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Timelike surfaces with a common asymptotic curve

in Minkowski 3-space

Abstract. In this paper, we study the problem of constructing a time-
like surface pencil from a given spacelike or timelike asymptotic curve in
Minkowski 3-space E3. Using the Serret—Frenet frame of the given space-
like or timelike asymptotic curve, we present the timelike surface as a
linear combination of this frame and analyze the necessary and sufficient
condition for that curve to be asymptotic. We illustrate this method by
presenting some examples.
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1 - Introduction

In differential geometry of surfaces, an asymptotic curve is a curve always
tangent to an asymptotic direction of the surface (where they exist). It is some-
times called an asymptotic line, although it need not be a line. An asymptotic
direction is one in which the normal curvature is zero. Which is to say: for
a point on an asymptotic curve, take the plane which bears both the curve’s
tangent and the surface’s normal at that point. The curve of intersection of the
plane and the surface will have zero curvature at that point. Asymptotic direc-
tions can only occur when the Gaussian curvature is negative (or zero). There
will be two asymptotic directions through every point with negative Gaussian
curvature, these directions are bisected by the principal directions [2,3]. In
Euclidean 3-space E3, surfaces with common asymptotic curve have been the
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subject of many studies. For example, Pottmann et al. [9] proposed a geometry-
processing framework to approximate a given shape by one or more strips of
ruled surfaces. Flory and Pottmann [4] addressed challenges in the realization
of free-form architecture and complex shapes in general with the technical ad-
vantages of ruled surfaces. In that work, they used asymptotic curves obtained
by careful investigation and constructed an initial ruled surface by aligning the
rulings with asymptotic curves; they also discussed how the shape of this initial
approximation can be modified to optimally fit a given target shape. In practi-
cal applications, the concept of family of surfaces having a given characteristic
curve was first introduced by Wang et.al. [13] in Euclidean 3-space. The basic
idea is to regard the wanted surface as an extension from the given charac-
teristic curve, and represent it as a linear combination of the marching-scale
functions wu(s,t), v(s,t), w(s,t) and the three vector functions t(s), n(s), b(s),
which are the unit tangent, the principal normal and the binormal vector of
the curve respectively. With the given characteristic curve and isoparametric
constraints, they derived the necessary and sufficient conditions for the cor-
rect parametric representation of the surface pencil. This principal has been
used treated extensively in the works [1,6,7]. In a somewhat parallel fashion,
Minkowski space is the basis for the study of the physical phenomena described
by the theory of relativity which has great geometric and physical meaning.
Much work to date, therefore, has been done on timelike and spacelike surfaces
in E (the three-dimensional Minkowski space). In [5] Kasap and Akyildiz
defined surfaces with a common geodesic in Minkowski 3-space and gave the
sufficient conditions on marching-scale functions so that the given curve is a
common geodesic on that surfaces. Saffak and Kasap [11] studied family of
surfaces with a common null geodesic. Recently, in [10] Saffak et.al studied
family of surfaces with a common spacelike (timelike) asymptotic curve using
the Serret—Frenet frame of the curve.

In this paper, we extend the method of Wang et al. [13] to derive the neces-
sary and sufficient condition for a given spacelike or timelike curve to be both
isoparametric and asymptotic on a timelike surface. Thus, we define family of
timelike surfaces with a common asymptotic curve. Also we show with helps of
given examples that the member, having any desired property, can be obtained
by choosing the appropriate coefficients.
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2 - Preliminaries

Let E:{’ be the three-dimensional Minkowski space, that is, the three-dimensi-
onal real vector space R3 with the metric

< dx,dx >=da? + da — dx’

where (11, 79, 23) denotes the canonical coordinates in R3. An arbitrary vector
x of E} is said to be spacelike if < x,x >>0 or x = 0, timelike if < x,x ><0
and lightlike or null if < x,x >=0 and x # 0. A timelike or light-like vector in
[E$ is said to be causal. For x €E$ the norm is defined by ||x| = /|< x,x >/,
then the vector x is called a spacelike unit vector if < x,x >=1 and a time-
like unit vector if < x,x >= —1. Similarly, a regular curve in E$ can lo-
cally be spacelike, timelike or null (lightlike), if all of its velocity vectors are
spacelike, timelike or null (lightlike), respectively [12]. For any two vectors
x = (v1,79,23) and y = (y1,%2,y3) of E3, the inner product is the real
number < X,y >= x1y; + T2y — x3ys and the vector product is defined by
x Xy = ((xoys — x3y2), (x3y1 — v1y3), —(x1y2 — 22y1)). Let @ = a(s) be a
unit speed spacelike curve in E3; by #(s) and 7(s) we denote the natural cur-
vature and torsion of & = a(s), respectively. Consider the Serret-Frenet frame
{t(s), n(s), b(s)} associated with curve o = «/(s) such that t(s) and b(s) are
spacelike vectors while n(s) is timelike vector, then the Serret-Frenet formulae
read [8,12]:

J t(s) 0 =x(s) O t(s)
(1) 7 | 1 =| k(s) 0 7(s) n(s) |,
s 0 7(s) b(s)
where
(2) t(s) x n(s) = b(s), t(s) x b(s) =n(s), n(s) x b(s) = t(s).
If & = a(s) is a unit speed timelike curve, then above equations are given
g t(s) 0 K(S) 0 t(s)
(3) as | ) = kls) 0 T(s) n(s) |,
b(s) 0 —7(s) O b(s)
and
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Excluding the case in which the curvature vanishes because the second deriva-
tive of the curve a(s) is zero at some set of points.

Similar with [13], to construct a timelike surface pencil that possess a(s) as
a common spacelike /timelike curve, we give the parametric form of the surface
P(s,t): [0,L] x[0,T] — E$ as follows:

()
P(s,t) = a(s) +u(s, t)t(s)+v(s,t)n(s)+w(s,t)b(s), 0 <ty <T, 0<s<1L,

where u(s,t), v(s,t) and w(s,t) are all C' functions. If the parameter t is
seen as the time, the functions u(s,t), v(s,t) and w(s,t) can then be viewed as
directed marching distances of a point unit in the time ¢ in the direction t(s),
n(s) and b(s), respectively, and the position vector «(s) is seen as the initial
location of this point. From now on, we shall often not write the parameters s,
and t explicitly in the functions u(s,t), v(s,t) and w(s,t). Depending on the
causal character of the curve a = a(s), the normal vector field is given by

OP(s,t) " OP(s,t)

(6) N(s,t):=—_ 5 = s, t)t(s) +m2(s, t)n(s) +ns(s, )b(s),
where
ni(s,t) = <% + un(s) + wT(s)> o (z;_w + (3)> >
(7) mist) = (1490 m(s)> W @“’ + m(s)> o
n(s,1) = <1 4 g‘s‘ + m(s)> ‘?;t’ - (gz +un(s) + w7(s)> ‘21‘,

if @ = a(s) is a spacelike curve, and

m(s,t) = — (% +uk(s) — wT(3)> %—Z’ + <g—1;’ + vT(s)> %,
8) no(s,t) = — <1 + % + m(s)> %l: + @Z’ + vT(s)> g;‘,
n3(s,t) = <1 + gz + m(s)> ‘?;t’ - (gz +uk(s) — w7(s)> gj,

if @ = a(s) is a timelike curve.
P(s,t) is called a spacelike/timelike surface if the induced metric is a Rie-
mannian/Lorentzian metric on each tangent plane [8]. This is equivalent to
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saying that the normal vector N is timelike/spacelike at each point of P(s,t).
A curve on a surface is asymptotic if and only if the binormal vector to the
curve is everywhere parallel to the local normal vector of the surface [2,3]. An
isoparametric curve is a curve a = a(s) on a surface P(s,t) in E} that has a
constant s or t—parameter value. In other words, there exists a parameter sg
or tg such that a(s) = P(s,ty)or a(t) = P(sp,t). Given a parametric curve av =
a(s), we call it an isoasymptotic of the surface P (s, t) if it is both an asymptotic
curve and a parameter curve on P(s,¢) [10].

3 - Timelike Surfaces with a common asymptotic curve

Our goal is to derive necessary and sufficient conditions for which the given
spacelike or timelike curve a(s) is an isoparametric and asymptotic (asymptotic
for short) on the timelike surface P(s,t). First, since the directrix «(s) is an
isoparametric curve on the surface there exists a parameter t = ¢y € [0, 7] such
that a(s) = P(s, ), that is, we have

9) u(s,tg) = v(s,to) = w(s,tg) = 0.

Depending on the causal character of the curve o = a(s) we obtain two timelike
surfaces:

3.1- o= afs) is a spacelike asymptotic curve

Via Eq. (9), Eq. (6) become:

(10) N(s,t0) = n1(s,t0)t(s) + n2(s, to)n(s) + n3(s, to)b(s),
where
ov(s,t) Qw(s,t) Ow(s,t) dv(s,t)
mlsb) = =5 " T os ot
(11) (5. t0) — (1 n ﬁué:ss, t)> Ow({(;,t) B Owa(z,t) ﬁuést, t)’
s (5. 10) = (1 n 8uéz,t)> 81}((9? t) 81}(22, t) Bu(gst, t).

Second, the curve «(s) is an asymptotic curve on the surface P(s, t) if and only
if at any point on the curve a(s) the binormal b(s) to the curve and the normal
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N(s,tg) to the surface P(s,t) are parallel to each other [2,3]. Thus, we have
that b(s)||N(s,tp) if and only if

(12) m(s,to) =0, n2(s,to) =0, n3(s,t0) # 0.
Hence, combining the conditions (9) and (12), the following theorem is proved:

Theorem 3.1. A given spacelike curve a(s) is an asymptotic curve on the
timelike surface P(s,t) if and only if

u(s,tg) = v(s,tp) = w(s,tg) =0,
_ Ou(s,t) Qw(s,t)  Ow(s,t) du(s,t)
misto) = =5 os o
(13)
(s.t0) = (14 du(s,t)\ Ow(s,t)  Ow(s,t) du(s,t)
PR Ds ot os ot
B du(s,t)\ Ouv(s,t)  Ov(s,t) Ou(s,t)
o) = (14 St ) S0 - HRASED o

We call the set of timelike surfaces defined by Egs. (6) and (13) the family
of timelike surfaces with common spacelike asymptotic curve. Any timelike
surface P(s,t) defined by Eq. (6) and satisfying Eq. (13) is a member of
this family. In Ref. [13], for the purposes of simplifications and analysis, the
marching-scale functions u(s,t), v(s,t) and w(s,t) were decomposed into two
factors:

u(s,t) =1(s)U(t),
(14) v(s, t) = m(s)V (1),
w(s,t) =n(s)W(t).
Here I(s), m(s),n(s),U(t),V(t) and W(t) are C! functions and I(s), m(s) and

n(s) are not identically zero. Thus, from the Theorem 3.1, we can get the
following corollary:

Corollary 3.1. The necessary and sufficient condition for the spacelike
curve a(s) being an asymptotic curve on the timelike surface P(s,t) is

U(to) = V(to) = W(to) =0,
dW (to)
dV (t
d(t ) = const # 0, and m(s) # 0,
0<tg<T,0<s<L.

=0, orn(s) =0,
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Now, let us consider other types of marching-scale functions. In Eq. (6),
u(s,t), v(s,t) and w(s,t) functions can be chosen in two different forms:
(1) If we choose

p
u(s,t) = > aul(s)FU ),
k=1
p
(16) U(S7 t) = Z anm(S)kv<t)kv
k=1
p
w(s,t) = agen(s) W ()",

\

e
Il
—_

then we can simply express the sufficient condition for which the curve «fs)
being a common asymptotic spacelike curve on the timelike surface P(s,t) as

Ulto) =V (to) = W(to) =0,

dV (t
an an #0, D) _ ot 0, and m(s) £ 0
az1 = 0, or M =0, or n(s) =0,

dt

where I(s), m(s), n(s), U(t), V(t) and W(t) are C* functions, a;; € R (i =
1,2,3;5 =1,2,...,p) and I(s), m(s) and n(s) are not identically zero.
(2) If we choose

p
u(s,t) = (Y and () UM"),
k=1
p
(18) o(s,t) = g( Y amm(s) V(1)"),
k=1
w(s,t) = h( Y amn(s) W o)),
\ k=1

then we can rewrite the Eq. (13), for which the spacelike curve a= «a(s) being
a common asymptotic spacelike curve on the timelike surface P(s,t), as

Ul(to) = V(to) = W(to) = f(0) = g(0) = h(0) = 0,

a9y oan #0, I —const 20, mis) 0, and g 0) £ 0.

dW (to)
dt

=0, or n(s) =0, or &' (0) =0,

az1 =0, or



386 RASHAD A. ABDEL-BAKY 18]

where U(t), V(t), W(t), I(s), m(s), n(s), f, g and h are C! functions. Since
there are no constraints related to the given curve in Eqs. (15), (17) or (19),
the surface pencil with the spacelike curve «(s) as the common asymptotic, can
always be found by choosing suitable marching-scale functions. In what follows
some representative examples are illustrated to verify the method.

Example 3.1. In this example, we will construct timelike surface pencil
in which all the surfaces share an asymptotic spacelike helix represented as:

b
a(s)z(asinhf,—s,acosh§>, —2<s5<2,
¢ ¢ c

where a,b, ¢ € R, and a® + b? = 2. It is easy to show that

s )

b
t(s) = (— coshf, -, a sinh—),
c c'ce c
n(s) = (sinhz,O, cosh Z),

b s ab . . s
b(s) = <E COShE’_E’Esth)'

1 - By choosing u(s,t) = 0, v(s,t) = Bt, w(s,t) = 7t2, to = 0, where
B,y €R, f#0,and 0 <t <2, then Eq. (15) is satisfied. Thus, we obtain the
timelike surface pencil with a common spacelike asymptotic curve a(s) as

b
¢ cosh 520¢ sinh 5
c c ¢ ¢ c
b .
P(s,t;8,v) = (a sinh f, —S, a cosh f>—|—t(0, B,yt)| sinh 5 0 cosh >
¢ c c c c
b
— cosh 500 sinh s
c c c c c

If we take a = 2, b =1, § = —1, and v = 0, then we immediately obtain a
member of this family (see Fig. 1(a)). Fig. 1(b) shows another member in the
family with a =2, b=1and =1, y=0.

2 - By choosing u(s,t) = 0, v(s,t) = 2ttanh(s), w(s,t) =2, ty = 0, and
0 <t <1, then Eq. (17) is satisfied. Hence, we obtain a timelike surface pencil
with a common spacelike asymptotic curve a(s) as

b
P(s,t) = (asinh f, —S, a cosh f)
¢ c c
a s b a . s
—cosh— - —sinh-
c c ¢ ¢ c
+ (0,2t tanh(s), %) sinh z 0  cosh Z
b S a ]
—cosh— —— —sinh -

C C C C C



9] TIMELIKE SURFACES WITH A COMMON ASYMPTOTIC CURVE ETC. 387

Fig. 1

If we take @ = 2, and b = 1, then we immediately obtain a member of this
family (see Fig. 2(a)). Fig. 2(b) shows another member in the family with
a=2,and b= —1.

4 4
3 - By choosing u(s,t) = sinh (Y s*t%), v(s,t) = Y s"t*, w(s,t) = 0,
k=1 k=1

to=0and —.5 <t <.5, then Eq. (19) is satisfied. Hence,:ve obtain a timelike
surface pencil with a common spacelike asymptotic curve «(s) as

4 4
s bs s
P(s,1) — ( inh 2 22 h—) ('h(Ejktk),Ejktk,)
(s,t) asinh -, —, acosh - + ( sin k:1s k:1s 0

a s b a ..s

—cosh- - —sinh-

c c ¢ c c
] s
X sinh — 0 cosh —
c c

b s a b . s

—cosh—- —— —sinh -

c c c c c

If we take @ = 2, and b = 1, then we immediately obtain a member of this
family (see Fig. 3(a)). Fig. 3(b) shows another member in the family with
a=2,and b= —1.
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Fig. 2

Example 3.2. Suppose we are given a parametric spacelike curve
a(s) = (sinhs,0,coshs), —1<s<1.
After simple computation, we have

t(s) = (cosh s,0,sinh s), n(s) = (sinhs,0,cosh s), b(s) = (0,—1,0).

P
If we choose u(s,t) = 0, v(s,t) = cost + > agcosk(t), w(s,t) =1+ sint +
k=2

p 3
S aze(l +sint)k tg = ?ﬂ and ¢t € [-37/2,37/2], then Eq. (19) is satisfied.
k=2

Thus, the timelike surfaces family with common spacelike asymptotic is given

by
P(s,t) = (sinh s + vsinh s, —w, cosh s + v cosh s).
If agy = 0.01, and agx = 0.05, then we immediately obtain a member of this

family (Fig. 4(a)). If we take agy, = 0 and asx, = 0,k = 2,3, 4, then we obtain
another member in this family (Fig. 4(b)).
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Fig. 3

Fig. 4

3.2 - a = «(s) is a timelike asymptotic curve

This time the directrix a(s) is a timelike asymptotic curve on the surface
P(s,t). As stated in the above case, we can get the corresponding Theorem for
Theorem 3.1; we omit the details here.

Theorem 3.2. The given timelike curve a(s) is an asymptotic curve on
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the timelike surface P(s,t) if and only if

u(s,tg) = v(s,tp) = w(s,tg) =0, )
_Ou(s,t) Qw(s,t) | Ow(s,t) Ov(s,t) _
o0 mED =" e T s ot
20
L du(s,t)\ Ow(s,t) = Ow(s,t)du(s,t)
m2(s,t) = <1 T s ) ot os o
B du(s,t)\ Ouv(s,t)  Ov(s,t) Ou(s,t)
ma(s, ) = (1 T s > ot os ot 7

In addition, by a similar procedure, we have the same conditions in Egs.
(15), (17) and (19).

Example 3.3. Suppose we are given a parametric timelike curve
s bs S
as) = (acosh —, —,asinh —),
¢ ¢ c

where a,b,c € R a? — b?> = ¢*>. We will construct a family of timelike surfaces
sharing the curve «(s) as the timelike asymptotic curve.

1 - By choosing u(s,t) = 0, v(s,t) = ft, w(s,t) = 7t2, where 3,7 € R, 3 #
0, -3<s5<3,t)=0, and —2 <t < 2, then Eq. (15) is satisfied. Hence, we
obtain the following timelike surface family with a common timelike asymptotic
curve a(s) as

gsinhf 9 gcoshf
c c ¢ c c
b s .8
P(s,t;8,7) = (acoshf,—S,asinh§)+t(0,ﬁ,7t) Coshz 0 sinh —
¢ c c
b b
- sinh soe 2 cosh s
c c ¢ c c

If we take a = 2, b =1, § = 1, and v = —1, then we immediately obtain a
member of this family (see Fig. 5(a)). Fig. 5(b) shows another member in the
family with a =2, b=1, =1, and v = 0.

b
P(s,t;8,vy) = (acosh f, —S,asinh f) + (0,2t tanh(s), t?)
¢ c c
¢ sinh ° boa cosh °
c c ¢ ¢ c
X cosh® 0 sinh ,

c c

b sinh > ¢ b cosh

C C C C C
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Fig. 5

If we take @ = 2, and b = 1, then we immediately obtain a member of this
family (see Fig. 6(a)). Fig. 6(b) shows another member in the family with
a=2,and b= —1.

Fig. 6

4 4
3 - By choosing u(s,t) = sinh (Z Sktk), v(s,t) = 3 cosh® ssinh® ¢, w(s,t) =
k=1 k=1
4
S cosFssinft, —2 < s <2 tg=0,and —1 <t < 1, then Eq. (19) is satisfied.
k=2
Hence, we obtain a timelike surface pencil with a common timelike asymptotic
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curve a(s) as

4 4
_ sbs .8 : ke 4k k 4k
P(s,t) = (acosh REs , asinh c) + (smh (,;_15 t ),kg_ls t ,0)

a .. s b a s
—sinh—- - —cosh -
c c ¢ ¢ c
s .8
X cosh— 0 sinh —
c c
b .. s «a b s
—sinh—- — ——cosh —
c c ¢ c c

If we take @ = 2, b = 1, then we immediately obtain a member of this family
(see Fig. 7(a)). Fig. 7(b) shows another member in the family with a = 2, and

Fig. 7

Example 3.4. Suppose we are given a parametric timelike curve
a(s) = (0,cosh s,sinhs), —2<s<2.
After simple computation, we have
t(s) = (0,sinh s, cosh s), n(s) = (0,cosh s,sinh s), b(s) = (—1,0,0).
4
If we choose u(s,t) = 0, v(s,t) = 1 —cosht + > age(1 — cosht)?, w(s,t) =
k=2

4
sinht+ 3 agy sinh®(t), where t € [0, 2], then the timelike surfaces family with
k=2



[15] TIMELIKE SURFACES WITH A COMMON ASYMPTOTIC CURVE ETC. 393

common timelike asymptotic is given by
P(s,t) = (—w, cosh s + v cosh s,sinh s + vsinh s).

If agp, = 0.01 and ag, = 0.05, then we immediately obtain a member of this
family (Fig. 8(a)). If we take agy = 0 and agr, = 0,k = 2,3, 4, then we obtain
another member in this family (Fig. 8(b)).

o
_11 2.5

Fig. 8

4 - Conclusion

In this study we have presented a method for finding a timelike surface fam-
ily whose members all share a given asymptotic spacelike or timelike curve as
an isoparametric curve. By representing the surface by the combination of the
given curve, and the three vectors decomposed along the directions of Serret—
Frenet, we derive the necessary and sufficient conditions for the given curve to
be asymptotic for the parametric timelike surface. The members of timelike
surfaces family with common asymptotic do not have the same properties. The
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member, having any desired property, of a surface family can be obtained by
choosing the appropriate marching-scale functions u(s,t), v(s,t) and w(s,t).
There are several opportunities for further work. An analogue of the prob-
lem addressed in this paper may be consider for spacelike surfaces. Another
possibility is to consider the geometric properties of the surfaces that are con-
structed?. For instance, what is the Gaussian curvature, the mean curvature,
is it minimal, does it have constant mean curvature, . . .7. In addition, an ana-
logue of the problem addressed in this paper may be considered for 3-surfaces
in 4-space or other types of marching-scale functions may be investigated.

(4]

(5]

(6]

(9]
[10]

[11]

References

E. BAYRAM, F. GULER and E. KASAP, Parametric representation of a surface
pencil with a common asymptotic curve, Computer-Aided Des. 44 (2012), 637—
643.

M. P. bo CARMO, Differential geometry of curves and surfaces, Prentice-Hall,
Englewood Cliffs, N.J., 1976.

G. FARIN, Curves and surfaces for computer aided geometric design, 2nd ed.,
Academic Press, Boston, MA, 1990.

S. FLORY and H. POTTMANN, Ruled surfaces for rationalization and design in
architecture, in “LIFE in:formation. On Responsive Information and Variations
in Architecture”, Proc. ACADIA 2010, Association for Computer Aided Design
in Architecture, 2010, 103-109.

E. Kasap and F. T. AKYILDIZ, Surfaces with common geodesic in Minkowski
3-space, Appl. Math. Comput. 177 (2006), 260-270.

E. Kasap, F. T. AkviLDIz and K. ORBAY, A generalization of surfaces family
with common spatial geodesic, Appl. Math. Comput. 201 (2008), 781-789.

C.-Y. L1, R.-H. WANG and C.-G. ZHU, Parametric representation of a sur-

face pencil with a common line of curvature, Computer-Aided Des. 43 (2011),
1110-1117.

B. O’NEILL, Semi-Riemannian geometry, with applications to relativity, Pure
Appl. Math., 103, Academic Press, New York, 1983.

H. POTTMANN, A. SCHIFTNER and J. WALLNER, Geometry of architectural
freeform structures, Internat. Math. Nachrichten 209 (2008), 15-28.

G. SAFFAK, E. BAYRAM and E. KASAP, Surfaces with a common asymptotic
curve in Minkowski 3-space, preprint (2013), arXiv:1305.0382.

G. SAFFAK and E. KASAP, Family of surface with a common null geodesic,
Int. J. Phys. Sci. 4 (2009), 428-433.



|17] TIMELIKE SURFACES WITH A COMMON ASYMPTOTIC CURVE ETC. 395

[12] J. WALRAVE, Curves and surfaces in Minkowski space, Ph.D. Thesis,
Katholieke Universiteit Leuven (Belgium), 1995.

[13] G.-J. WaANG, K. TANG and C.-L. TA1, Parametric representation of a surface
pencil with a common spatial geodesic, Comput.-Aided Des. 36 (2004), 447—
459.

RASHAD A. ABDEL-BAKY

King Abdulaziz University

Department of Mathematics, Sciences Faculty for Girls
P.O. Box 126300, Jeddah 21352

SAUDI ARABIA

University of Assiut

Department of Mathematics, Faculty of Science

Assiut 71516

EGYPT

e-mail: rbaky@Live.com



