
Riv. Mat. Univ. Parma, Vol. 9 (2018), 1-19
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Abstract. In the space C of the parameters λ of the unicritical poly-
nomials family f(λ, z) = fλ(z) = zd + λ of degree d > 1, we establish a
quantitative equidistribution result towards the bifurcation current (in-
deed measure) Tf of f as n → ∞ on the averaged distributions of all
parameters λ such that fλ has a superattracting periodic point of period
n in C, with a concrete error estimate for C2-test functions on P1. In the
proof, not only complex dynamics but also a standard argument from
the Nevanlinna theory play key roles.
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1 - Introduction

Let f : C × P1 → P1 be the (monic and centered ) unicritical polynomials
family

f(λ, z) = fλ(z) := zd + λ for every (λ, z) ∈ C× P1(1.1)

of degree d > 1. Let c0 ≡ 0 on C, which is a marked critical point of the family
f in that for every λ ∈ C, c0(λ) is a critical point of fλ(z) ∈ C[z]. For every
n ∈ N ∪ {0}, let us define the monic polynomial

Fn(λ) := fn
λ (c0(λ)) ≡ fn

λ (0) ∈ Z[λ]

of degree dn−1. Any zero of Fn is simple (Douady–Hubbard [10, Exposé XIX];
see also [19, Theorem 10.3] for a simple proof). The study of the asymptotic
behavior as n → ∞ of the set of all zeros of Fn, which is the set of all parameters
λ ∈ C such that fλ has a superattracting periodic point of (not necessarily
exact) period n in C, was initiated by Levin [15], and has been developed by
Bassanelli–Berteloot [2,3] and Buff–Gauthier [7] subsequently.

Our aim is, from both complex dynamics and the Nevanlinna theory, to
contribute to the quantitative study of the asymptotic behavior of zeros of Fn

as n → ∞, partly sharpening Gauthier–Vigny [14].

N o t a t i o n 1.1. Let µ : N �→ {−1, 0, 1} be the Möbius function from arith-
metic (cf. [1, §2]). Let log+ t := logmax{1, t} on R. Let ω be the Fubini-Study
area element on P1 normalized as ω(P1) = 1, let [z, w] be the chordal metric on
P1 normalized as [·,∞] = 1/

√
1 + | · |2 on P1 (following the notation in Nevan-

linna’s and Tsuji’s books [23,29]), and let δx be the Dirac measure on P1 at each
x ∈ P1. The Laplacian ddc on P1 is normalized as ddc(− log[·,∞]) = ω − δ∞
on P1. Set D(x, r) := {y ∈ C : |x − y| < r} for every x ∈ C and every r > 0,
D(r) := D(0, r) for every r > 0, and D := D(1).

1.1 - Main result

Let gIc0 be the Green function with pole ∞ on the escaping locus Ic0 :=
{λ ∈ C : lim supn→∞ |Fn(λ)| = ∞} of the marked critical point c0 of f ; Ic0
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is a punctured open and connected neighborhood of ∞ in P1, and ∂Ic0 and
C \ Ic0 respectively coincide with the J-unstability or bifurcation locus Bf and
the connectedness locus Mf of f . The function gIc0 extends to C continuously

by setting gIc0 ≡ 0 on Mf , and µBf
:= ddcgIc0 + δ∞ on P1 coincides with

the harmonic measure on Bf with pole ∞. The measure (d − 1)d−1µBf
on

P1 coincides with the bifurcation current (indeed measure) Tf of f on P1 (see
Subsection 2.1). By a refinement of Przytycki’s argument on the recurrence of
critical orbits [25, Proof of Lemma 2] and Buff’s upper estimate of the moduli
of the derivatives of polynomials [6, the proof of Theorem 3], we will establish
the following L1(ω) estimate

∫

P1

��log |Fn| − dn−1 · gIc0
��ω ≤ 2 log d

d− 1
n+O(1)(1.2)

as n → ∞, with the concrete coefficient (2 log d)/(d − 1) of n in the right
hand side; a question on the best possibility of this estimate (1.2) seems also
interesting. As seen in the proof of (1.2) (in Section 3), this may be regarded as
a counterpart of H. Selberg’s theorem [26, p. 313] from the Nevanlinna theory.

Our principal result is a deduction from (1.2) of the following quantita-
tive equidistribution of the sequence (F ∗

nδ0/d
n) of the averaged distribution of

the superattracting parameters of period n towards (d − 1)−1Tf = d−1µBf
as

n → ∞.

T h e o r em 1. Let f : C× P1 → P1 be the unicritical (monic and centered )
polynomials family of degree d > 1 defined as in (1.1). Then for every ϕ ∈
C2(P1),

������

∫

P1

ϕd ((d− 1) · F ∗
nδ0 − dn · Tf )

������
≤

(
sup
P1

����
ddcϕ

ω

����
)
·
(
(2 log d)n+O(1)

)
(1.3)

as n → ∞, where the implicit constant in O(1) is independent of ϕ and the
Radon-Nikodim derivative (ddcϕ)/ω on P1 is bounded on P1.

For a former application of Selberg’s theorem (Theorem 3.2) to obtain a
quantitative equidistribution result in complex dynamics, see Drasin and the
author [12]. As an order estimate, the estimate (1.3) is due to Gauthier–
Vigny [14, Theorem A]. The implicit constant in O(1) in (1.3) will also be
computed in the proof. The coefficient 2 log d of n in (1.3) comes from the full
strength of de Branges’s theorem (the solution of the Bieberbach conjecture),
on which the proof of Buff’s estimate mentioned above essentially relies.
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1.2 - Non-repelling parameters having exact periods

For every n ∈ N, the n-th dynatomic polynomial

Φ∗
f,n(λ, z) :=

∏
m∈N:m|n

(fm
λ (z)− z)µ(n/m)

of the family f is in fact in Z[λ, z], and for every λ ∈ C, Φ∗
f,n(λ, z) ∈ C[z] is

monic and of degree

ν(n) = νd(n) :=
∑

m∈N:m|n

µ
( n

m

)
dm.(1.4)

For every λ ∈ C and every n ∈ N, let Fixf (λ, n) be the set of all fixed points
of fn

λ in C and set Fix∗f (λ, n) := Fixf (λ, n) \
(∪

m∈N:m|n and m<n Fixf (λ,m)
)
,

each element in which is called a periodic point of fλ in C having the exact
period n. For every n ∈ N and every λ ∈ C, a periodic point z of fλ in C
is said to have the formally exact period n if either (i) z ∈ Fix∗f (λ, n) or (ii)
there is an m ∈ N satisfying m|n and m < n such that z ∈ Fix∗f (λ,m) and that
(fm

λ )′(z) is a primitive (n/m)-th root of unity (so in particular (fn
λ )

′(z) = 1).
For every λ ∈ C and every n ∈ N, let Fix∗∗f (λ, n) be the set of all periodic
points of fλ in C having the formally exact period n, which in fact coincides
with (Φ∗

f,n(λ, ·))−1(0). For every n ∈ N, the n-th multiplier polynomial

p∗f,n(λ,w) :=

( ∏
z∈Fix∗∗f (λ,n)

((fn
λ )

′(z)− w)

)1/n

of f , where for each λ ∈ C, the product in the right hand side takes into
account the multiplicity of each z ∈ Fix∗∗f (λ, n) as a zero of Φ∗

f,n(λ, ·), is indeed
in Z[λ,w] and unique up to multiplication in n-th roots of unity. For every
w ∈ C, by a direct computation,

degλ p
∗
f,n(λ,w) = (d− 1)

ν(n)

d
(1.5)

and the coefficient of the leading term of p∗f,n(λ,w) ∈ C[λ] equals dν(n), both of
which are independent of w. For every n ∈ N and every w ∈ C, let Per∗f (n,w)
be the effective divisor on P1 defined by the zeros of p∗f,n(λ,w) ∈ C[λ]; as a

Radon measure on P1,

Per∗f (n,w) = ddcλ log |p∗f,n(λ,w)|+ (d− 1)
ν(n)

d
δ∞.

For more details, see e.g. [28, §4], [4, §2.3], [21, §3].
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No t a t i o n 1.2. Let (σ0(n)) and (σ1(n)) be such sequences in N that
1 =

∑
m∈N:m|n µ(n/m)σ0(m) and n =

∑
m∈N:m|n µ(n/m)σ1(m), or equiva-

lently, σ0(n) =
∑

m∈N:m|n 1 and σ1(n) =
∑

m∈N:m|nm by Möbius inversion, for
every n ∈ N.

By an argument similar to that in the proof of Theorem 1, we will also show
the following.

Th e o r em 2. Let f : C× P1 → P1 be the unicritical (monic and centered )
polynomials family of degree d > 1 defined as in (1.1). Then for every ϕ ∈
C2(P1),

(1.6)

������

∫

P1

ϕd
(
Per∗f (n, 0)− ν(n) · Tf

)
������

≤
(
sup
P1

����
ddcϕ

ω

����
)
·
(
(2 log d)σ1(n) +O(σ0(n))

)

as n → ∞, where the term O(σ0(n)) is independent of ϕ, and for every ϕ ∈
C2(P1) and every r ∈ (0, 1],

(1.7)

������

∫

P1

ϕd




2π∫

0

Per∗f (n, re
iθ)

dθ

2π
− ν(n) · Tf



������

≤
(
sup
P1

����
ddcϕ

ω

����
)
·
(
(2 log d)σ1(n) +O(σ0(n))

)

as n → ∞, where the term O(σ0(n)) is independent of both ϕ and r. Here the
Radon-Nikodim derivative (ddcϕ)/ω on P1 is bounded on P1.

Again, the terms O(σ0(n)) in Theorem 2 will also be computed in Section
4. As an order estimate, the estimate (1.6) is a consequence of Gauthier–
Vigny [14, Theorem A]. The estimate (1.7) quantifies Bassanelli–Berteloot [3,
2. in Theorem 3.1] for r ∈ (0, 1].

1.3 - Organization of the article

In Section 2, we recall background from the study of the unicritical poly-
nomials family f . In Section 3, we show Theorem 1. In Section 4, we show
Theorem 2.
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2 - Background from the study of the family f

Let f : C × P1 → P1 be the unicritical (monic and centered) polynomials
family of degree d > 1 defined as in (1.1), and recall that c0(λ) = 0 ∈ Z[λ]
defines a marked critical point of f .

2.1 - Douady–Hubbard’s theory on the parameter space C of f

For every λ ∈ C, let Jfλ be the Julia set of fλ, which is compact in C.
Let Bf be the J-unstability or bifurcation locus of the family f , which is the
discontinuity locus of the set function λ �→ Jfλ with respect to the Hausdorff
topology from (P1, [z, w]), and is closed and nowhere dense in C (by Mañé–
Sad–Sullivan [17], Lyubich [16]). The escaping locus

Ic0 := {λ ∈ C : lim sup
n→∞

|Fn(λ)| = ∞}

of the marked critical point c0 of f is a punctured open and connected neigh-
borhood of ∞ in P1 and coincides with the unique unbounded component of
C \Bf . We have Bf = ∂Ic0 , and the connectedness locus

Mf := {λ ∈ C : Jfλ is connected}

of f coincides with C \ Ic0 (and is connected). For every λ ∈ C, fλ has at most
one non-repelling cycle in C (see, e.g., [20, §8]). Let Hf be the hyperbolicity
locus of f , which coincides with the union of Ic0 and the set of all λ ∈ Mf

such that fλ has the (super)attracting cycle in C, and is a closed and open
subset in C \ Bf . For example, for every n ∈ N, 0 ∈ F−1

n (0) ⊂ Hf \ Ic0 . For
every component U of Hf \ Ic0 , there are an nU ∈ N and a proper holomorphic
mapping ϕU : U → D of degree d − 1 such that #ϕ−1

U (0) = 1 and that for
every w ∈ D, ϕ−1

U (w) coincides with the set of all λ ∈ U such that fλ has the
(super)attracting cycle in C having the exact period nU and the multiplier w.
For more details, see Douady–Hubbard [11], and for a modern treatment, see
McMullen–Sullivan [19, §10].

2.2 - The Green functions on the dynamical and parameter spaces

For every λ ∈ C, Jfλ coincides with the boundary of the filled-in Julia set
Kfλ := {z ∈ C : lim supn→∞ |fn

λ (z)| < ∞} of fλ, which is compact in C. For
every λ ∈ C, the uniform limit

gfλ(z) := lim
n→∞

− log[fn
λ (z),∞]

dn
(2.1)
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exists on C, and setting gfλ(∞) := +∞, the probability measure µfλ :=
ddcgfλ + δ∞ on P1 coincides with the harmonic measure on Jfλ with pole ∞.
Moreover, µfλ is mixing so ergodic under fλ (by Brolin [5]). For completeness,
we include a proof of the following.

L emma 2.1. For every λ ∈ C,

sup
C

��gfλ + log[·,∞]
�� ≤ 1

d− 1
· sup
z∈C

����log
[z,∞]d

[fλ(z),∞]

����,(2.2)

and the function λ �→ supz∈C | log([z,∞]d/[fλ(z),∞])| is locally bounded on C.

P r o o f. For every λ ∈ C, by the definition (2.1) of gfλ , we have

sup
C

��gfλ + log[·,∞]
�� ≤ sup

z∈C

�����
∞∑
j=1

− log[fλ(f
j−1
λ (z)),∞] + d · log[f j−1

λ (z),∞]

dj

�����

≤ 1

d− 1
· sup
z∈C

����log
[z,∞]d

[fλ(z),∞]

����.

For every λ ∈ C, let us define the non-degenerate homogeneous polynomial
endomorphism f̃λ : C2 → C2 of degree d by f̃λ(p0, p1) := (pd0, p

d
0fλ(p1/p0)) =

(pd0, p
d
1 +λpd0). Then the function (λ, (p0, p1)) �→

��log ∥f̃λ(p0, p1)∥
�� is continuous

on C× (C2 \ {(0, 0)}), and for every compact subset K in C, we have

sup
(λ,z)∈K×C

����log
[z,∞]d

[fλ(z),∞]

���� = sup
(λ,(p0,p1))∈K×S(1)

��log ∥f̃λ(p0, p1)∥
��,

where ∥·∥ is the Euclidean norm on C2 and S(1) := {(p0, p1) ∈ C2 : ∥(p0, p1)∥ =
1}. Now the proof is complete by the compactness of K in C and that of S(1)
in C2 \ {(0, 0)}. �

Similarly, the locally uniform limit

λ �→ gIc0 (λ) := lim
n→∞

− log[Fn(λ),∞]

dn−1
= d · gfλ(c0(λ)) = gfλ(fλ(c0(λ)))

exists on C, and setting gIc0 := +∞, the probability measure

µf := ddcgIc0 + δ∞ on P1

coincides with the harmonic measure on Bf = ∂Ic0 with pole ∞ (by Douady–
Hubbard [11], Sibony [27]). The activity current (indeed measure) of the
marked critical point c0 of f is

Tc0 := lim
n→∞

F ∗
nω

dn
=

µf

d
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as currents on P1 (DeMarco [8], Dujardin–Favre [13]). For every λ ∈ C, the
Lyapunov exponent of fλ with respect to µfλ is

L(fλ) :=

∫

P1

log |f ′
λ(z)|dµfλ(z) = log d+ (d− 1)

gIc0
d

(≥ log d > 0)

(Manning [18], Przytycki [24]). Setting L(fλ)|λ=∞ := +∞, the bifurcation
current of f can be defined by

Tf := ddcL(f·) +
d− 1

d
δ∞ = (d− 1)

µf

d
= (d− 1)Tc0 on P1(2.3)

(DeMarco [9]). For more details, see, e.g., Berteloot’s survey [4, §3.2.3].

3 - Proof of Theorem 1

Let f : C × P1 → P1 be the unicritical polynomials family of degree d > 1
defined as (1.1). For every λ ∈ C and every n ∈ N, let us define the chordal
derivative

(fn
λ )

# :=

√
(fn

λ )
∗ω

ω
: P1 → R≥0

of fn
λ on P1. For every non-empty subset S in P1, let diam#(S) be the chordal

diameter of S. The resultant of (P (z), Q(z)) ∈ C[z] × C[z] is denoted by
Res(P,Q), as usual. Recall that {z ∈ C : [z, 0] < [r, 0]} = D(0, r) for every
r > 0 and that [z, w] ≤ |z − w| on C× C.

L emma 3.1. For every n ∈ N and every λ ∈ C\(Hf \Ic0) (so in particular
for every λ ∈ Bf ),

|Fn(λ)| ≥
(√

2− 1
)(

2d+1 · sup
z∈P1

((fn−1
λ )#(z))

)−1/(d−1)
.

P r o o f. Fix n ∈ N and define the functions Ln−1 and ϵn on C by Ln−1(λ) :=
supz∈P1((fn−1

λ )#(z))(> 1) and ϵn(λ) := (22 · Ln−1(λ))
−1/(d−1)(< 1). For every

λ ∈ C, noting that fλ(0) = λ and that fλ(z)− fλ(0) = zd on C, we have

diam#

(
fn
λ ({z ∈ C : [z, 0] < [ϵn(λ), 0]})

)
= diam#

(
fn
λ (D(0, ϵn(λ)))

)

= diam#

(
fn−1
λ (D(λ, ϵn(λ)d))

)

≤ Ln−1(λ) · diam#(D(λ, ϵn(λ)d)) ≤ Ln−1(λ) · 2ϵn(λ)d =
ϵn(λ)

2
,
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so that if [fn
λ (0), 0] < [ϵn(λ), 0] − ϵn(λ)/2, then sup

{
[w, 0] : w ∈ fn

λ ({z ∈ C :
[z, 0] ≤ [ϵn(λ), 0]})

}
< ([ϵn(λ), 0]− ϵn(λ)/2)+ ϵn(λ)/2 = [ϵn(λ), 0], i.e., f

n
λ ({z ∈

C : [z, 0] < [ϵn(λ), 0]}) � {z ∈ C : [z, 0] < [ϵn(λ), 0]}; then by Brouwer’s fixed
point theorem, Montel’s theorem, and Fatou’s classification of cyclic Fatou
components (see e.g. [20, §16]), the domain {z ∈ C : [z, 0] < [ϵn(λ), 0]}, which
contains both the critical point c0(λ)(= 0) of fλ and a fixed point of fn

λ , is
contained in the immediate basin of a (super)attracting cycle of fλ in C.

Hence for every λ ∈ C, we obtain the desired lower estimate

|Fn(λ)| ≥ ([Fn(λ), 0] =)[fn
λ (0), 0] ≥ [ϵn(λ), 0]−

ϵn(λ)

2

≥
(√

2− 1
)ϵn(λ)

2
=

(√
2− 1

)
(2d+1Ln−1(λ))

−1/(d−1)

of |Fn(λ)| unless 0 is in the immediate basin of a (super)attracting cycle of fλ
in C. Now the proof is complete. �

The following is substantially shown in Buff [6, the proof of Theorem 4].

T h e o r em 3.1 (Buff). Let f ∈ C[z] be of degree d > 1, and let z0 ∈ C.
If gf (z0) ≥ maxc∈C(f)∩C gf (c), where gf is the Green function of the filled-in
Julia set Kf of f with pole ∞ and C(f) is the set of all critical points of f ,
then |f ′(z0)| ≤ d2 · e(d−1)gf (z0), and the equality never holds if C(f) ∩ C is not
contained in Kf .

L emma 3.2. For every n ∈ N and every λ ∈ Mf ,

log

(
sup
z∈P1

((fn
λ )

#(z))

)
≤ (2 log d)n+

4

d− 1
· sup
z∈C

����log
[z,∞]d

[fλ(z),∞]

����.

P r o o f. For every n ∈ N, every λ ∈ Mf , and every z ∈ C, by Theorem

3.1, we have |(fn
λ )

′(z)| ≤ (dn)2e(d
n−1)gfλ (z), and by the definition (2.1) of gfλ ,

we have 0 ≤ (dn − 1)gfλ(z) = gfλ(f
n
λ (z))− gfλ(z), so that

(fn
λ )

#(z) =|(fn
λ )

′(z)| ·
[fn

λ (z),∞]2

[z,∞]2

≤d2negfλ (f
n
λ (z))−gfλ (z) · e2(log[fn

λ (z),∞]−log[z,∞])

≤d2n · e2(gfλ (f
n
λ (z))+log[fn

λ (z),∞])−2(gfλ (z)+log[z,∞])

≤d2n · e4 supC |gfλ+log[·,∞]|.

This with (2.2) completes the proof. �
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Recalling the latter half of Lemma 2.1, we can set

CBf
:= sup

(λ,z)∈Bf×C

����log
[z,∞]d

[fλ(z),∞]

���� < ∞.

Then for every n ∈ N, by Lemmas 3.1 and 3.2, we have

inf
Bf

log |Fn| ≥ − 1

d− 1

(
(d+ 1) log 2 + (2 log d)(n− 1) +

4CBf

d− 1

)
+ log

(√
2− 1

)
.

On the other hand, for every n ∈ N and every λ ∈ Mf , by Buff [6, Theorem 1],
we also have Fn(λ) = fn

λ (c0(λ)) ∈ Kfλ ⊂ D(2). Hence for every n ∈ N, we have
the following uniform estimate

(3.1) sup
Bf

��log |Fn|
��

≤ 1

d− 1

(
(d+1) log 2+ (2 log d)(n− 1)+

4CBf

d− 1
+ (d− 1) log

(√
2+ 1

))
=: tn.

Now let us recall the following classical theorem from the Nevanlinna theory;
for a modern formulation, see [30].

T h e o r em 3.2 (Selberg [26, p. 311]). Let V be a bounded and at most
finitely connected domain in C whose boundary components are piecewise real
analytic Jordan closed curves, so that for every y ∈ V , the Green function
GV (·, y) on V with pole y exists and extends continuously to C by setting ≡ 0
on C \ V . If V is in C \ {0}, then for every y ∈ V and every r > 0, setting
θV (r) :=

∫
{θ∈[0,2π]: reiθ∈V } dθ ∈ [0, 2π], we have

2π∫

0

GV (re
iθ, y)

dθ

2π
≤ min

{
π

2
tan

θV (r)

4
, log+

r

infz∈V |z|

}
.(3.2)

Let H1 be the component of Hf containing 0 and set

C0 := π +

∞∫

0

2r

(1 + r2)2
log+

r

sup{t > 0 : D(t) ⊂ H1}
dr +

∫

H1

GH1(·, 0)ω < ∞.

Fix n ∈ N. Recall that degFn = dn−1.

C l a im 1.∫

F−1
n (D(e−tn ))

��log |Fn| − dn−1 · gIc0
��ω ≤ ω(F−1

n (D(e−tn)))tn + C0.
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P r o o f. By (3.1), we have infBf
|Fn| ≥ e−tn . Let F be the family of all

components of F−1
n (D(e−tn)), so that #F ≤ dn−1. By the description of Hf

in Subsection 2.1, every V ∈ F is a piecewise real analytic Jordan domain in
Hf \Ic0 and, since any zero of Fn is also simple, for every V ∈ F , the restriction
Fn|V : V → D(e−tn) is conformal. For every V ∈ F , set λV := (Fn|V )−1(0).
Let V0 be the element of F containing 0. Recall the notation in Theorem 3.2.
For every V ∈ F , by the conformal invariance of the Green functions, we have

log
e−tn

|Fn|
= GD(e−tn )(Fn, 0) = GV (·, λV ) on V.

For every r > 0, fixing such Vr ∈ F \ {V0} that for every V ∈ F \ {V0},
θVr(r) ≥ θV (r) (so in particular that for every V ∈ F \ {V0, Vr}, θV (r) ∈ [0, π]
since 2π ≥ θVr(r) + θV (r) ≥ 2θV (r) ≥ 0), we have

∑
V ∈F

2π∫

0

GV (re
iθ, λV )

dθ

2π

=
∑

V ∈F\{V0}

2π∫

0

GV (re
iθ, λV )

dθ

2π
+

2π∫

0

GV0(re
iθ, 0)

dθ

2π

≤
( ∑

V ∈F\{V0,Vr}

(π
2
tan

θV (r)

4

)
+ log+

r

infz∈Vr |z|

)
+

2π∫

0

GH1(re
iθ, 0)

dθ

2π

≤π

2
·

∑
V ∈F\{V0,Vr}

θV (r)

π
+ log+

r

sup{t > 0 : D(t) ⊂ H1}
+

2π∫

0

GH1(re
iθ, 0)

dθ

2π

≤π

2
· 2π
π

+ log+
r

sup{t > 0 : D(t) ⊂ H1}
+

2π∫

0

GH1(re
iθ, 0)

dθ

2π
,

where the first inequality is by (3.2) and the monotonicity of the Green func-
tions, and the second inequality is by θV (r) ∈ [0, π] for every V ∈ F \ {V0, Vr}.
Hence, since tn ≥ 0, we have

∫

F−1
n (D(e−tn ))

��log |Fn|
��ω =

∫

F−1
n (D(e−tn ))

(− log |Fn|)ω

= ω(F−1
n (D(e−tn)))tn +

∞∫

0

2rdr

(1 + r2)2

∑
V ∈F

2π∫

0

GV (re
iθ, λV )

dθ

2π

≤ ω(F−1
n (D(e−tn)))tn + C0,
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which completes the proof. �

C l a im 2. supC\F−1
n (D(e−tn ))

��log |Fn| − dn−1 · gIc0
�� ≤ tn.

P r o o f. By the description of Hf in Subsection 2.1, the function log |Fn|−
dn−1 · gIc0 is not only harmonic on Ic0 but also bounded around ∞ so, by the
removable singularity theorem for subharmonic functions twice, extends har-
monically to Ic0 ∪ {∞}. Applying the maximum principle to this harmonic ex-
tension on Ic0∪{∞} twice, by gIc0 ≡ 0 onMf and (3.1), we have supIc0

��log |Fn|−
dn−1 · gIc0

�� ≤ supBf

��log |Fn|
�� ≤ tn (cf. [14, the proof of Lemma 4.1]). Simi-

larly, applying the maximum principle twice to the restriction of log |Fn| on
Mf \F−1

n (D(e−tn)), which is harmonic on the interior of Mf \F−1
n (D(e−tn)), by

gIc0 ≡ 0 on Mf and (3.1), we have supMf\F−1
n (D(e−tn ))

��log |Fn| − dn−1 · gIc0
�� ≤

supBf∪F−1
n (∂D(e−tn ))

��log |Fn|
�� ≤ tn. Now the proof is complete. �

Rema r k 3.1. The proof of Claim 2 is independent of the possibility of the
existence of a queer component of the interior of Mf .

By Claims 1 and 2, we have the following L1(ω) estimate

(3.3)

∫

P1

��log |Fn| − dn−1 · gIc0
��ω

≤
(
ω(F−1

n (D(e−tn)))tn + C0

)
+ ω(C \ F−1

n (D(e−tn)))tn = tn + C0,

so (1.2) holds.

Recalling (2.3), we also have (d− 1)F ∗
nδ0 − dn · Tf = (d− 1) · ddc(log |Fn| −

dn−1·gIc0 ) on P1, so that by Green’s theorem, for every ϕ ∈ C2(P1), the estimate
(3.3) yields

������

∫

P1

ϕd ((d− 1) · F ∗
nδ0 − dn · Tf )

������
≤

(
sup
P1

����
ddcϕ

ω

����
)
· (d− 1)(tn + C0),(1.3′)

so (1.3) holds. Now the proof of Theorem 1 is complete.

4 - Proof of Theorem 2

Let f : C × P1 → P1 be the unicritical polynomials family of degree d > 1
defined as (1.1). Recall the definitions (and properties) of Φ∗

f,n(λ, z) ∈ Z[λ, z],
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p∗f,n(λ,w) ∈ Z[λ, z], and Fix∗∗f (λ, n) in Subsection 1.2. For every n ∈ N, it
would be convenient to set

P ∗
n(λ,w) = P ∗

f,n(λ,w) :=
p∗f,n(λ,w)

dν(n)
∈ Q[λ,w],

so that for every w ∈ C, P ∗
n(λ,w) ∈ C[λ] is monic.

L emma 4.1. For every n ∈ N and every λ ∈ C, we have

(4.1) P ∗
n(λ, 0) =

(
(−1)ν(n) · Φ∗

f,n(λ, 0)
)d−1

=

(
(−1)ν(n) ·

∏
m∈N:m|n

Fm(λ)µ(n/m)

)d−1

(up to multiplication in n-th roots of unity). For every n > 1, we have 0 ̸∈
(P ∗

n(·, 0))−1(0). For every n ∈ N and every λ ∈ C, if λ ∈ (P ∗
n(·, 0))−1(0), then

(c0(λ) =)0 ∈ Fix∗f (λ, n) and λ is a zero of P ∗
n(·, 0) of the order d− 1.

P r o o f. For every n ∈ N and every λ ∈ C, by the chain rule and the
equalities f ′

λ(z) = d · zd−1 and Fix∗∗f (λ, n) = (Φ∗
f,n(λ, ·))−1(0), we have

(p∗f,n(λ, 0))
n

(
=

∏
z∈Fix∗∗f (λ,n)

(fn
λ )

′(z)

)
= dν(n)n

(
(−1)ν(n) · Φ∗

f,n(λ, 0)
)n(d−1)

=dν(n)n
(
(−1)ν(n) ·

∏
m∈N:m|n

(fm
λ (0)− 0)µ(n/m)

)n(d−1)

,

which (with the definition of Fm) yields (4.1). For every m ∈ N, even by a
direct computation, 0 is a simple zero of Fm in C, so that for every n > 1,
0 ̸∈ (P ∗

n(·, 0))−1(0) by
∑

m∈N:m|n µ(n/m) = 0 and the latter equality in (4.1).

For every n ∈ N and every λ0 ∈ (P ∗
n(·, 0))−1(0), by the former equality in (4.1),

we have (c0(λ0) =)0 ∈ Fix∗∗f (λ0, n), which with (fn
λ )

′(0) = (fn
λ )

′(c0(λ)) = 0 ̸= 1
implies even 0 ∈ Fix∗f (λ0, n). Then by the latter equality in (4.1), λ0 is a zero
of P ∗

n(·, 0) of order d− 1 since any zero of Fn is in fact simple. �

Recall the definitions of the sequences (σ0(n)) and (σ1(n)) in N (in Notation
1.2).
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4.1 - Proof of (1.6)

For every n ∈ N, the estimate (3.3) together with (1.4) and (4.1) yields the
following L1(ω) estimate

∫

P1

���log |P ∗
n(·, 0)| − (d− 1)ν(n)

gIc0
d

���ω ≤ t∗n + (d− 1)C0 · σ0(n),(4.2)

where we set

t∗n := (d− 1)
∑

m∈N:m|n

tm = (2 log d)σ1(n)

+
(
(d+ 1) log 2− 2 log d+

4CBf

d− 1
+ (d− 1) log

(√
2 + 1

))
σ0(n).

Recall that H1 is by definition the component of Hf containing 0, and set

C∗
0 :=π +

∞∫

0

2r

(1 + r2)2
log+

r

sup{t > 0 : D(t) ⊂ H1}
dr

=C0 −
∫

H1

GH1(·, 0)ω.

In the rest of this subsection, for every n > 1, we also point out a slightly better
estimate

∫

P1

���log |P ∗
n(·, 0)| − (d− 1)ν(n)

gIc0
d

���ω ≤ t∗n + (d− 1)C∗
0(4.3)

than (4.2). In particular, by Green’s theorem, for every ϕ ∈ C2(P1) and every
n > 1, we have

������

∫

P1

ϕd
(
Per∗f (n, 0)− ν(n) · Tf

)
������
≤

(
sup
P1

����
ddcϕ

ω

����
)
·
(
t∗n + (d− 1)C∗

0

)
,(1.6′)

which implies (1.6).

P r o o f. [Proof of (4.3)] For every n ∈ N, by (4.1) and (3.1), we have

sup
Bf

��log |P ∗
n(·, 0)|

�� ≤ t∗n,(3.1′)
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which is a counterpart to (3.1). Fix n > 1. By (3.1′), infλ∈Bf
|P ∗

n(λ, 0)| ≥ e−t∗n .
As in the proof of Claim 1 in Section 3, let F∗ be the family of all components of
(P ∗

n(·, 0))−1(D(e−t∗n)). By Lemma 4.1 and the description of Hf in Subsection
2.1, every V ∈ F∗ is a piecewise real analytic Jordan domain in Hf \ (Ic0 ∪H1)
now, and for every V ∈ F∗, the restriction P ∗

n(·, 0)|V : V → D(t∗n) is a proper
holomorphic mapping of degree d − 1 now and #(((P ∗

n(·, 0))−1(0)) ∩ V ) = 1.
For every V ∈ F∗, letting λV be the unique point in ((P ∗

n(·, 0))−1(0)) ∩ V , by
Myrberg’s theorem [22], we now have

log
e−t∗n

|P ∗
n(·, 0)|

= GD(e−t∗n )(P
∗
n(·, 0), 0) = (d− 1) ·GV (·, λV ) on V.

Recalling t∗n ≥ 0, by a computation similar to that in the proof of Claim 1 in
Section 3, we have

∫

(P ∗
n(·,w))−1(D(e−t∗n ))

���log |P ∗
n(·, 0)| − ν(n)(d− 1)

gIc0
d

���ω

≤ ω((P ∗
n(·, 0))−1(D(e−t∗n)))t∗n + (d− 1)C∗

0 .

Moreover, by the same argument as that in the proof of Claim 2 in Section
3, we also have supC\(P ∗

n(·,0))−1(D(e−t∗n ))

��log |P ∗
n(·, 0)| − ν(n)(d− 1)d−1gIc0

�� ≤ t∗n.

Hence (4.3) holds. �

4.2 - Proof of (1.7)

As an application of (4.3), we also point out the following L1(ω) estimate

∫

P1

����
2π∫

0

log |P ∗
n(λ, re

iθ)|dθ
2π

− ν(n)(d− 1)
gIc0
d

����ω(λ) ≤ t∗n + 2(d− 1)C∗
0(4.3′)

for every n > 1 and every r ∈ (0, 1] (cf. [3, 2. in Theorem 3.1]). In particular,
by Green’s theorem, for every ϕ ∈ C2(P1), every n > 1, and every r ∈ (0, 1],
we will have

(1.7′)

������

∫

P1

ϕd




2π∫

0

Per∗f (n, re
iθ)

dθ

2π
− ν(n) · Tf



������

≤
(
sup
P1

����
ddcϕ

ω

����
)
· (t∗n + 2(d− 1)C∗

0 ),
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which implies (1.7).

P r o o f. [Proof of (4.3′)] For every n ∈ N and every λ ∈ C\(Hf \Ic0), we have
infz∈Fix∗∗f (λ,n) |(fn

λ )
′(z)| ≥ 1. Recall the description of components of Hf \ Ic0

in Subsection 2.1. For every n ∈ N, letting H∗
n be the union of all components

U of Hf \ Ic0 such that nU = n (so e.g. H∗
1 = H1), there is a holomorphic

function λ �→ zλ on H∗
n such that for every λ ∈ H∗

n, zλ ∈ Fix∗∗f (λ, n) and that
(fn

λ )
′(zλ) ≡ ϕU (λ) on each component U of H∗

n. Fix n > 1 and r ∈ (0, 1], and
set H∗

n(r) := {λ ∈ H∗
n : (fn

λ )
′(zλ) ∈ D(r)} =

∪
U : a component of H∗

n
ϕ−1
U (D(r)).

For every λ ∈ C, by the definitions of P ∗
f,n and p∗f,n, we have

2π∫

0

log |P ∗
n(λ, re

iθ)|dθ
2π

=
1

n

∑
z∈Fix∗∗f (λ,n)

logmax{r, |(fn
λ )

′(z)|} − ν(n) log d

= log |P ∗
n(λ, 0)|+




1

n

n−1∑
j=0

log
r

|(fn
λ )

′(f j
λ(zλ))|

if λ ∈ H∗
n(r),

0 if λ ∈ C \H∗
n(r),

which with (4.3) and the chain rule yields

∫

P1

����
2π∫

0

log |P ∗
n(λ, re

iθ)|dθ
2π

− ν(n)(d− 1)
gIc0
d

����ω(λ)

≤
(
t∗n + (d− 1)C∗

0

)
+

∫

H∗
n(r)

log
r

|(fn
λ )

′(zλ)|
ω(λ).

For every component V of H∗
n(r), letting U be the component of H∗

n(= H∗
n(1))

containing V , the restriction ϕU |V : V → D(r) is a proper holomorphic mapping
of degree d− 1, so letting λV be the unique point in V ∩ ϕ−1

U (0), by Myrberg’s
theorem [22], we have

log
r

|(fn
λ )

′(zλ)|
= GD(r)((ϕU |V )(λ), 0) = (d− 1) ·GV (λ, λV ) on V.

Noting that H∗
n ⊂ Hf \(Ic0 ∪H1), by a computation similar to that in the proof

of Claim 1 in Section 3, we have

∫

H∗
n(r)

log
r

|(fn
λ )

′(zλ)|
ω(λ) ≤ (d− 1) · C∗

0 .
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Hence (4.3′) holds. �
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