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Groups satisfying the double chain condition
on non-pronormal subgroups

Abstract. If 6 is a subgroup property, a group G is said to satisfy the
double chain condition on @-subgroups if it admits no infinite double
sequences

<X << X g < Xp <X << X <

consisting of #-subgroups. The structure of generalized soluble groups
satisfying the double chain condition on non-pronormal subgroups is
investigated.
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1 - Introduction

A subgroup X of a group G is said to be pronormal if the subgroups X and
X9 are conjugate in (X, X9) for every element g of G. Obvious examples of
pronormal subgroups are normal subgroups and maximal subgroups of arbitrary
groups; moreover, Sylow subgroups of finite groups and Hall subgroups of finite
soluble groups are always pronormal. The concept of a pronormal subgroup
was introduced by Philip Hall, and the first results about pronormal subgroups
appeared in a paper by Rose [20]. More recently, several researches have shown
that pronormality plays a relevant role in many problems of group theory, both
in the finite and the infinite case (see for instance [9], [15], [23]).
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Pronormal subgroups are naturally related to the so-called T-property for a
group. A group G is said to have the T'-property (or to be a T-group) if normality
in G is a transitive relation, or equivalently if all subnormal subgroups of G are
normal. The class of T-groups is not closed with respect to forming subgroups,
and a group is called a T-group if all of its subgroups have the T-property.
Since it can be easily proved that a subgroup of a group is normal if and only
if it is ascendant and pronormal, it follows that groups with only pronormal
subgroups have the T-property and one can expect that the behaviour of groups
with many pronormal subgroups should be close to that of T-groups.

The structure of groups with only pronormal subgroups was described by
Kuzennyi and Subbotin [12]. One year later, the same authors considered
in [13] groups all of whose infinite subgroups are pronormal, starting in this
way the study of groups for which the set of non-pronormal subgroups is small
in some respect. It is well-known that chain conditions often play a relevant
role in the investigations concerning infinite groups, and so the next step was
carried out by looking at groups satisfying either the minimal or the maximal
condition on non-pronormal subgroups (see [8] and [22], respectively).

On the other hand, the imposition of weaker forms of the classical chain
conditions also produces remarkable effects. In particular, Shores [21] and Za-
icev [24] independently proved that if G is a generalized soluble group admitting
no chains of subgroups with the same order type as the set of integers, then G
is soluble-by-finite and it satisfies either the minimal or the maximal condition
on subgroups. Conditions of this type can of course be considered for special
subgroup systems. If 0 is a subgroup property, we shall say that a group G
satisfies the double chain condition on 6-subgroups if for each double chain

X < <X < Xp< X <. <X, < ...

of f-subgroups of G there exists an integer k such that either X,, = X for
all n <k or X,, = X for all n > k. Obviously, both the minimal and
the maximal conditions on @-subgroups imply the double chain condition on
f-subgroups. The structure of groups satisfying the double chain conditions on
normal or subnormal subgroups was studied in [6] and [1], respectively, and it
should be mentioned that the double chain condition for other algebraic struc-
tures, like for instance rings and modules, has also been considered (see for
instance [3]).

The aim of this paper is to provide a further contribution to the investiga-
tion of groups with few non-pronormal subgroups, by studying the class DCy,,
of all groups satisfying the double chain condition on subgroups which are
not pronormal. Among other results, it will be proved that finitely gener-
ated soluble DC),,-groups are polycyclic, and that any periodic locally solu-
ble DC,,-group either satisfies the minimal condition on subgroups or has only
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pronormal subgroups. Moreover, it will be shown that a soluble DC),,-group
with a torsion-free Fitting subgroup must be abelian.

Most of our notation is standard and can be found in [18].

2 - Preliminaries

Groups with the T-property form an important and widely investigated
group class. Although all simple groups obviously have the T-property, the
structure of soluble T-groups has strong restrictions and was carefully described
by Gaschiitz [7] and Robinson [17]. It turns out that any soluble T-group is
metabelian and that a finitely generated soluble group with the T-property is
either finite or abelian, so that in particular all non-periodic locally (soluble-
by-finite) T-groups are abelian. Notice also that finite soluble T-groups have
the T-property, and conversely any finite T-group is soluble.

The first non-trivial evidence of the relation between the T-property and
pronormality was exhibited by Peng [16], who proved that a finite group has
the T-property if and only if all of its primary subgroups are pronormal. Our
first elementary results give further information on this connection.

Lemma 2.1. Let G be a group whose cyclic subgroups are pronormal.
Then G is a T-group.

Proof. If g is any element of G, the cyclic subgroup (g) is pronormal in
G and so G = Ng((g))(g)¢. Then

G
(9)% = ()9
and hence G is a T-group (see [17], Lemma 2.1.1). As the hypotheses are
obviously inherited by subgroups, the group G has the T-property. Il

Lemma 2.2. Let G be a locally finite T-group. Then all finite subgroups
of G are pronormal.

Proof. Let X be any finite subgroup of G, and consider an arbitrary
element g of G. Then (X, g) is a finite T-group, and so X is pronormal in (X, g)
(see for instance [8] and [16]). It follows that X and XY are conjugate in
(X, X9), and hence X is pronormal in G. O

gorollary 2.1. Let G be a locally (soluble-by-finite) group. Then G has
the T-property if and only if all of its cyclic subgroups are pronormal.
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Proof. Suppose that G is a T-group. Then G is abelian, whenever it
is not periodic. On the other hand, if G is periodic, then it is locally finite
and so all of its cyclic subgroups are pronormal by Lemma 2.2. The converse
statement holds by Lemma 2.1. O

An automorphism « of a group G is said to be a power automorphism
if X* = X for all subgroups X of G. The set of all power automorphisms of G
is an abelian and residually finite subgroup of the full automorphism group of G
(recall here that a group is residually finite if the intersection of all its subgroups
of finite index is trivial). Power automorphisms have been extensively studied
by Cooper [4]. The investigation of soluble groups with the T-property involves
naturally and heavily the behaviour of power automorphisms. In fact, if G is
a T-group and A is any abelian normal subgroup of G, then each element of G
induces by conjugation a power automorphism on A, so that in this situation
the factor group G/Cg(A) is isomorphic to a group of power automorphisms
of A, and in particular it is abelian and residually finite.

It is useful to point out that any infinite direct decomposition of a group
gives rise to a suitable double chain of subgroups which is unbounded on both
sides. In fact, let G be a group and let

g G=DrG,
®) neN

be a decomposition of G into the direct product of a countably infinite collection
of non-trivial subgroups

G1,Ga,...,Gy, ...
Then G admits the double chain
(%) <UL <. <UL < U< U <. < U <.
where

Uk = (DI‘ ng_1> X ( Dr ng) and U,k = Dr ng_l
neN 1<n<k n>k

for each non-negative integer k. We shall say that (**) is the double chain
associated to the direct decomposition (*).

For basic results on pronormality, we refer to the survey paper [10], and we
state here only the following two necessary lemmas.

Lemma 2.3. A subgroup X of a group G is normal if and only if it is
pronormal and ascendant. Moreover, all pronormal subgroups of a locally nilpo-
tent group are normal.

Lemma 2.4. Let G be a group, and let X and Y be pronormal subgroups
of G such that XY = X. Then the product XY is a pronormal subgroup of G.
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3 - Main results

The first lemma of this section plays a crucial role in our arguments. Note
that an ascendant section of an arbitrary group G is a factor group of the
form X/Y, where X is an ascendant subgroup of G and Y is a normal subgroup
of X.

Lemma 3.1. Let G be a DCy,,-group, and let X/Y be an ascendant section
of G which is a direct product of infinitely many cyclic non-trivial subgroups.
Then:

(a) X andY are normal in G.
(b) All cyclic subgroups of G/X are pronormal.
(c) The factor group G/Y has the T-property.

Proof. Clearly, X/Y contains a normal subgroup X*/Y which is the
direct product of a countable collection (X, /Y),cn of cyclic non-trivial sub-
groups. As X/X* is generated by cyclic normal subgroups, it is enough to
prove that the statement holds for the ascendant section X*/Y', and hence it
can be assumed without loss of generality that X = X*. Then

X)Y =UJY x V/Y,

where
U/Y = Dr(Xs,/Y) and V/Y = Dr (X9,-1/Y).
neN neN

As @ satisfies the double chain condition on non-pronormal subgroups, it follows
that there exist pronormal subgroups P and ) of G such that Y < P < U
and Y < @ < V. Since X/Y is abelian, the subgroups P and @ are ascendant,
and so even normal, in G. Thus Y = PNQ is a normal subgroup of G. The same
argument applied to the ascendant sections X /U and X/V shows that U and V
are normal subgroups of GG, so that also X = UV is normal in G. Similarly, we
obtain that
(X;|iel

is a normal subgroup of G for any infinite set I of natural numbers, and it
follows from this remark that each X, is normal in G.

In order to prove parts (b) and (c) of the statement, it can now obviously
be assumed that Y = {1}, so that

X = Dr X,.
neN
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If g is any element of G, there exists a positive integer m such that (g) N W =
{1}, where
W =(X, |n>m)= Dr X,.
n>m

The double chain
< W< . < W< W< Wi <...<Wr<...

associated to this direct decomposition consists of normal subgroups of G, and
so there is an integer r such that the subgroup (g)W, is pronormal in G. As
W, is contained in X, it follows that also (¢)X is pronormal in G, and hence
every cyclic subgroup of G/X is pronormal.

Consider now an arbitrary subgroup K of G, and let L be any subnormal
subgroup of K. Suppose first that the subgroup L* = L N X is not finitely
generated, so that it is the direct product of infinitely many cyclic non-trivial
subgroups (see for instance [19], 4.3.16). In this case, it follows from parts (a)
and (b) that L* is normal in G and all cyclic subgroups of G/L* are pronormal;
in particular, G/L* is a T-group and hence L is normal in K. Assume finally
that L* is finitely generated, so that it is contained in the direct product

X1 X ... x X,
for some positive integer s. The consideration of the direct decomposition

(Xn | n>2s) = (Dr Xa,) x (Dr Xon 1)

and the DC,,,-property yield that there exist normal subgroups R and S of G
such that LR and LS are pronormal in G and LN RS = {1}. In particular, LR
and LS are pronormal subgroups of K R and K .S, respectively. It follows that K
normalizes both LR and LS, and so also LR N LS = L. Therefore K is
a T-group, and G has the T-property. O

Lemma 3.2. Let G be a DC,)p-group, and let X be a locally nilpotent
subgroup of G. Then X is either nilpotent or a Cernikov group.

Proof. It follows from Lemma 2.3 that the locally nilpotent subgroup
X satisfies the double chain condition on non-normal subgroups, so that X
satisfies either the minimal or the maximal condition on non-normal subgroups
(see [6]). If X has the minimal condition on non-normal subgroups, it is known
that either X is a Cernikov group or all of its subgroups are normal (see [2]).
On the other hand, when X satisfies the maximal condition on non-normal
subgroups, it is known that X is nilpotent (see [5], Corollary 2.5), and so the



7] GROUPS SATISFYING THE DOUBLE CHAIN CONDITION ETC. 359

statement is proved. Il

It is well-known that in any group G there exists a largest locally nilpotent
normal subgroup H(G), the so-called Hirsch-Plotkin radical of G, and that
H(G) contains all locally nilpotent ascendant subgroups of G. Recall also that
a group is hypercentral if it coincides with the last term of its upper central
series. Thus hypercentral groups are locally nilpotent and have only ascendant
subgroups, while any locally nilpotent group satisfying the minimal condition
on subgroups is hypercentral.

Corollary 3.1. Let G be a DCyy-group. Then the Hirsch-Plotkin radi-
cal H of G is hypercentral, and so all subgroups of H are ascendant in G.

Our next elementary lemma shows in particular that any finitely generated
infinite abelian subgroup of a DC),,-group is contained in a finitely generated
pronormal subgroup.

Lemma 3.3. Let G be a DCyyp-group, and let A be a finitely generated
infinite abelian subgroup of G. Then either A is pronormal in G or the set of
all non-pronormal subgroups of G containing A satisfies the maximal condition.

Proof. Suppose that the subgroup A is not pronormal in G, so that
by Lemma 2.4 there exists an infinite sequence of positive integers

ki ko, ks

such that
YN LN LN

and each subgroup A*» is not pronormal in G. Since G is a DC,,-group, it
follows that the set of all non-pronormal subgroups of G containing A satisfies
the maximal condition. O

We can now prove our first main result, concerning the behaviour of torsion-
free subgroups in groups with the DC),,-property.

Theorem 3.1. Let G be a DCyy-group, and let X be a torsion-free locally
nilpotent ascendant subgroup of G. If X is not finitely generated, then it is
contained in the centre of G.

Proof. Suppose first that X is abelian, and assume for a contradiction
that X contains a finitely generated subgroup E which is not normal in G.
Then E is not pronormal in G, so that it follows from Lemma 3.3 that the set
of all subgroups of X containing F which are not pronormal (or equivalently
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not normal) in G satisfies the maximal condition, and hence we may consider
a finitely generated subgroup M of X which contains E and is maximal with
respect to the condition of being non-normal in G. Thus all subgroups of
X properly containing M are normal in G, and so the intersection of any
collection of non-trivial subgroups of the infinite abelian group X/M is non-
trivial. Therefore X/M is a group of type p™ for some prime number p, and
X has finite rank. Write

M = {ay) x ... x {a,),

so that both M and X have rank r. Without loss of generality, it can be
assumed that the cyclic subgroup (a;) is not normal in G. Consider any prime
number ¢ # p, and put

My = {(a1) % {ad) x ... x (a?).

Then
X/Mq = M/Mgy x Fy/Mq,

where P, /M, is a group of type p>°. As the infinite cyclic subgroup (a;) is not
normal in (G, the set of all non-normal subgroups of X containing a; satisfies
the maximal condition by Lemma 3.3, and hence it follows that each P, is
normal in G. Therefore

r=(p,

q#p

is a normal subgroup of G. On the other hand,

PAM= (PN M) =M= (a),
q#p q#p

so that P has rank 1. Another application of Lemma 3.3 yields now that there
exists a finitely generated pronormal subgroup C of G such that (a;) < C < P.
Then C' is a cyclic normal subgroup of G, and so also (a1) is normal in G. This
contradiction shows that all subgroups of X are normal in G, at least when X
is abelian.

Assume now for a contradiction that X is not contained in Z(G), again
under the assumption that X is abelian, and let g be an element of G such
that [X,g] # {1}. Since all subgroups of X are normal in G, we have that g
induces by conjugation the inversion automorphism on X, so that [X, ¢?] = {1}
and X N (g) = {1}. If the subgroup X* is not finitely generated, there exist
infinitely many elements

b1,ba, ... by,...
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of X such that
< (g, bi") << {g,bT) < (g,0,b3) < ... < {g,b1,ba, ... bp) < ...

and it follows from the DC,,,-property that X contains a finitely generated
subgroup U such that (g, U*) is pronormal in G. On the other hand, the factor
group (g,U)/{g?,U*) is nilpotent (see [18] Part 2, Lemma 6.34), so that (g, U*)
is normal in (g,U) and hence

(g, U)/(g* . U") = (g, U") /(g*,U") x (¢*,U) /{g*, U"),

which is impossible because U/U* has exponent 4. Thus X* must be finitely
generated, so that X/X* is infinite of exponent 4 and hence

X/ X' =V/X* x W/X1,

where V/X* is cyclic of order 4 and W/X* can be decomposed into the direct
product of infinitely many cyclic subgroups. The consideration of the dou-
ble chain associated to this decomposition allows to consider a subgroup Y
such that X4 <Y < W and (g,Y) is pronormal in G. It follows that (g, W)
is pronormal in G, so that (g,W)/{g?,W) is a normal subgroup of the fi-
nite 2-group (g, X)/(g%, W) and hence

(9, X)/(g* W) = (g, W) /(> W) x (¢°, X)/(g*, W),

which is impossible, as X/W is cyclic of order 4. This further contradiction
proves that X < Z(G), provided that X is abelian.

Suppose finally that X is locally nilpotent, so that it is even nilpotent
by Lemma 3.2. Since X is not finitely generated, it cannot satisfy the maximal
condition on abelian subgroups and so it contains a maximal abelian subgroup A
which is not finitely generated. Clearly, A is subnormal in G and so it is
contained in Z(G) by the first part of the proof. Thus

X =Cx(A) = A,
and the proof is complete. O
Recall that a group G is said to be radical if it has an ascending series
with locally nilpotent factors. Thus all soluble groups are radical, and a finite

group is radical if and only if it is soluble. Moreover, in any radical group
the Hirsch-Plotkin radical contains its centralizer.

Corollary 3.2. Let G be a radical DC,,,-group whose Hirsch-Plotkin rad-
ical is torsion-free. Then G is either polycyclic or abelian.
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Proof. Assume that GG is not polycyclic. Then the Hirsch-Plotkin radi-
cal H of G cannot be finitely generated (see [18] Part 1, Theorem 3.27), and
so it follows from Theorem 3.1 that H is contained in Z(G). Therefore

G=Cq(H)=H

is an abelian group. O

Our next result is another consequence of Theorem 3.1, and shows that
within the universe of DC,,,-groups the property of being radical is equiva-
lent to solubility. It proves also that in the statement of Corollary 3.2 the
Hirsch-Plotkin radical may be replaced by the Fitting subgroup.

Corollary 3.3. Let G be a radical DCy,p-group. Then G is soluble.

Proof. Let T be the largest periodic normal subgroup of G. Then the
factor group G/T has a torsion-free Hirsch-Plotkin radical, so that G/T is
either polycyclic or abelian by Corollary 3.2, and hence it is soluble. Thus
it is enough to show that T is soluble, which is of course the case when T
is a Cernikov group. Suppose now that 7 is not a Cernikov group, so that
its Hirsch-Plotkin radical H does not satisfy the minimal condition on abelian
subgroups (see [18] Part 1, Theorem 3.32), and so it contains a subgroup A
which is the direct product of infinitely many cyclic non-trivial subgroups.
Moreover, as H is nilpotent by Lemma 3.2, the subgroup A is subnormal in
G, so that it follows from Lemma 3.1 that G is a T-group and hence it is
metabelian. The statement is proved. ]

Our next statement should be related to the already mentioned fact that
any finitely generated soluble T-group is either finite or abelian.

Theorem 3.2. Let G be a finitely generated soluble DCyy-group. Then G
s polycyclic.

Proof. Let T be the largest periodic normal subgroup of G. Then G/T
has a torsion-free Hirsch-Plotkin radical, and so it follows from Corollary 3.2
that the factor group G/T is polycyclic. Assume for a contradiction that G
is not polycyclic, so that the subgroup 7' is infinite. If the Hirsch-Plotkin
radical H of T satisfies the minimal condition on abelian subgroups, we have
that T is a Cernikov group; in this case, G is abelian-by-polycyclic, so that it
is residually finite (see [11]) and hence T is finite, a contradiction. Therefore
H contains a subgroup A which is the direct product of an infinite collection
of cyclic non-trivial subgroups. As A is ascendant in G, it follows from Lemma
3.1 that the group G has the T-property, so that it is either finite or abelian,
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the final contradiction. O

We turn now to the case of periodic DC),p-groups. The following lemma
proved by Zaicev [25] is relevant for our purposes.

Lemma 3.4. Let G be a periodic locally soluble group. If there exists a
finite group of automorphisms I' of G such that all abelian I'-invariant subgroups
of G satisfy the minimal condition on subgroups, then G satisfies the minimal
condition on abelian subgroups.

Theorem 3.3. Let G be a periodic locally soluble DCy,,-group. Then ei-
ther G is a Cernikov group or all of its subgroups are pronormal.

Proof. Suppose that G is not a Cernikov group, so that it cannot satisfy
the minimal condition on abelian subgroups (see [18] Part 1, Theorem 3.45).
If F is an arbitrary finite subgroup of G, it follows from Lemma 3.4 that G
contains an abelian subgroup A admitting a direct decomposition

=

where each A, is a finite non-trivial E-invariant subgroup, and of course A
can be chosen in such a way that AN E = {1}. Let X be any subnormal
subgroup of E. An application of the DC},,-property yields that there exists an
FE-invariant subgroup B of A such that the product X B is a pronormal subgroup
of G. In particular, the subgroup X B is pronormal and subnormal in EB, so
that it is normal in EB. Thus X = XB N FE is normal in F, and hence F is a
T-group. It follows that the locally finite group G has the T-property, so that
in particular G is metabelian and by Lemma 2.2 all of its finite subgroups are
pronormal.

Assume now for a contradiction that GG contains subgroups which are not
pronormal, so that in particular it cannot satisfy the maximal condition on
non-pronormal subgroups (see [22]) and hence we may consider a minimal non-
pronormal subgroup M of G. Then an application of Lemma 2.4 yields that M
cannot be decomposed into a product UV, where U and V' are proper subgroups
and UV = U. As M is obviously infinite, it follows that M /M’ is a group of
type p*° for some prime number p. Moreover, since M has the T-property, the
factor group M/Cpr(M’) is residually finite, so that M’ is contained in Z(M).
Thus M’ = {1} and M is a group of type p>°. Let H be the Hirsch-Plotkin
radical of G. Then H is nilpotent by Lemma 3.2 and G/Cq(H) is residually
finite, because G is a T-group, so that

M <Cq(H) < H
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and M is normal in G. This contradiction completes the proof. ]

Recall finally that a group G is minimaz if it has a series of finite length
each of whose factors satisfies either the minimal or the maximal condition
on subgroups. The structure of soluble minimax groups has been described
by Robinson (see [18] Part 2, Chapter 10).

Lemma 3.5. Let G be a locally soluﬁle DC,p-group whose Hirsch-Plotkin
radical is not minimax. Then G has the T-property.

Proof. Assume for a contradiction that G is not a T-group, and let H
be the Hirsch-Plotkin radical of G. Then H is nilpotent by Lemma 3.2, so
that it has the double chain condition on non-normal subgroups. It follows
that H satisfies either the minimal or the maximal condition on non-normal
subgroups (see [6]), and it is known that in both cases H is a Dedekind group
(see [2] and [5]). On the other hand, an application of Lemma 3.1 yields
that the largest periodic subgroup T of H satisfies the minimal condition on
subgroups, so that H is a non-periodic abelian group and H = T x K, where
K is a torsion-free subgroup which cannot be minimax. Let L be a free abelian
subgroup of K such that K/L is periodic. A further application of Lemma 3.1
shows that L is finitely generated, so that K/L does not satisfy the minimal
condition on subgroups. Then for each positive integer n the group K/L"
contains a subgroup which is the direct product of infinitely many cyclic non-
trivial subgroups, and hence it follows again from Lemma 3.1 that G/L"™ is a
T-group. In particular, G/L" is metabelian for all n, so that

G"< (L' ={1}.

neN

Then G is metabelian, and hence Cg(H) < H. On the other hand, K is
contained in Z(G) by Theorem 3.1, so that G cannot act by conjugation on H as
a group of power automorphisms and H contains an infinite cyclic subgroup (h)
which is not normal in G. As H is not finitely generated, by Lemma 3.3 it
contains a finitely generated subgroup M which is maximal with respect to the
condition of being non-normal in G. It follows that the identity subgroup cannot
be realized as intersection of non-trivial subgroups of the abelian group H/M,
so that H/M satisfies the minimal condition on subgroups and hence H is
minimax. This last contradiction completes the proof of the statement. O

Theore@ 3.4. Let G be a soluble DCy,,-group. Then either G is minimaz
or it has the T-property.
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Proof. Suppose that G is not a T-group. Then the Hirsch-Plotkin radical
of G is minimax by Lemma 3.5. In particular, all abelian ascendant subgroups
of G are minimax, and hence G itself is a minimax group by a result of Baer

(see [14], Corollary 6.3.9). O
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