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Riemannian G-manifolds of constant negative curvature

whose all orbits are principal

Abstract. We give a topological classification on Riemannian G-mani-
folds of constant negative curvature and their orbits, under the condition
that all orbits are principal.
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1 - Introduction

If M is a Riemannian manifold and G is a closed and connected subgroup
of the Lie group of the isometries of M , then M is called a Riemannian G-
manifold. It is well known that for a Riemannian G-manifold M there is a
unique maximal orbit type called the principal orbits and the other orbits are
called singular orbits (see [5]). The union of all principal orbits is an open and
dense subset of M . Most studied families of Riemannian G-manifolds are those
which are homogeneous. These are Riemannian G-manifolds with transitive
action of G on M . Topology and geometry of homogeneous Riemannian mani-
folds are for the most part well understood. The next most studied family are
those which the dimension of the orbit space, that is called the cohomogeneity
of the G-manifold, is one. Also, there are many results about topological prop-
erties of Riemannian G-manifolds of cohomogeneity two or three. But, in the
general case, where the cohomogeneity is considered to be arbitrary, the prob-
lem of topological classification on Riemannian G-manifolds and their orbits
is an open problem. To study of the G-manifolds of arbitrary cohomogene-
ity, it seems better to start by the special case where all orbits are considered
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to be principal. For symmetric spaces of noncompact type G
K , the orbits of

a cohomogeneity one action without singular orbit form a Riemannian folia-
tion. Furthermore, when G

K is irreducible, such actions have been completely
classified up to orbit equivalence ( [2]). It is proved in [21] that if Mn is a
cohomogeneity one Riemannian G-manifold without singular orbit then either
M is simply connected or it is diffeomorphic to Rk × Tn−k, for some positive
integer k, and each orbit is diffeomorphic to Rk × Tn−k−1. There are some
results about cohomogeneity two Riemannian G-manifolds without singular or-
bit in [16], and cohomogeneity two Riemannian manifolds of constant negative
curvature have been studied in [15]. To extend the results of [15] and [16], we
consider in the present paper, a Riemannian G-manifold of constant negative
curvature and arbitrary cohomogeneity whose all orbits are principal.

2 - Preliminaries

Throughout the following, M is a complete and connected Riemannian
manifold of negative curvature and G is a closed and connected subgroup of
the Lie group of all isometries of M . If M is not simply connected, then M̃
will denote the universal covering manifold of M endowed with the pulled back
metric, and κ : M̃ → M will denote the covering projection. We will use
the symbol ∆ to indicate the decktransformation group of the covering map
κ : M̃ → M . Note that the Lie group G admits always a connected covering
G̃ which acts on M̃ by isometries. The covering map π : G̃ → G is such that
π(g′)(x) = κ(g′(y)) for all x ∈ M , g′ ∈ G̃, y ∈ κ−1(x). Moreover, ∆ centralizes
G̃, so it maps G̃-orbits onto G̃-orbits (see [5] pages 63 and 64).

R ema r k 2.1. If K is a maximal compact subgroup of a connected Lie
group G, then there is a solvable Lie group H which acts transitively on G

K .

P r o o f. We have G = S.R such that R is a maximal solvable and normal
subgroup of G and S is a semisimple subgroup (Levi decomposition). S can be
decomposed as S = SN .SC where SN and SC are product of simple noncompact
and simple compact subgroups, respectively. Since K is maximal compact in
G, then K = KN .SC .KR where KN and KR are maximal compact in SN and
R. By Iwasawa decomposition, we have SN = B.KN such that B is a solvable
group. Since R = R.KR, then we have:

G = R.S = R.KR.SN .SC = R.KR.(B.KN ).SC

= R.B.KN .KR.SC = R.B.K

So, R.B is a solvable Lie group and acts transitively on G
K . �
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R ema r k 2.2. If M is a G-manifold and x ∈ M , the G-orbit containing x is
denoted by G(x) = {gx : g ∈ G}. The set Gx = {g ∈ G : gx = x} is called the
stabilizer group of x ∈ M . Two orbits G(p) and G(q) are said to have the same
orbit type if Gp and Gq are conjugate in G. This defines an equivalence relation
among the orbits ofG. We denote by [G(p)] the corresponding equivalence class,
which is called the orbit type of G(p). We can impose a partial ordering on the
set of all orbit types of the action of G on M by saying that [G(p)] ≤ [G(q)]
if and only if Gq is conjugate in G to some subgroup of Gp. An orbit G(p) is
principal if and only if for each q ∈ M the isotropy group Gp at p is conjugate
in G to some subgroup of Gq. A non-principal orbit is called singular orbit.
Therefore, if there is no singular orbit then for all x ∈ M , Gx is a maximal
compact subgroup of G.

T h e o r em 2.1 ([12,24]).

1) A homogeneous Riemannian manifold of negative curvature is simply con-
nected.

2) A homogeneous Riemannian manifold Mn of nonpositive curvature is dif-
feomorphic to T p ×Rn−p, p ≥ 0.

Rema r k 2.3. (1) IfMn is a connected and complete Riemannian manifold
of constant negative curvature c, then its universal covering manifold is Hn(c)
(hyperbolic space). In the open disk model, Hn(c) can be considered as the set
D = {x ∈ Rn : |x| < 1}. Sn−1, the boundary of D in Rn is the infinity set of
Hn(c) denoted by Hn(c)(∞) = Sn−1. If z ∈ Hn(c)(∞) and γ is a geodesic in
Hn(c) such that limt→∞γ(t) = z, then z is denoted by γ(∞). The collection
of all geodesics γ with the property γ(∞) = z are asymptotic and are denoted
by [γ]. If z ∈ Hn(c)(∞) then there is a foliation of hypersurfaces of Hn(c),
called horospheres centered at z, such that at each point a ∈ M , a horosphere
S centered at z is perpendicular to a unique geodesic γ with γ(∞) = z. It is
well known that horospheres of Hn(c) are isometric to Rn−1.

(2) By general theory of Riemannian manifolds of negative curvature (see
[3]), if ϕ is an isometry of Hn(c) then one the following is true:

ϕ has a fixed point in Hn(c) (ϕ is elliptic),

ϕ translates a unique geodesic (ϕ is hyperbolic),

ϕ has a fixed point in Hn(c)(∞) (ϕ is parabolic).

(3) If ϕ is a parabolic isometry and z ∈ Hn(c)(∞) such that ϕ(z) = z, then
for all horospheres S centered at z, ϕ(S) = S ([6, Lemma 3]).

(4) If δ ∈ ∆ then δ is not elliptic (a decktransformation has no fixed point).
So, δ translates a unique geodesic or it is parabolic.
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3 - Results

If G and H are Lie groups acting on a Riemannian manifold M with the
same orbits, then we say that G and H are orbit equivalent.

We will use Lemma 3.1 and Theorem 3.1 in the proof of Theorem 3.2. For
more details about isometric actions on Rn, we refer to [18].

L emma 3.1. Let x ∈ Rn and let G be a closed, connected and noncompact
subgroup of Iso(Rn). Then one of the following is true:

(1) There is a positive integer l such that, G(◦) = Rl (◦ is the origin of Rn),
and each orbit G(x) splits as G(x) = Mx ×Rl, Mx ⊂ Rn−l.

(2) There are nonnegative integers d, e such that d + e = n and G is orbit
equivalent to a subgroup of So(d)×Re.

P r o o f. The proof of Lemma 2.6 in [18] works. Note that in the proof
of the mentioned lemma, the parallel distribution D is defined on Rn. Since
for x = ◦ the action of the members of G on x is equal to the action of the
translation part of G, we have G(◦) = Rl. �

Th e o r em 3.1. If G is a closed, noncompact and connected subgroup of
Iso(Rn) such that all orbits are principal, then one of the following is true:

(1) There is a unique totally geodesic orbit.

(2) All orbits are totally geodesic.

P r o o f. Consider two cases (1) and (2), in Lemma 3.1.
C a s e 1. Since all orbits are principal, then for all x ∈ Rn, dimG(x) =

dimG(o). So, dimMx = 0 and G(x) ≃ Rl for all x ∈ Rn.
C a s e 2. If d = 0 then all orbits are isometric to Re.
If d ̸= 0 then for x = (o, o) ∈ Rd × Re, we have G(x) ≃ Re, and for

x = (x1, x2) ∈ Rd × Re, x1 ̸= o, the orbit G(x) is a submanifold of Sd−1(r) ×
Re, which is not euclidean (it is a generalized helicoid). Since the orbits are
connected, then d ̸= 2. So, there is a unique euclidean orbit. �

Rema r k 3.1 ([8]). If M is nonsimply connected of negative curvature and

there is a geodesic γ in M̃ such that ∆(γ) = γ, then ∆ is isomorphic to (Z,+).

Th e o r em 3.2. Let Mn, n ≥ 2, be a complete and connected Riemannian
G-manifold of constant negative curvature such that G is not trivial and there
is no singular orbit. Then, either all orbits are flat or one of the following is
true:
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(a) All orbits are diffeomorphic to Rk × T s for some non-negative integers
k, s. M is diffeomorphic to Rn.

(b) All orbits are diffeomorphic to S1. M is diffeomorphic to Rn

Z for some
action of Z on Rn.

(c) All orbits are diffeomorphic to Rk × T s for some non-negative integers
k, s. M is diffeomorphic to Rn

Zs for some action of Zs on Rn.

P r o o f. We use the symbols mentioned in the first paragraph of the prelim-
inaries. Since M has constant negative curvature c, then we have M̃ = Hn(c).
If M is simply connected then M = Hn(c), so M is diffeomorphic to Rn. For
each point x ∈ M the orbit G(x) is diffeomorphic to G

Gx
. Since there is no sin-

gular orbit, by the last lines of Remark 2.2, Gx is a maximal compact subgroup
of G. So, by Corollary 2.1, G(x) is a solvmanifold and by the main theorem
of [11], it must be diffeomorphic to Rk ×T s for some m, s ≥ 0. This is part (a)
of the theorem.

Now, suppose thatM is not simply connected. By the main theorem of [22],
one of the following is true:

(1) There is a zero dimensional G̃-orbit in Hn(c).

(2) There is a unique totally geodesic G̃-orbit.

(3) There is a point z ∈ Hn(c)(∞) such that all orbits are included in
horospheres centered at z.

We consider each case separately.

(1) There is also a zero dimensional G-orbits in M . Since by assumptions
all orbits are principal, all G-orbits must be zero dimensional. Then, the action
of G must be trivial, which is a contradiction.

(2) Let N = G̃(x) be the unique totally geodesic orbit of Hn(c). We get
from the uniqueness of N that ∆(N) = N (because, if δ ∈ ∆ then from the
fact that the members of ∆ map orbits to orbits, δ(N) is also a totally geodesic
G̃-orbit). Now, put D = κ(N). D is a G-orbit in M . Since ∆(N) = N , then
D = N

∆ . If dimN ≥ 2 then D would be a homogeneous Riemannian manifold
of negative curvature and by Theorem 2.1, D must be simply connected. So
∆(= π1(D)) is trivial and M is simply connected.

If dimN = 1 then N is equal to the image of a geodesic λ and we get from
∆(N) = N and Remark 3.1 that ∆ = Z. Also, λ

∆ is a G-orbit in M which is

diffeomorphic to R
Z = S1. Since M̃ is diffeomorphic to Rn and all orbits are

diffeomorphic to each other, we get part (b) of the theorem.

(3) First note that if there is a δ ∈ ∆ and a unique geodesic γ such that
δ(γ) = γ, then we get from the uniqueness of γ that γ is a G̃-orbit. So, we get
part (b) of the theorem in a similar way as (2). Thus, by Remark 2.3(4), we can
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suppose that all members of ∆ are parabolic. Since each δ ∈ ∆ maps orbits to
orbits, then δ leaves invariant the horosphere foliation centered at z. Thus, by
Remark 2.3(3), ∆(S) = S. Consider a horosphere S in the mentioned foliation.
S is a G̃-manifold without singular orbit. Since by Remark 2.3(1), S is isometric
to Rn−1 then by Theorem 3.1, either all orbits are Euclidean or there is only
one Euclidean orbit in S. By assumptions of the theorem, we can suppose that
there exists a unique Euclidean orbit E in S = Rn−1. Since ∆(S) = S, we get
from the uniqueness of E in S that ∆(E) = E. Now, put D = κ(E). D is a
G-orbit which is flat. Thus, by Theorem 2.1(2), D is diffeomorphic to Rk × T s

for some nonnegative integers k and s. Since π1(M) = ∆ = π1(D), we get part
(c) of the theorem. �

Ac k n ow l e d gm e n t s. The author would like to thank the referee and
the editors for their time spent on reviewing the manuscript.
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