there can be no transient energy growth.
References
- [1]
-
F. H. Busse,
A property of the energy stability limit for plane parallel shear flow,
Arch. Rational Mech. Anal. 47 (1972), 28-35.
MR
- [2]
-
A. A. Hill and B. Straughan,
Stability of Poiseuille flow in a porous medium,
In: R. Rannacher, A. Sequeira, eds., "Advances in mathematical fluid mechanics'',
Springer-Verlag, Berlin, 2010, 287-293.
MR
- [3]
-
D. D. Joseph,
Stability of Fluid Motions,Vol. 1,
Springer-Verlag, Berlin-New York, 1976.
MR
- [4]
-
H. Lamb,
Hydrodynamics,
fifth ed., Cambridge Univ. Press, 1924.
Zbmath |
MR
- [5]
-
H. Lorentz,
Ueber die Entstehung turbulenter Flüssigkeitschewegungen und über
den Einfluss dieser Bewegungen bei der Strömung durch Röhren,
Abhandlungen über theoretische Physik, Leipzig, 1907, i, 43 (1907).
- [6]
-
G. Mulone,
Nonlinear monotone energy stability of plane shear flows: Joseph or Orr critical thresholds?,
SIAM J. Appl. Math. 84 (2024), no. 1, 60-74.
MR
- [7]
-
G. Mulone,
Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows,
Ric. Mat. 73 (2024), no. 1, S247-S259.
MR
- [8]
-
D. A. Nield,
The stability of flow in a channel or duct occupied by a porous medium,
Int. J. Heat Mass Transfer 46 (2003), 4351-4354.
DOI
- [9]
-
O. Reynolds,
On the dynamical theory of incompressible viscous fluids and the determination of the criterion,
Philos. Trans. Roy. Soc. London Ser. A 186 (1895), 123-164;
emended version: Proc. Roy. Soc. London Ser. A 451 (1995), no. 1941, 5-47.
MR
- [10]
-
P. J. Schmid and D. S. Henningson,
Stability and transition in shear flows,
Appl. Math. Sci., 142, Springer-Verlag, New York, 2001.
MR
- [11]
-
H. B. Squire,
On the stability for three-dimensional disturbances of a viscous fluid flow between parallel walls,
Proc. Royal Soc. London Ser. A 142 (1933), 621-628.
Zbmath
- [12]
-
B. Straughan,
Stability and wave motion in porous media,
Appl. Math. Sci., 165, Springer, New York, 2008.
MR
- [13]
-
M. Takashima,
The stability of the modified plane Poiseuille flow in the presence of a transverse magnetic field,
Fluid Dynam. Res. 17 (1996), no. 6, 293-310.
MR
Home Riv.Mat.Univ.Parma