Riv. Mat. Univ. Parma, Vol. 15, No. 1, 2024

Giuseppe Mulone[a]

Monotone energy stability for Poiseuille flow in a porous medium

Pages: 175-183
Received: 21 March 2023
Accepted: 18 September 2023
Mathematics Subject Classification: 76E05, 76S05.
Keywords: Porous media, Poiseuille flow, Brinkman equation, monotone energy stability
Author address:
[a]: University of Catania (retired), Department of Mathematics and Computer Science, Viale andrea Doria 6, Catania, 95125, Italy

Full Text (PDF)

Abstract: We study the monotone energy stability of ''Poiseuille flow" in a plane-parallel channel with a saturated porous medium modeled by the Brinkman equation, on the basis of an analogy with a magneto-hydrodynamic problem (Hartmann flow) (cf. [2], [8]). We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations. This result implies a Squire theorem for monotone nonlinear energy stability. Moreover, for Reynolds numbers less than the critical Reynolds number \(R_E\) there can be no transient energy growth.

References
[1]
F. H. Busse, A property of the energy stability limit for plane parallel shear flow, Arch. Rational Mech. Anal. 47 (1972), 28-35. MR
[2]
A. A. Hill and B. Straughan, Stability of Poiseuille flow in a porous medium, In: R. Rannacher, A. Sequeira, eds., "Advances in mathematical fluid mechanics'', Springer-Verlag, Berlin, 2010, 287-293. MR
[3]
D. D. Joseph, Stability of Fluid Motions,Vol. 1, Springer-Verlag, Berlin-New York, 1976. MR
[4]
H. Lamb, Hydrodynamics, fifth ed., Cambridge Univ. Press, 1924. Zbmath | MR
[5]
H. Lorentz, Ueber die Entstehung turbulenter Flüssigkeitschewegungen und über den Einfluss dieser Bewegungen bei der Strömung durch Röhren, Abhandlungen über theoretische Physik, Leipzig, 1907, i, 43 (1907).
[6]
G. Mulone, Nonlinear monotone energy stability of plane shear flows: Joseph or Orr critical thresholds?, SIAM J. Appl. Math. 84 (2024), no. 1, 60-74. MR
[7]
G. Mulone, Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows, Ric. Mat. 73 (2024), no. 1, S247-S259. MR
[8]
D. A. Nield, The stability of flow in a channel or duct occupied by a porous medium, Int. J. Heat Mass Transfer 46 (2003), 4351-4354. DOI
[9]
O. Reynolds, On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philos. Trans. Roy. Soc. London Ser. A 186 (1895), 123-164; emended version: Proc. Roy. Soc. London Ser. A 451 (1995), no. 1941, 5-47. MR
[10]
P. J. Schmid and D. S. Henningson, Stability and transition in shear flows, Appl. Math. Sci., 142, Springer-Verlag, New York, 2001. MR
[11]
H. B. Squire, On the stability for three-dimensional disturbances of a viscous fluid flow between parallel walls, Proc. Royal Soc. London Ser. A 142 (1933), 621-628. Zbmath
[12]
B. Straughan, Stability and wave motion in porous media, Appl. Math. Sci., 165, Springer, New York, 2008. MR
[13]
M. Takashima, The stability of the modified plane Poiseuille flow in the presence of a transverse magnetic field, Fluid Dynam. Res. 17 (1996), no. 6, 293-310. MR


Home Riv.Mat.Univ.Parma