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Nevanlinna theory and value distribution in the unicritical
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Abstract. In the space C of the parameters A\ of the unicritical poly-
nomials family f()\,2) = fi(2) = 2¢ + )\ of degree d > 1, we establish a
quantitative equidistribution result towards the bifurcation current (in-
deed measure) Ty of f as n — oo on the averaged distributions of all
parameters A such that fy has a superattracting periodic point of period
n in C, with a concrete error estimate for C?-test functions on P'. In the
proof, not only complex dynamics but also a standard argument from
the Nevanlinna theory play key roles.
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1 - Introduction

Let f : C x P! — P! be the (monic and centered) unicritical polynomials
family

(1.1) fOn2) = fia(z) == 284+ X for every (A, z) € C x P!

of degree d > 1. Let ¢g = 0 on C, which is a marked critical point of the family
f in that for every A € C, ¢o() is a critical point of f\(z) € C[z]. For every
n € NU {0}, let us define the monic polynomial

Fa(A) = fReo(N) = f2(0) € Z[A]

of degree d"~!. Any zero of F), is simple (Douady-Hubbard [10, Exposé XIX];
see also [19, Theorem 10.3] for a simple proof). The study of the asymptotic
behavior as n — oo of the set of all zeros of F},, which is the set of all parameters
A € C such that f\ has a superattracting periodic point of (not necessarily
exact) period n in C, was initiated by Levin [15], and has been developed by
Bassanelli-Berteloot [2, 3] and Buff-Gauthier [7] subsequently.

Our aim is, from both complex dynamics and the Newvanlinna theory, to
contribute to the quantitative study of the asymptotic behavior of zeros of Fj,
as n — 0o, partly sharpening Gauthier—Vigny [14].

Notation 1.1. Let p: N+ {—1,0,1} be the Mobius function from arith-
metic (cf. [1, §2]). Let log™ ¢ := logmax{1,t} on R. Let w be the Fubini-Study
area element on P! normalized as w(P!) = 1, let [z, w] be the chordal metric on
P! normalized as [,00] = 1/4/1 + | - |2 on P! (following the notation in Nevan-
linna’s and Tsuji’s books [23,29]), and let &, be the Dirac measure on P! at each
x € PL. The Laplacian dd® on P! is normalized as dd®(—log[-,<]) = w — s
on PL. Set D(x,7) := {y € C: |z —y| < r} for every x € C and every r > 0,
D(r) := D(0,r) for every r > 0, and D := D(1).

1.1 - Main result

Let gr,, be the Green function with pole co on the escaping locus I, :=
{A € C : limsup,,_,o |[Fn(A\)| = oo} of the marked critical point ¢y of f; I,
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is a punctured open and connected neighborhood of co in P!, and 0I,, and
C\ I, respectively coincide with the J-unstability or bifurcation locus By and
the connectedness locus My of f. The function gy, extends to C continuously
by setting g;,, = 0 on My, and pp, = ddgs, + dx on P! coincides with
the harmonic measure on By with pole co. The measure (d — l)dfl,uBf on
P! coincides with the bifurcation current (indeed measure) Ty of f on P! (see
Subsection 2.1). By a refinement of Przytycki’s argument on the recurrence of
critical orbits [25, Proof of Lemma 2] and Buff’s upper estimate of the moduli
of the derivatives of polynomials [6, the proof of Theorem 3], we will establish
the following L!(w) estimate

2log d
w< 0g1n+0(1)

S

(1.2) /\1og\Fny —d" g,
HJ)I

as n — oo, with the concrete coefficient (2logd)/(d — 1) of n in the right
hand side; a question on the best possibility of this estimate (1.2) seems also
interesting. As seen in the proof of (1.2) (in Section 3), this may be regarded as
a counterpart of H. Selberg’s theorem [26, p. 313] from the Nevanlinna theory.

Our principal result is a deduction from (1.2) of the following quantita-
tive equidistribution of the sequence (Fidp/d") of the averaged distribution of
the superattracting parameters of period n towards (d — 1)*1Tf = diluBf as
n — oo.

Theorem 1. Let f: C x P — P! be the unicritical (monic and centered )
polynomials family of degree d > 1 defined as in (1.1). Then for every ¢ €
C2(Ph),

ddeg
w

(1.3) /gbd((d— 1) Fiog—d"-Ty)| < (Sup ) - ((2logd)n + O(1))
]Pll

]Pl

as m — oo, where the implicit constant in O(1) is independent of ¢ and the
Radon-Nikodim derivative (dd°¢)/w on P! is bounded on P!.

For a former application of Selberg’s theorem (Theorem 3.2) to obtain a
quantitative equidistribution result in complex dynamics, see Drasin and the
author [12]. As an order estimate, the estimate (1.3) is due to Gauthier—
Vigny [14, Theorem A]. The implicit constant in O(1) in (1.3) will also be
computed in the proof. The coefficient 2logd of n in (1.3) comes from the full
strength of de Branges’s theorem (the solution of the Bieberbach conjecture),
on which the proof of Buff’s estimate mentioned above essentially relies.
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1.2 - Non-repelling parameters having exact periods

For every n € N, the n-th dynatomic polynomial

%02 = T () -

meN: m|n

of the family f is in fact in Z[\, 2], and for every A € C, @} (A, 2) € C[2] is
monic and of degree
(1.4) v(n) = vg(n) = u (ﬁ) .

mENme m
For every A € C and every n € N, let Fixy(A,n) be the set of all fixed points
of f{ in C and set Fix}(\,n) := Fixp(A,n) \ (UmeN:m\n and men Fixs(A,m)),
each element in which is called a periodic point of f) in C having the exact
period n. For every n € N and every A € C, a periodic point z of f) in C
is said to have the formally ezact period n if either (i) z € Fix}(A,n) or (ii)
there is an m € N satisfying m|n and m < n such that z € Fix}(\,m) and that
(") (2) is a primitive (n/m)-th root of unity (so in particular (f})'(z) = 1).
For every A € C and every n € N, let Fix}"(\,n) be the set of all periodic
points of fy in C having the formally exact period n, which in fact coincides
with (@3, (A, )7Y(0). For every n € N, the n-th multiplier polynomial

1/n
Pin(A w) ¢=< 11 ((ff)'(Z)w)>

z€Fix}" (A,n)

of f, where for each A € C, the product in the right hand side takes into
account the multiplicity of each 2 € Fix}*(\, n) as a zero of <I>;Z7n()\, -), is indeed
in Z[A,w] and unique up to multiplication in n-th roots of unity. For every
w € C, by a direct computation,
. v(n

(15) ety (M) = (d— )2
and the coefficient of the leading term of p} (A, w) € C[)] equals d’™  both of
which are independent of w. For every n € N and every w € C, let Per’(n, w)
be the effective divisor on P! defined by the zeros of p?n(}\,w) € C[\]; as a
Radon measure on P!,

* c * v ’/L)
For more details, see e.g. [28, §4], [4, §2.3], [21, §3].



[5] NEVANLINNA THEORY AND VALUE DISTRIBUTION IN THE ETC. 5

Notation 1.2. Let (op(n)) and (o1(n)) be such sequences in N that

IS ZmeN;m\n p(n/m)og(m) and n = ZmeN:m‘n u(n/m)oi(m), or equiva-
lently, oo(n) = 3_,en mjn L and 01(n) = 3=, cn. ) ™ by M&bius inversion, for
every n € N.

By an argument similar to that in the proof of Theorem 1, we will also show
the following.

Theorem 2. Let f: C x P — P! be the unicritical (monic and centered )
polynomials family of degree d > 1 defined as in (1.1). Then for every ¢ €
C2(Ph),

(1.6) /¢d (Per}(n,0) — v(n) - Ty)

]Pl
(o
]P)l
as n — oo, where the term O(og(n)) is independent of ¢, and for every ¢ €
C?*(PY) and every r € (0,1],

C

¢ > . ((2 logd)oy(n) + O(Uo(”)))

w

2

0, d0
(1.7) /gf)d /Per;‘c(n,rew)% —v(n)- Ty
Pl 0

< (sw

2t

as n — 0o, where the term O(oo(n)) is independent of both ¢ and r. Here the
Radon-Nikodim derivative (dd°¢)/w on P! is bounded on P!.

ddes
w

> . ((2 10gd)01(n) + O(UO(n)))

Again, the terms O(og(n)) in Theorem 2 will also be computed in Section
4. As an order estimate, the estimate (1.6) is a consequence of Gauthier—
Vigny [14, Theorem A]. The estimate (1.7) quantifies Bassanelli-Berteloot [3,
2. in Theorem 3.1] for r € (0, 1].

1.3 - Organization of the article

In Section 2, we recall background from the study of the unicritical poly-
nomials family f. In Section 3, we show Theorem 1. In Section 4, we show
Theorem 2.
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2 - Background from the study of the family f

Let f : C x P! — P! be the unicritical (monic and centered) polynomials
family of degree d > 1 defined as in (1.1), and recall that co(A) = 0 € Z[)]
defines a marked critical point of f.

2.1 - Douady—Hubbard’s theory on the parameter space C of f

For every A € C, let Jy, be the Julia set of f\, which is compact in C.
Let By be the J-unstability or bifurcation locus of the family f, which is the
discontinuity locus of the set function A — Jy, with respect to the Hausdorff
topology from (P!, [z,w]), and is closed and nowhere dense in C (by Maiié-
Sad-Sullivan [17], Lyubich [16]). The escaping locus

I, :={\ € C:limsup|F,(\)| = oo}
n—oo
of the marked critical point ¢y of f is a punctured open and connected neigh-
borhood of oo in P! and coincides with the unique unbounded component of
C\ Bf. We have By = 01, and the connectedness locus

My :={\ € C: Jy, is connected}

of f coincides with C\ I, (and is connected). For every A € C, f) has at most
one non-repelling cycle in C (see, e.g., [20, §8]). Let Hy be the hyperbolicity
locus of f, which coincides with the union of I, and the set of all A € Mjy
such that fy has the (super)attracting cycle in C, and is a closed and open
subset in C\ By. For example, for every n € N, 0 € F,;*(0) C Hy \ I,. For
every component U of Hy \ I, there are an ny € N and a proper holomorphic
mapping ¢y : U — D of degree d — 1 such that #(Z)l_]l(()) = 1 and that for
every w € D, gb(}l (w) coincides with the set of all A € U such that f) has the
(super)attracting cycle in C having the exact period ny and the multiplier w.
For more details, see Douady—Hubbard [11], and for a modern treatment, see
McMullen—Sullivan [19, §10].

2.2 - The Green functions on the dynamical and parameter spaces

For every A € C, Jy, coincides with the boundary of the filled-in Julia set
Ky, = {z € C: limsup,_, |f{(2)| < oo} of fy, which is compact in C. For
every A € C, the uniform limit

(2.1) g5 (2) = lim = log[fX(2), 0]

n—00 dn
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exists on C, and setting gy, (00) := 400, the probability measure puyz :=
ddgy, + oo On P! coincides with the harmonic measure on J t, with pole oo.
Moreover, jiy, is mixing so ergodic under fy (by Brolin [5]). For completeness,
we include a proof of the following.

Lemma 2.1. For every A € C,

[, 00]
[f)\(z)v OO]

and the function A — sup,cc |log([z,00]?/[fx(2),00])| is locally bounded on C.

log

)

(2.2) sup‘gfX +10g[-,oo” < 71 - sup
C - zeC

Proof. For every A € C, by the definition (2.1) of g¢,, we have

§ ZIolA (R (). o) +d gl (2). o] ‘

sup|gy, + log[-, ooH < sup 7
C

zeC

=1

8 17.(2), 0]

For every A € C, let us define the non-degenerate homogeneous polynomial
endomorphism fy : C2 — C2 of degree d by fi(po,p1) := (p&, pefr(p1/po)) =

(pg,p‘f + )\pg). Then the function (A, (po,p1)) — ‘log Hf/\(po,p1)||| is continuous
on C x (C%\ {(0,0)}), and for every compact subset K in C, we have

- sup

[2, 00)¢
< .
T d-1 zeC

z, 00]% -
et B [ A |
[fA(2), 0] | (A pop1))eK xS(1)
where ||-|| is the Euclidean norm on C? and S(1) := {(po,p1) € C?: ||(po,p1)|| =
1}. Now the proof is complete by the compactness of K in C and that of S(1)
U

in C2\ {(0,0)}.

sup
(A\z)eKxC

Similarly, the locally uniform limit

A gr,, (M) = lim — logFu(4), o]

n— o0 dr—1

=d- gy (co(N) = g5, (fr(co(N)))

exists on C, and setting gy, := 400, the probability measure
pp = ddcg]c0 + 00 on P!

coincides with the harmonic measure on By = 01, with pole oo (by Douady—
Hubbard [11], Sibony [27]). The activity current (indeed measure) of the
marked critical point ¢ of f is

Fiw gy

1 n
Te, = nh_}ngo TR
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as currents on P! (DeMarco [8], Dujardin-Favre [13]). For every A € C, the
Lyapunov exponent of f\ with respect to uy, is

L) = [og A2 lduns, (2) =logd + (0~ DT (= logd > 0)
]P)l

(Manning [18], Przytycki [24]). Setting L(f))|a=oo := +00, the bifurcation
current of f can be defined by

d—1 Iy

(2.3) Ty :=dd°L(f.) + — 00 = (d — 1)7 =(d—-1T, onP!

(DeMarco [9]). For more details, see, e.g., Berteloot’s survey [4, §3.2.3].

3 - Proof of Theorem 1

Let f: C x P! — P! be the unicritical polynomials family of degree d > 1
defined as (1.1). For every A € C and every n € N, let us define the chordal
derivative

(gt o=/ B2y

of f on Pl. For every non-empty subset S in P!, let diamy(S) be the chordal
diameter of S. The resultant of (P(z),Q(z)) € C[z] x C[z] is denoted by
Res(P, @), as usual. Recall that {z € C : [2,0] < [r,0]} = D(0,r) for every
r > 0 and that [z,w] < |z —w| on C x C.

Lemma 3.1. For everyn € N and every A € C\ (Hy\ I,) (so in particular
for every X\ € By),

—1/(d—-1)

Fa()] > (V2= 1) (241 sup (£ )5 (2))) -

zeP!

Proof. Fixn € N and define the functions L,,_; and €, on C by L,,_1(\) :=
sup.ept ((f21)#(2))(> 1) and €,(\) :== (22 L, 1(/\))*1/(d*1)(< 1). For every
A € C, noting that f,(0) = A and that fy(z) — f1(0) = 2% on C, we have

diamy (f¥({z € C: [2,0] < [e4(N),0]})) = diamy (f3(D(0, €,(N))))
= diamy (f7~ LD, en( d)))
en(A)

< Ly—1(N) - diamy (DA, €,(N)) < Lp—1(N) - 2e,(A\)? = 5
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so that if [f(0),0] < [en(N),0] — €,(X)/2, then sup{[w,0] : w € f{({z € C:
[2,0] < [En(/\)70]})} < ([en(A), 0] = €n(A)/2) + €n(N) /2 = [en(A), 0], Le., fR({2 €
C: [2,0] < [en(N),0]}) € {z € C: [2,0] < [en(N),0]}; then by Brouwer’s fixed
point theorem, Montel’s theorem, and Fatou’s classification of cyclic Fatou
components (see e.g. [20, §16]), the domain {z € C : [z,0] < [ex(N), 0]}, which
contains both the critical point co(A)(= 0) of fy and a fixed point of f{, is
contained in the immediate basin of a (super)attracting cycle of fy in C.
Hence for every A € C, we obtain the desired lower estimate

€n(N)
2

> (V3 1) €n;)\) = (V2 — 1)@ L,y (A) V@D

[En(N)] = ([Fn(X), 0] =)[£1(0), 0] = [en(A), 0] —

of |F,,(\)| unless 0 is in the immediate basin of a (super)attracting cycle of fy
in C. Now the proof is complete. O

The following is substantially shown in Buff [6, the proof of Theorem 4].

Theorem 3.1 (Buff). Let f € C[z] be of degree d > 1, and let zy € C.
If g¢(20) > maxcec(p)nc gf(c), where gy is the Green function of the filled-in
Julia set Ky of f with pole oo and C(f) is the set of all critical points of f,
then |f'(z0)] < d? - el4=195(0) " and the equality never holds if C(f) NC is not
contained in Ky.

Lemma 3.2. For everyn € N and every A\ € My,

[fA(Z)ﬂ OO]

Proof. For every n € N, every A € My, and every z € C, by Theorem
3.1, we have |(f¥)'(2)] < (d")2e!" D952 (2) " and by the definition (2.1) of 9fys
we have 0 < (& — 1)gz, () = g5, (f3(2)) — 97, (=), so that

() o0ol?
R#e) =3y ey - B

<d2n 90 (X (2) =97, (2) | 2(l0g[f3 (2),00] ~log]z,00])

d
log [Z7 OO] ‘ .

log<sup((f§)#(Z))> < (2logd)n + - sup
zePt zeC

<2 . 297, (F(2)+Hogl 7 (2).00]) =2, (2)+loglz.00])

§d2n . 64 supg |gy, +log[,o0]| .

This with (2.2) completes the proof. O
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Recalling the latter half of Lemma 2.1, we can set

2, 00
[F2(2), ]

Then for every n € N, by Lemmas 3.1 and 3.2, we have

Cp,:= sup log ———

f
(/\,Z)EBf xC

<.

1nf10g]F | > —%((d%— 1)log2 + (2logd)(n — 1) ) +log(\/§— 1).

d—1

On the other hand, for every n € N and every A € My, by Buff [6, Theorem 1],
we also have F,(A\) = f{(co(\)) € Ky, € D(2). Hence for every n € N, we have
the following uniform estimate

(3.1)  supl|log|F,||

By
4Cp;,
Sa-1 d—1

Now let us recall the following classical theorem from the Nevanlinna theory;
for a modern formulation, see [30].

((d+ 1)log2+ (2logd)(n— 1)+ +(d—1)log(V2 + 1)) —it,.

Theorem 3.2 (Selberg [26, p. 311]). Let V be a bounded and at most
finitely connected domain in C whose boundary components are piecewise real
analytic Jordan closed curves, so that for every y € V, the Green function
Gy (-,y) on V with pole y exists and extends continuously to C by setting = 0
on C\ V. IfV isin C\ {0}, then for every y € V and every r > 0, setting

Ov(r) = f{eg[ovgﬁ]:mwev} dé € [0, 27], we have

27
. de . Oy(r) r
5 i, 9% —t log" ————¢.
(3.2) /Gv(re ,y)27r _mm{2 M08 infz€V|Z’}
0

Let H; be the component of H; containing 0 and set

.
= d : .
WJF/ 1—i—r2 log sup{t>0:]D)(t)CH1} T+/GH1(’O)°’<°O
0 Hy

Fix n € N. Recall that deg F}, = d" .
Claim 1.

/ |log | | — dnt “ I,
Fy ' (D(e~tn))

w < w(E,  D(e))tn + Co.
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Proof. By (3.1), we have infp, [F,| > e~*». Let F be the family of all
components of F, !(D(e~')), so that #F < d"~!. By the description of H;
in Subsection 2.1, every V € F is a piecewise real analytic Jordan domain in
H¢\ 1., and, since any zero of F}, is also simple, for every V' € F, the restriction
F,|V : V — D(e7!) is conformal. For every V € F, set Ay := (F,|V)71(0).
Let Vp be the element of F containing 0. Recall the notation in Theorem 3.2.
For every V € F, by the conformal invariance of the Green functions, we have
e tn
|l
For every r > 0, fixing such V, € F \ {V,} that for every V € F\ {Vp},

v, (r) > Oy (r) (so in particular that for every V € F\ {Vy, V;.}, Oy (r) € [0, 7]
since 27 > Oy, (r) + Oy (r) > 20y (r) > 0), we have

Z/Gv Vg

log —— = Gp(e—tn)(Fn,0) = Gy (-, Ay) on V.

VeFy
i a0
= > /GV AV)2+/GV0(rei9,o)
T 2
VeF\{W} o 0

IN

™ (91/(7") + d9
< Z <§tan 4 )—i—log lnfzev, inf.cy, |2| /GH1 %

VeF\{Vo,Vr}

™ Oy () r / 0 . do
<—. g +log™ : + [ Gy, (re”,0)—
2 vergomy T sup{t > 0:D(t) C H;} ) 2

2w r ; dé
.2 4 loet 6 -
T o8 sup{t>0:D(t)CH1}+/GH1(re ’O>27r’
0

IN
NI

where the first inequality is by (3.2) and the monotonicity of the Green func-
tions, and the second inequality is by 6y (r) € [0, x| for every V € F\ {Vp, V;.}.
Hence, since t,, > 0, we have

[ helmllo= [ (-loglRe

Fy ' (D(e=tn)) Fy ' (D(e=tn))
7 2rdr do
_ —1 —tn 16
— w(FT (D(e )t +/ et Z/GV )y
0 VeFry
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which completes the proof. O

Claim 2. supC\Fgl(D(e,tn))’log |Fy| —dnt Gl | <t

Proof. By the description of Hy in Subsection 2.1, the function log |F,| —
dnt. g1, 1s not only harmonic on I, but also bounded around oo so, by the
removable singularity theorem for subharmonic functions twice, extends har-
monically to I, U{oo}. Applying the maximum principle to this harmonic ex-
tension on I.,U{oo} twice, by g, = 0on My and (3.1), we have supy, |log | F|—
dnt 0L, | < supr‘log|Fn]| < t,, (cf. [14, the proof of Lemma 4.1]). Simi-
larly, applying the maximum principle twice to the restriction of log|F),| on
M\ F,; Y(D(e*)), which is harmonic on the interior of My \ F,; 1 (D(e~'")), by
g1,, = 0 on My and (3.1), we have supr\Fgl(D(e,tn))‘log |Fy| — d™1 g1, <

SUD g Upr ! (D (etn)) ‘10g \FnH < t,. Now the proof is complete. O

Remark 3.1. The proof of Claim 2 is independent of the possibility of the
existence of a queer component of the interior of Mjy.

By Claims 1 and 2, we have the following L!(w) estimate

(3.3) /‘log |Fp| — d™ 1 “ I, |W
Pl

< (w(F, M D(e ™))ty + Co) +w(C\ F, H(D(e™™))t, = t,, + Co,

o (1.2) holds.
Recalling (2.3), we also have (d —1)F;iég —d" - Ty = (d — 1) - dd°(log | F},| —
dar—t -gjco) on P!, so that by Green’s theorem, for every ¢ € C2(P!), the estimate
(3.3) yields

dd°
(1.3) /(bd((d — 1) F;0p—d"-Ty)| < (Sup wd) ) (d—=1)(ty, + Cp),
P! ¥
so (1.3) holds. Now the proof of Theorem 1 is complete. O

4 - Proof of Theorem 2

Let f: C x P! — P! be the unicritical polynomials family of degree d > 1
defined as (1.1). Recall the definitions (and properties) of @} (A, 2) € Z[A, 2],
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P}n(Aw) € Z[A, 2], and Fix}"(A,n) in Subsection 1.2. For every n € N, it
would be convenient to set

L p}}n()“ w)

P\ w) = Pf (A w) := o) € Q[ w],

so that for every w € C, Py(\,w) € C[)] is monic.

Lemma 4.1. For everyn € N and every A € C, we have

(4.1) Py(2,0) = ((-1)*™ - @5 ,(x,0)""

:<(_1)V(n). H Fm(A)u(n/m)>dl

meN: m|n

(up to multiplication in n-th roots of unity). For every n > 1, we have 0 ¢
(Pr(-,0))71(0). For every n € N and every A € C, if A € (P:(-,0))71(0), then
(co(A) =)0 € Fix}(A,n) and X is a zero of P;(-,0) of the order d — 1.

Proof. For every n € N and every A € C, by the chain rule and the
equalities f}(2) = d - z%"! and Fixi (A, n) = (2}, (A, 1)~1(0), we have

(p},nO‘v 0))" <: H (f;f)/(z)> = d’/(")n((_l)u(n) . @;7n(A’ 0))n(d—1)

z€Fix}* (A,n)

n(d—1)
—gvmn ((_1)V(n) . H (7 (0) — O)u(n/m)> 7

meN:m|n

which (with the definition of F),) yields (4.1). For every m € N, even by a
direct computation, 0 is a simple zero of F),, in C, so that for every n > 1,
0 ¢ (P:(-,0))71(0) by 2 meN:mjn H(n/m) = 0 and the latter equality in (4.1).
For every n € N and every \g € (P;(-,0))71(0), by the former equality in (4.1),
we have (co(Ao) =)0 € Fix}* (Ao, ), which with (f3)(0) = (%) (co(A)) =0 # 1
implies even 0 € Fix}(Ao,n). Then by the latter equality in (4.1), Ag is a zero
of Px(-,0) of order d — 1 since any zero of F}, is in fact simple. O

Recall the definitions of the sequences (0g(n)) and (o1(n)) in N (in Notation
1.2).
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4.1 - Proof of (1.6)

For every n € N, the estimate (3.3) together with (1.4) and (4.1) yields the
following L'(w) estimate

9l

@2 [logipi. 0l - @ 1w o <+ (@ 16 - o0
Pl

where we set

tho=(d—1) Y tm=(2logd)oi(n)
meN:m|n

ACp,

d—1

+ <(d+ 1)log2 — 2logd + +(d—1)log(V2 + 1)>ao(n).

Recall that Hy is by definition the component of H; containing 0, and set

o0

2r T
Cr = log* d
0 7r+/(1+r2)2 8 Sp{t>0:D() C H)

0
_C()—/GHl(-,O)w.
H,

In the rest of this subsection, for every n > 1, we also point out a slightly better
estimate

gICO

@3 [ oslPi,0) - (@ 1wm %

]Pll

w<th+(d—1)C;
than (4.2). In particular, by Green’s theorem, for every ¢ € C?(P!) and every

n > 1, we have

ddes

w

Pl

(1.6") /qﬁd (Perf(n,0) —v(n) - Ty)| < (sup ) (8 + (d—1)Cp),
]P)l

which implies (1.6).
Proof. [Proof of (4.3)] For every n € N, by (4.1) and (3.1), we have

(3.1 supllog P (. 0] < £,
f
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which is a counterpart to (3.1). Fix n > 1. By (3.1'), infep, [P;(A,0)] > e tn.
As in the proof of Claim 1 in Section 3, let F* be the family of all components of
(P(-,0))"Y(D(e~*)). By Lemma 4.1 and the description of H; in Subsection
2.1, every V € F* is a piecewise real analytic Jordan domain in Hy \ (1o, U Hy)
now, and for every V € F*, the restriction P;(-,0)|V : V — D(t}) is a proper
holomorphic mapping of degree d — 1 now and #(((P:(-,0))"%0)NV) = 1

For every V € F*, letting Ay be the unique point in ((P(-,0))~1(0)) NV, by
Myrberg’s theorem [22], we now have

e_t;

log ————

= G-y (P (- 0),0) = (d = 1) - Gy (-, Av) on V.

Recalling ¢ > 0, by a computation similar to that in the proof of Claim 1 in
Section 3, we have

gICO

[ et ol - v -nTe

(P (w)) "1 (D(e= "))

W((Py(-,0))"H(D(e™™)))ty + (d = 1)Cg.
Moreover, by the same argument as that in the proof of Claim 2 in Section
Hence (4.3) holds. O

4.2 - Proof of (1.7)
As an application of (4.3), we also point out the following L!(w) estimate

gICO

(4.3) /’/log\P (A, ref )|7—y( )@ -1l < 1+ 20 - 1)

for every n > 1 and every r € (0,1] (cf. [3, 2. in Theorem 3.1]). In particular,
by Green’s theorem, for every ¢ € C?(P!), every n > 1, and every r € (0,1],
we will have

dé
0
(1.7) /d)d /Perfnre )%—V(n)'Tf

<

sup
Pl

( ddc¢> (4 2(d — 1)C2),
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which implies (1.7).

Proof. [Proof of (4.3)] For every n € N and every A € C\(H\I,), we have
infepicr (\n) |(f)(2)] > 1. Recall the description of components of Hy \ I,
in Subsection 2.1. For every n € N, letting H,' be the union of all components
U of Hf \ I, such that ny = n (so e.g. Hf = Hyp), there is a holomorphic
function A — z) on Hy; such that for every A € Hy, z) € Fix}"(A,n) and that
(1) (2x) = ¢u(N) on each component U of H. Fix n > 1 and r € (0,1], and

set H;;(T) = {)‘ € Hy (fA) (Z)\) (T)} = UU: a component of H} ¢51(D(T))
For every A € C, by the definitions of P;,n and p?n, we have

27

o pude 1
Jrogliure) S = 3" togmax{n () (2)]} — v(n)logd
0 zEFix’}*(z\n)

if \e H(r),
= log|F, (A, 0)] + ”Z Pl EED fA)(f)\(ZA))’ < )

7=0
0 if A e C\ Hi(r),

which with (4.3) and the chain rule yields

/’/log’P* >|*—V( )(d— 1T

< (ta+ (= 1G) + / 108 [y
Hp(r)

w(X)

w(A).

For every component V' of H(r), letting U be the component of H} (= H(1))
containing V', the restriction ¢¢/|V : V' — D(r) is a proper holomorphic mapping
of degree d — 1, so letting Ay be the unique point in V' N gb[}l (0), by Myrberg’s
theorem [22], we have

logm = Gp)((du]V)(A),0) = (d—1) - Gy(\Av) on V.

Noting that H;; C Hy\ (I,,UH;), by a computation similar to that in the proof
of Claim 1 in Section 3, we have

/ g i “) < (4= 1) -G

HE(r)
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Hence (4.3') holds. O
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