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On complex and real identifiability of tensors

Abstract. We report about the state of the art on complex and real
generic identifiability of tensors, we describe some of our recent results
obtained in [6] and we present perspectives on the subject.
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1 - Introduction

Identifiability is a very special property for tensors. This interesting topic
has been extensively investigated starting from the XX century, related to
the Waring problem [26,27,34,35,36,37|, however the theory is far from being
complete. The notion of identifiability has many important applications, that
go beyond Algebraic Geometry: for example, in engineering, with the Blind
Source Separation problem [4], in chemistry, when one deals with mixtures of
fluorophores [9], or in statistics [3].

The paper is organized as follows. In Section 2 we introduce preliminary
material. Section 3 is devoted to the complex case, with particular emphasis on
symmetric, partially-symmetric and skew-symmetric tensors, which are three
significant special cases. In Section 4 we focus on the real case, describing
some of our recent results obtained in [6]. Finally in Section 5 we present open
problems and perspectives on the subject.

The main purpose of this note is to report about the state of the art on
generic identifiability of tensors, stressing, in a clear and simple way, analogies
and differences between the complex and real case.
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2 - Preliminaries

In this section we recall basic definitions about tensor decomposition, rank
and identifiability, mainly referring to the introductory handbook [28]. More-
over we describe some properties of elliptic normal curves, that play a special
role in the discovery of unidentifiable cases.

2.1 - Tensor decomposition and rank

Let F be either the complex field C or the real field R, let nqy,...,ng € N
such that n1 < ... <ng and let F™ ® ... ® F" be the space of tensors of type
niy,...,ngover F. Let T e F" @ ... ®@F"d,

Definition 2.1. A tensor decomposition of T'is given by vectors vg e F"i,

with i € {1,...,k} and j € {1,...,d}, such that

M) =% vle. el

Definition 2.2. The minimal k appearing in (1) is the rank of T over F.
Remark 2.1. Any vi ®... ®v;~1 has rank 1 over F.

Definition 2.3. A typical rank over F for tensors of type ni,...,ng is any
k such that the set of tensors having rank k£ has positive Euclidean measure.

According to section 5.2.1 of [28], we introduce the following:

Definition 2.4. There exists a unique typical rank for tensors of type
ni,...,ng over C, which we call the generic rank for that space of tensors.

Remark 2.2. The expected generic rank for C" ® ... ® C™ is

ko= H?:l g .
R R S TR

According to [20], we give the following:

Definition 2.5. Tensors of type ni,...,nq over C and rank & < k, are
of sub-generic rank.
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Remark 2.3. It is well known that it is possible to have more than one
typical rank for tensors of type n1,...,ng over R. The smallest typical rank over
R coincides with the generic rank over C [15]. Any rank over R between the
minimal typical rank and the maximal typical rank is also typical and it is an
open problem to determine an expression for the expected maximal typical rank
over R in the general case. Partial results have been obtained for symmetric
tensors [12].

2.2 - Identifiability

Definition 2.6. A rank-k tensor T' € F™ ® ... ® F" is identifiable over
[ if the presentation (1) is unique up to a permutation of the summands and
scaling of the vectors.

The above definition extends as follows:

Definition 2.7. The set of tensors of type ni,...,ng and rank k over F
is generically identifiable over F if identifiability over IF holds on a Zariski dense
open subset of the variety of tensors of rank < k.

2.3 - Elliptic normal curves

Let P" = P be the n-dimensional complex projective space.

Definition 2.8. An elliptic normal curve C C P" is a smooth curve of
genus 1 and degree n + 1 that is contained in no hyperplane.

For any such curve C C P21 of even degree n + 1 = 2k, it is known that
k — 1 is the minimal dimension of a P"~! h-secant to C which contains the
general point P € P?*~1 In particular the following holds:

Proposition 2.1 (Chiantini-Ciliberto, 2006, [18]). Under the above as-
sumptions, the number of k-secant P*~1 to C passing through P is 2.

Remark 2.4. As a consequence of Proposition 2.1, we can prove the ex-
istence of two decompositions over C in some cases. Precisely, up to now, the
only known examples are those listed in Table 4 of section 4. Indeed, let T
be the space of tensors object of study and Ty C P(T) the corresponding vari-
ety of rank-1 tensors over C. We choose a general tensor 7' € P(T) of rank k
over C and one of its complex decompositions, i.e. T1,...,T; € Ty such that
T = Zle T;. We can show that there exists a unique irreducible elliptic normal
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curve C of even degree 2k entirely contained in Ty, passing through the sum-
mands T7,...,T; and such that 7" belongs to the odd dimensional projective
space P?*~1 spanned by C. By Proposition 2.1, T' belongs to two P*~1 k-secant
to C, which provide the two complex decompositions of 7. We notice that, for
the cases of sub-generic rank, the elliptic normal curve is the k-contact locus
of Ty (see [18] for more details on this concept). As will be explained in our
forthcoming paper [7], for the last example of Table 4 it is not possible to define
a contact locus, since in this case the k-secant variety of Ty fills the ambient
space, so that the curve represents a “known” subvariety of T; bounding the
decompositions of T'.

3 - Complex identifiability

Generic identifiability over C has been largely investigated, in particular we
refer to [14,16,17,19,20,21,27, 35].
The first interesting result concerns the case d = 3:

Theorem 3.1 (Kruskal, 1977, [27]). The set of tensors of type ni,n2,ns
and rank k over C is generically identifiable over C if

k < —(min(ni, k) + min(ng, k) + min(ns, k) — 2).

DO =

Theorem 3.1 has been improved for ny = no = ng = n odd as follows:

Theorem 3.2 (Strassen, 1983, [35]). The set of tensors of type n,n,n with
n odd and rank k over C is generically identifiable over C if

n3
< - n.
k_{3n—2J "

Furthermore we have the following;:

Theorem 3.3 (Bocci-Chiantini-Ottaviani, 2014, [17]). The set of tensors
of type ni,n9,n3 with 3 < n1 < ny < ng and rank k over C is generically

identifiable over C if
ninans

_7’L1—|—n2—|—n3—2_

ns.

Admitting a unique minimal decomposition is a quite rare phenomenon for
tensors of generic rank over C. As an example, in the symmetric setting, i.e.
when n; = ... = ng = n and we deal with Sym?C" c (C")®?, the complex
identifiable cases of tensors of generic rank are only the one classically known
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Space of tensors | Feature | Rank | Ref.
(C2)®2t+l symmetric | t+1 | [36]
(C3)®5 symmetric 7 [26]
(CH)®3 symmetric 5 [36]

Table 1. Symmetric generically identifiable cases of generic rank over C

described in Table 1, as stated in [25]. We would like to emphasize that the
first and third examples are due to Sylvester, while the second one to Hilbert.
In the partially-symmetric case, that is when we work with vectors of symmetric
tensors in the same variables, searching for simultaneous decompositions, the
complete list of identifiable cases of generic rank is not known. The discovered
ones, up to now, are collected in Table 2. Besides of Veronese’s result, which
goes back to 1880, the second and fourth examples are classical too, respectively,
due to Weierstrass and Roberts. For a more detailed discussion on simultaneous
decompositions of vectors of symmetric tensors and identifiability, we refer to
our papers [5] and [8].

Space of tensors Feature Rank Ref.
@;:1(C2)®dﬂ', di+1>k | part.-symm. [ﬁ 25:1 (1;?)—‘ [23]
((Cn)®2)®2 part.-symm. n+1 [37]
((C3)®2)ed part.-symim. 4 Veronese
(C3)®2 g (C3)®3 art.-s 4 34
part.-symm. [34]
((C3)@3)®2 g (C3)®4 part.-symim. 7 8]

Table 2. Part.-symm. generically identifiable cases of generic rank over C

On the other side, generic identifiability over C is expected for tensors of
sub-generic rank over C. In this direction, by means of an algorithm based on
the so-called Hessian criterion, in [20] it is proved generic identifiability over
C for a large number of spaces of tensors in sub-generic rank cases. For the
symmetric case (with d > 3), in [21] it is proved that there are no exceptions
besides the ones appearing in Table 3.

An account of this topic in the partially-symmetric setting can be found in
our forthcoming paper [5].

Concerning generic identifiability over C of skew-symmetric cases, i.e. when
ny = ... =mng = n and it is investigated \YC" C (C")®4, we refer to [13]
(Theorem 1.1).
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Space of tensors | Feature | Rank | Ref.
(C3)®6 symmetric 9 [10,18]
(CHy=4 symmetric 8 [18,30]
(Co)®3 symmetric 9 [21,33]

Table 3. Symmetric generically unidentifiable cases of sub-generic rank over C

Besides the cases described above, generic identifiability over C does not
hold anytime the projective algebraic variety Ty of rank-1 tensors object of
study (Segre, Veronese and Grassmann variety, respectively, for the general,
the symmetric and the skew-symmetric case) is k-defective (we refer to [28] for
the basics about secant varieties and the defectivity problem and to [1,2,11] for
an account on Segre, Veronese and Grassmann defective varieties), in which case
we deal with rank-£ tensors admitting infinitely many complex decompositions.

4 - Real identifiability

Recent interest has been devoted to the real case [22,24,31], very useful in
applications.

If a set of tensors, of fixed type and rank over C, is generically identifiable
over C, then, necessarily, the same set of tensors seen over R is generically
identifiable over R. Equivalently, with the above assumption, the unique com-
plex decomposition of the general real tensor of this type and rank over R is
completely real.

At this point a natural question arises: if identifiability over C fails, what
happens to identifiability over R? For example, one may wonder if there ex-
ist real tensors admitting several decompositions in terms of complex rank-1
summands but only one of them is a decomposition over R.

In [6] we answered this question in some cases.

The main result is for tensors having two complex decompositions explained
through elliptic normal curves:

Theorem 4.1 (Angelini-Bocci-Chiantini, 2017, [6]). Let T be any space of
tensors in Table 4 of fized feature and k the rank over C under investigation.
Then there exist mnon-trivial Fuclidean open subsets Uy,Us,Us of the variety
of real tensors in T of rank < k over C, whose elements have two complex
decompositions and:

o VT € Uy, only one decomposition is real;
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e VT € U,, both decompositions are real;

e VT € Us, both decompositions are not real.

Space of tensors Feature Rank | Ref.
(C2)®® 5(sg) | [16]
(C3)=6 symmetric 9 (sg) | [10,18]
(che? 6 (sg) | [19]
(CHy=4 symmetric 8 (sg) | [18,30]
(CO)=3 symmetric 9 (sg) | [21,33]
Cl0)®s skew-symmetric 5 (sg) [13]
(CH®H)F @ ((C3)®H)®™ m > 0 | partially-symmetric | 6 (g) | [7,29]

Table 4. Gen. unidentifiable cases of sub-generic and generic rank over C

In column 2 of Table 4, when not declared, we intend any tensor of the
corresponding space. The last row is devoted to the partially-symmetric case
of vectors of symmetric tensors with three ternary cubics and an arbitrary
number of conics. This example will be extensively treated in our forthcoming
paper [7].

The proof of Theorem 4.1, the details of which we refer to [6], is based on
a study of real elliptic normal curves of even degree 2k in projective spaces of
odd dimension 2k — 1, through techniques of projective geometry. In particular
we first describe the case of quartics showing the following;:

Proposition 4.1 (Angelini-Bocci-Chiantini, 2017, [6]). Let C C P? be an
irreducible real elliptic normal quartic. Then there exist By, By, By, By C ]P’%
non-trivial open balls entirely composed of points P such that the two secant
lines to C through P intersect C, respectively, in 4 real points, 2 real and 2 not
real conjugate points, 4 not real points pairwise conjugate (for Bs the conjugate
points being on the same line and for By otherwise).

By induction on k we extend Proposition 4.1 to curves in higher dimensional
spaces getting the following:

Proposition 4.2 (Angelini-Bocci-Chiantini, 2017, [6]). Let C C P2~ be
an irreducible real elliptic normal curve of degree 2k. Then, for any (a1,as2) €
N2 such that 0 < 2a;+2as < k, there exists B, q, C Pékil non-trivial open ball
entirely composed of points P such that each of the two secant spaces I1;(P) =
PF=1, i € {1,2}, to C through P intersects C in k-2a; real points and 2a; not
real points.
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We notice that, with the notation introduced in Proposition 4.2, if one of
the a;’s equals 0 and the other one is different from 0, then we get real points P
admitting a unique real decomposition with respect to C. If a; = as = 0, then
the two decompositions are real. Finally, if the a;’s are both different from 0,
then the two decompositions are complex but not real. In particular, the first
case will lead to real identifiability.

Proposition 4.2 can be generalized to families of irreducible real elliptic
normal curves. This step allows us to pass from curves to tensors, obtaining
the proof of Theorem 4.1.

5 - Open problems and perspectives

We conclude this note by presenting a short list of open problems that have
arisen mainly from discussions within the seminars I held on the subject.

1) Classifying spaces of tensors, of fixed type and rank, such that the general
tensor has two complex decompositions, due to the presence of elliptic normal
curves, is, at the moment, an open problem.

2) According to Remark 2.3, from Theorem 4.1 we immediately get some
information about the rank over R and identifiability over R of tensors in
Uy,Us,Us. Indeed, in Uy the rank over R equals the rank over C and real
identifiability holds. In Us the same condition on the ranks holds but identi-
fiability over R fails. In Uz the rank over R is strictly greater than the rank
over C and we can’t say anything about real identifiability. Therefore we can
“recover” identifiability only in U;. At this point it is reasonable to ask how
large the three open sets of Theorem 4.1 are and, till now, also determining an
estimate of their measure represents an interesting open problem.

3) It is not known completely how identifiability over R behaves when iden-
tifiability over C fails for reasons other than the presence of elliptic normal
curves. In this direction, in [6] we showed that, if the general tensor of rank
k over C admits infinitely many decompositions, then there are no Euclidean
open sets of tensors in which real identifiability holds.

4) Several situations seem to occur in the cases with a finite number, greater
than 1, of complex decompositions. For instance, let us consider tensors with
complex sub-generic rank k = ng—1 in almost unbalanced spaces C" ®...@C"d
(ie.np < ...<ngand ng—1 = Hf;ll(nl) - Ef;ll(nl —1)): it is known,
by [17], that they have (i) ) complex decompositions, with D = deg(P™~1 x
... x Pra-171) "and we proved in [6] that, whenever D — ng + 1 is odd, then
there are no Euclidean open sets where identifiability over R holds, while, when
D — ng + 1 is even, we believe in the existence of such open sets. In this
sense, this is true when d = n; = 3,ny = 5,n3 = 10, see Example 5.2 of [6].
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Concerning the cases of complex generic rank, we can apply the computer-aided
procedure introduced in [8] and based on homotopy continuation techniques and
monodromy loops, to produce examples where real identifiability is recovered
at least in Euclidean open sets (see Table 5 for the cases analyzed with this
method in our papers [6] and [5]).

Space of tensors Feature Rank | Dec. | Ref.
(C3)eT symmetric 12 (g) 5 [32]
(C3)=8 symmetric 15(g) | 16 | [32]

((C3)®3)®3 @ (C*)®? | partially-symmetric | 6 (g) | 2 | [7]

Table 5. Generically unidentifiable cases analyzed through computations

Acknowledgments. This note, based on joint works with C. Bocci
and L. Chiantini, arises partially from the conference “Real identifiability and
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