Riv. Mat. Univ. Parma, Vol. 15, No. 1, 2024
Fiammetta Conforto[a] and Giorgio Martalò[b]
Detonation waves in multi-temperature reacting gas mixtures
Pages: 107-142
Received: 24 August 2023
Accepted: 19 October 2023
Mathematics Subject Classification: 35L67, 35Q31, 80A17, 80A32.
Keywords: Reacting gas mixtures, hyperbolic equations, detonation wave, singularity analysis.
Authors address:
[a]: University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, V.le F. Stagno d'Alcontres 31, Messina, 98166, Italy
[b]: University of Parma, Department of Mathematical, Physical and Computer Sciences, Parco Area delle Scienze 53/A, Parma, 43124, Italy
Full Text (PDF)
Abstract:
The 1-D steady detonation problem is studied for a mixture of four gases, undergoing a reversible bimolecular reaction.
The multi-velocity and multi-temperature governing system provides an Euler level description, which is derived as a
principal subsystem of the hyperbolic balance laws obtained from the 13-moment Grad approximation of the reactive Boltzmann equations.
Suitable jump conditions for the onset of detonation processes are analysed and the occurrence of compatible stable
sub-shocks along the travelling wave solution in the transient is detected.
The results confirm the clear drawbacks in dealing with multi-component flows and with implicit constraints induced
by chemical equilibrium conditions. The paper aims to highlight the key points to be sorted out to ensure the well-posedness
of the detonation problem and to manage sub-shock occurrence.
References
- [1]
-
V. Artale, F. Conforto, G. Martalò and A. Ricciardello,
Shock structure and multiple sub-shocks in Grad 10-moment binary mixtures of monoatomic gases,
Ricerche Mat. 68 (2019), no. 2, 485-502.
DOI
- [2]
-
V. Artale, F. Conforto, G. Martalò and A. Ricciardello,
Shock structure solutions of Grad 13-moment equations for binary gas mixtures,
Wave Motion 115 (2022), 103055.
DOI
- [3]
-
M. Bisi, F. Conforto and G. Martalò,
Sub-shock formation in Grad 10-moment equations for a binary gas mixture,
Continuum Mech. Thermodyn. 28 (2016), no. 5, 1295-1324.
DOI
- [4]
-
M. Bisi, F. Conforto and G. Martalò,
Sub-shock formation in reacting gas mixtures,
In: "From Particle Systems to Partial Differential Equations III'',
P. Gonçalves and A. J. Soares, eds.,
Springer Proceedings in Mathematics & Statistics, 162,
Springer Cham, 2016, 51-72.
DOI
- [5]
-
M. Bisi, F. Conforto R. Monaco and A. Ricciardello,
On the steady deflagration process for a gas mixture undergoing irreversible reactions,
Ricerche Mat. 68 (2019), no. 1, 13-35.
DOI
- [6]
-
M. Bisi, M. Groppi and G. Spiga,
Grad's distribution functions in the kinetic equations for a chemical reaction,
Continuum Mech. Thermodyn. 14 (2002), no. 2, 207-222.
DOI
- [7]
-
M. Bisi, M. Groppi and G. Spiga,
Flame structure from a kinetic model for chemical reactions,
Kinetic and Related Models 3 (2010), 17-34.
DOI
- [8]
-
M. Bisi, G. Martalò and G. Spiga,
Shock wave structure of multi-temperature Euler equations from kinetic theory for a binary mixture,
Acta Appl. Math. 132 (2014), 95-105.
DOI
- [9]
-
G. Boillat and T. Ruggeri,
Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions,
Arch. Rational Mech. Anal. 137 (1997), 305-320.
DOI
- [10]
-
G. Boillat and T. Ruggeri,
On the shock structure problem for hyperbolic system of balance laws and convex entropy,
Continuum Mech. Thermodyn. 10 (1998), no. 5, 285-292.
DOI
- [11]
-
F. Conforto, M. Groppi, R. Monaco and G. Spiga,
Steady detonation waves for gases undergoing dissociation/recombination and bimolecular reactions,
Continuum Mech. Thermodyn. 16 (2004), no.1-2, 149-161.
DOI
- [12]
-
F. Conforto, M. Groppi, R. Monaco and G. Spiga,
Steady detonation problem for slow and fast chemical reactions,
In: "Modelling and Numerics of Kinetic Dissipative Systems'',
L. Pareschi, G. Russo and G. Toscani, eds., Nova Science, Hauppauge, NY, 2006, 105-117.
MR
- [13]
-
F. Conforto, M. Groppi, R. Monaco and G. Spiga,
Kinetic approach to deflagration processes in a recombination reaction,
Kinetic and Related Models 4 (2011), no. 1, 259-276.
DOI
- [14]
-
F. Conforto, M. Groppi, R. Monaco and G. Spiga,
Steady Combustion Waves Driven by a Recombination Reaction in a Gas Mixture,
Acta Appl. Math. 122 (2012), no. 1, 127-140.
DOI
- [15]
-
F. Conforto, A. Mentrelli and T. Ruggeri,
Shock structure and multiple sub-shocks in binary mixtures of Eulerian fluids,
Ricerche Mat. 66 (2017), no. 1, 221-231.
DOI
- [16]
-
F. Conforto, R. Monaco and A. Ricciardello,
Discontinuous Shock Structure in a Reacting Mixture Modelled by Grad 13 Moment Approximation,
Acta Appl. Math. 132 (2014), 225-236.
DOI
- [17]
-
F. Conforto, R. Monaco and A. Ricciardello,
Analysis of steady combustion processes in a recombination reaction,
Continuum Mech. Thermodyn. 26 (2014), 503-519.
DOI
- [18]
-
F. Conforto, R. Monaco, F. Schürrer and I. Ziegler,
Detonation wave structure arising from the kinetic theory of reacting gases,
In: "WASCOM 2001 - 11th Conference on Waves and Stability in Continuous Media'',
R. Monaco, M. Pandolfi Bianchi and S. Rionero, eds.,
World Scientific, River Edge, NJ, 2002, 161-168.
MR
- [19]
-
F. Conforto, R. Monaco, F. Schürrer and I. Ziegler,
Steady detonation waves via the Boltzmann equation for a reacting mixture,
J. Phys. A: Math. Gen. 36 (2003), 5381-5398.
DOI
- [20]
-
W. Fickett and W. C. Davis,
Detonation,
University of California Press, Berkeley, 1979.
- [21]
-
I. Glassman,
Combustion,
Academic Press, San Diego, 1996.
DOI
- [22]
-
M. Groppi, A. Rossani and G. Spiga,
Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state,
J. Phys. A: Math. Gen. 33 (2000), 8819-8833.
DOI
- [23]
-
K. K. Kuo,
Principles of combustion,
John Wiley, New York, 1986.
Article (2nd ed.)
- [24]
-
A. Rossani and G. Spiga,
A note on the kinetic theory of chemically reacting gases,
Phys. A: Stat. Mech. Appl. 272 (1999), no.3-4, 563-573.
DOI
- [25]
-
T. Ruggeri and S. Taniguchi,
A complete classification of sub-shocks in the shock structure of a binary mixture of Eulerian gases with different degrees of freedom,
Phys. Fluids 34 (2022), no. 6, 066116.
DOI
Home Riv.Mat.Univ.Parma