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Modulus of continuity for a martingale sequence

Abstract. Given a martingale sequence of random fields that satisfies
a natural assumption of boundedness, it is shown that the pointwise
limit of this sequence can be modified in such a way that a certain
class of moduli of continuity is preserved. That is, if every element of
the sequence admits a given modulus of continuity, one can construct
a modification of the limiting random field so that this new field also
admits the same modulus of continuity. Additionally, it is shown that
requiring further smoothness and a stronger notion of boundedness for
the original sequence guarantees further smoothness of the limiting field
and a stronger mode of convergence to this limit. Moreover, the modulus
of continuity is also preserved for the derivatives.
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For a scalar-valued martingale, the classical Doob martingale convergence
theorem states the almost sure convergence, as time goes to infinity, for a
martingale that is bounded in a certain functional-analytic sense (for precise
definitions see, e.g., [1]). Various generalizations of the Doob convergence the-
orem exist for martingales whose values are random elements taking values in
an infinitely dimensional Banach space. In particular, the Doob convergence
theorem holds if the Banach space satisfies the Radon–Nikodym property (e.g.,
see [3, Theorem 2.9] and also [2,4]).

Informally, the main result of this note states that the modulus of continuity
of a martingale taking values in the space of continuous functions is preserved
in the limit. Reasoning in a similar way, under minimal technical assumptions,
one can prove that the limit of a martingale of entire functions is itself an entire
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function. Observe, however, that the order and the type of the entire function
need not be preserved in passage to the limit: the simple example

(1) ee
x
=

∞∑
n=0

enx

n!
,

shows that without additional assumptions the expectation of a random variable
taking values in entire function of order one may itself have infinite order, and,
consequently, a martingale sequence of functions of order 1 may converge to an
entire function of an infinite order.

Let θ : R+ → R+ be amodulus of continuity which is continuous, increasing,
and subadditive. In other words, θ is a continuous increasing function, θ(0) = 0,
that satisfies θ(x+ y) ≤ θ(x)+ θ(y) for all x, y ∈ R+. Further we are interested
exclusively in continuous, increasing, and subadditive moduli, and for the sake
of brevity they are referred to simply as moduli. A canonical example of a
modulus of continuity is given by θ(x) = xα, α ∈ (0, 1], which describe the
property of Hölder continuity.

For any function f on a compact domain E ⊂ Rd, we say that it admits the
modulus of continuity θ if and only if

(2) sup
x�=y

|f(x)− f(y)|
θ(|x− y|)

< +∞.

We are going to study (2) for random fields that are elements of a martingale
sequence. To simplify the technical matters we bound ourselves to consider-
ing only discrete-time martingales. The proof can be easily modified to cover
the continuous case as well, however one needs to impose additional technical
conditions.

Consider a filtered probability space (Ω,F , {Fn}n≥0,P). For the sake of
convenience we assume that both the probability space and the filtration are
complete. In this setting the following statement holds.

T h e o r em 1. For a compact domain E ⊂ Rd let {(ξn(x), x ∈ E)}n≥0 be
a sequence of random fields such that their realizations admit a modulus of
continuity θ almost surely. Set

(3) Mn
def
= sup

x
|ξn(x)|+ sup

x�=y

|ξn(x)− ξn(y)|
θ(|x− y|)

,

and assume that (ξn(x), {Fn}n≥0) is a martingale for every fixed x ∈ E. If

(4) sup
n

E [Mn] < +∞,
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then there exist a random field (ξ(x), x ∈ E) such that its realizations admit the
modulus of continuity θ almost surely and such that

(5) (ξn(x), x ∈ E) −→
n→∞

(ξ(x), x ∈ E)

pointwise almost surely.

P r o o f. Clearly, (Mn, {Fn}n≥0) is a submartingale. The condition (4)
means that this submartingale is bounded. By the classical Doob’s martingale
convergence theorem (e.g., see [1]) one has that

(6) Mn −→
n→∞

M

almost surely, where M is a random variable with expectation E [M ] < +∞.
Condition (4) also implies that the martingale (ξn(x), {Fn}n≥0) is bounded for
every fixed x ∈ E. Again, Doob’s martingale convergence theorem yields

(7) ξn(x) −→
n→∞

ξ̃(x)

almost surely, for some random variable ξ̃(x) with expectation E
[
ξ̃(x)

]
< +∞.

In this way one can define the random field (ξ̃(x), x ∈ E). Note, however,
that neither can we claim that realizations of this field admit θ almost surely,
nor can we claim (ξn(x), x ∈ E) −→

n→∞
(ξ̃(x), x ∈ E) pointwise almost surely.

The almost sure convergence merely takes place for every fixed x ∈ E, and the
exceptional set of zero measure, in fact, depends upon x ∈ E. We are going to
construct a modification of (ξ(x), x ∈ E), such that it admits θ, and prove the
corresponding convergence.

Let A be a dense countable subset of E. Since A is countable,

(8) (ξn(x), x ∈ A) −→
n→∞

(ξ̃(x), x ∈ A)

pointwise almost surely. Consequently, using (3) and passing to the limit as n →
∞ in the inequality

(9) |ξn(x)− ξn(y)| ≤ Mnθ(|x− y|), x, y ∈ A,

we obtain

(10) |ξ̃(x)− ξ̃(y)| ≤ Mθ(|x− y|)

for all x, y ∈ A almost surely. In other words, realizations of (ξ̃(x), x ∈ A)
admit the modulus θ almost surely.
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Define (ξ(x), x ∈ E) by

(11) ξ(x)
def
= inf

y∈A

(
ξ̃(y) +Mθ(|x− y|)

)
.

We need to show that realizations of (ξ(x), x ∈ E) also admit θ almost
surely. First, suppose x ∈ E and y ∈ A. The chain of inequalities

(12)

−Mθ(|x− y|) ≤ M inf
u∈A

(θ(|x− u|)− θ(|u− y|))

≤ inf
u∈A

(
ξ̃(u)− ξ̃(y) +Mθ(|x− u|)

)
≤ Mθ(|x− y|),

where the first one follows by subadditivity and monotonicity of θ, gives us

(13) |ξ(x)− ξ̃(y)| =
∣∣∣∣ infu∈A

(
ξ̃(u)− ξ̃(y) +Mθ(|x− u|)

)∣∣∣∣ ≤ Mθ(|x− y|),

for all x ∈ E and y ∈ A almost surely. In particular, we see that ξ(x) = ξ̃(x)
for all x ∈ A almost surely.

Next, for any x, y ∈ E there exist sequences {xk} ⊂ A and {yk} ⊂ A
such that xk → x and yk → y as k → ∞. The triangle inequality and the
formulas (10) and (13) yield

(14)
|ξ(x)− ξ(y)| ≤ |ξ(x)− ξ̃(xk)|+ |ξ̃(xk)− ξ̃(yk)|+ |ξ̃(yk)− ξ(y)|

≤ M
(
θ(|x− xk|) + θ(|xk − yk|) + θ(|yk − y|)

)
.

And passing to the limit as k → ∞ and using the continuity of θ, we arrive at

(15) |ξ(x)− ξ(y)| ≤ Mθ(|x− y|)

for all x, y ∈ E almost surely. This shows that realizations of (ξ(x), x ∈ E)
admit θ almost surely.

The final step is to establish the pointwise convergence in (5). Fix x ∈ E,
and let {xk} ⊂ A be a sequence such that xk → x as k → ∞. The formulas (3)
and (15), along with the triangle inequality, lead us to

(16)
|ξn(x)− ξ(x)| ≤ |ξn(x)− ξn(xk)|+ |ξn(xk)− ξ(xk)|+ |ξ(xk)− ξ(x)|

≤ Mnθ(|x− xk|) + |ξn(xk)− ξ(xk)|+Mθ(|xk − x|),

which holds almost surely. Due to the continuity of θ, passing first to the
limit superior as n → ∞ and then to the limit as k → ∞ yield (5) pointwise
almost surely as desired. Due to the uniqueness of the limit it is also clear
that (ξ(x), x ∈ E) is a modification of the field (ξ̃(x), x ∈ E). This completes
the proof. �
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R ema r k . Fix x0 ∈ E, and note that since E is bounded, the theorem also
holds if one uses

(17) M̃n
def
= |ξn(x0)|+ sup

x�=y

|ξn(x)− ξn(y)|
θ(|x− y|)

.

instead of Mn.
Indeed, passing to the supremum with respect to x in the elementary chain

of inequalities, the terminal one being due to the boundedness of E and the
continuity of θ,

(18) |ξn(x)| ≤
|ξn(x)− ξn(x0)|

θ(|x− x0|)
θ(|x− x0|) + |ξn(x0)|

≤ M̃n(1 + θ(|x− x0|)) ≤ C̃M̃n

gives

(19) CMn ≤ M̃n ≤ Mn,

where C = 1/C̃ > 0. Consequently, all estimates in the theorem carry over to
the case of M̃n.

A natural question arises whether one can guarantee a stronger mode of
convergence in (5) and what assumptions are needed for this. We show below
that provided further smoothness of the fields, indeed one can expect much
more than just pointwise convergence. To alleviate unnecessary geometric
complications we state the further result for one-dimensional domains only,
namely E = [a, b].

Denote the norm in the space of smooth functions Cm(E) by

(20) ‖f‖m =

m∑
l=0

sup
x

∣∣∣f (l)(x)
∣∣∣ ,

where f (l) is the l-th derivative of f and f (0) def
= f . We have the following

theorem.

Th e o r em 2. Let {(ξn(x), x ∈ E)}n≥0 be a sequence of stochastic processes
such that their realizations are Cm+1(E)-smooth almost surely and such that
realizations of their (m + 1)-th derivatives admit a modulus of continuity θ
almost surely. Set

(21) Mn
def
= ‖ξn‖m+1 + sup

x�=y

∣∣∣ξ(m+1)
n (x)− ξ

(m+1)
n (y)

∣∣∣
θ(|x− y|)

,
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and assume that (ξn(x), {Fn}n≥0) is a martingale for every fixed x ∈ E. If

(22) sup
n

E [Mn] < +∞,

then there exist a random field (ξ(x), x ∈ E) with almost sure Cm+1(E)-smooth
realizations and such that realizations of its (m + 1)-th derivative admit the
modulus of continuity θ almost surely; moreover

(23) ‖ξn − ξ‖m −→
n→∞

0

almost surely.

P r o o f. First, since (ξn(x), {Fn}n≥0) is a martingale for every fixed x ∈ E,
we have

(24) E
[
ξn(x+ h)− ξn(x)

h

∣∣∣∣Fn0

]
=

ξn0(x+ h)− ξn0(x)

h
, n > n0,

almost surely. The quantity Mn gives a bound for the absolute value of the
expression inside the expectation, therefore due to (22) and due to the domi-
nated convergence theorem one can pass to the limit as h → 0 in (24). Conse-

quently, (ξ
(1)
n (x), {Fn}n≥0) turns out to be a martingale for every fixed x ∈ E.

Writing (24) for the derivatives and repeating the argument, one can easily

show that (ξ
(l)
n (x), {Fn}n≥0) is a martingale for every x ∈ E and for all l =

1, . . . ,m+ 1.
Also, it is clear that (Mn, {Fn}n≥0) is a submartingale which is bounded

due to (22), thus

(25) Mn −→
n→∞

M

for some random variable M with expectation E [M ] < +∞.
We proceed further by induction. Consider the base case m = 0. De-

note ηn(x) = ξ
(1)
n (x) and observe that the assumptions of Theorem 1 are satis-

fied for (ηn) with the same modulus of continuity θ. Namely, one can see that if
M̃n is defined by (3) of ηn and Mn is defined by (21), then M̃n = Mn−‖ξn‖0 ≤
Mn. Thus, there is a stochastic process (η(x), x ∈ E) such that its realizations
admit θ almost surely, in particular they are almost sure continuous, and the
convergence takes place

(26) (ηn(x), x ∈ E) −→
n→∞

(η(x), x ∈ E)

pointwise almost surely.
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Now we will construct the random field (ξ(x), x ∈ E) such that ξ(1)(x) =
η(x).

Since (ξn(a), {Fn}n≥0) is a bounded martingale, by Doob’s convergence the-
orem we can find a random variable ξ(a), E [ξ(a)] < +∞, such that

(27) ξn(a) −→
n→∞

ξ(a)

almost surely.
Let us define (ξ(x), x ∈ E) by

(28) ξ(x)
def
= ξ(a) +

x∫

a

η(s) ds.

Clearly, (ξ(x), x ∈ E) is C1(E)-smooth almost surely and realizations of its
first derivative admit θ almost surely. It remains to prove the convergence.

We have

(29)

‖ξn − ξ‖0 = sup
x

∣∣∣∣∣∣
ξn(a)− ξ(a) +

x∫

a

(ηn(s)− η(s)) ds

∣∣∣∣∣∣

≤ |ξn(a)− ξ(a)|+
∫

E

|ηn(s)− η(s)| ds.

Since η admits the modulus θ, it is bounded almost surely; also ηn are bounded
uniformly in n almost surely since

(30) ‖ηn‖0 ≤ Mn

and Mn is an almost surely convergent sequence. Then by dominated conver-
gence and using (26) and (27) we have

(31) ‖ξn − ξ‖0 −→
n→∞

0

almost surely. This completes the proof of the base case.
Now let k ≥ 1 and suppose that the claim holds for m = k − 1. Then the

inductive hypothesis hold for ηn = ξ
(1)
n and the same θ. Thus, there exists a

random field (η(x), x ∈ E) we have that

(32) ‖ηn − η‖k−1 −→
n→∞

0

almost surely, η has almost sure Ck(E)-smooth realizations and the realizations
of the k-th derivative admit θ almost surely.
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Using the same definition for (ξ(x), x ∈ E) as in (28), where ξ(a) is as
in (27), we see that realizations of this process are Ck+1(E)-smooth almost
surely and the (k + 1)-th derivative admits θ. To prove the convergence we
notice that

(33)

‖ξn − ξ‖k = ‖ξn − ξ‖0 + ‖ηn − η‖k−1

≤ |ξn(a)− ξ(a)|+ sup
x

∣∣∣∣∣∣

x∫

a

(ηn(s)− η(s)) ds

∣∣∣∣∣∣
+ ‖ηn − η‖k−1

≤ |ξn(a)− ξ(a)|+
∫

E

|ηn(s)− η(s)| ds+ ‖ηn − η‖k−1.

Then, as n → ∞, the first and the last term tend to zero almost surely by
the formulas (27) and (32), and for the integral term we use the almost sure
uniform convergence of ηn(s)− η(s) to zero, also due to (32). Thus, we have

(34) ‖ξn − ξ‖k −→
n→∞

0.

This concludes the proof. �
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