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Existence and non-existence of functional solutions
for the equations of axially symmetric gravitational fields
in general relativity

Abstract. A theorem of existence and non-existence of solutions for a
boundary value problem for the equations of axially symmetric gravita-
tional field in vacuum is given using the method of functional solutions.
The boundary value problem is reduced to a two-point problem for a
Bernoulli equation. Conditions are given under which solutions exist or
not exist.
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1 - Introduction

The stationary Einstein’s field equations do not fit clearly in any of the
types in which the partial differential equations are usually classified. They
are nonlinear with the added complication to be over determined. Particularly
difficult is the problem of determining the boundary conditions which must be
added to the system in order to have a well-posed boundary value problem [3].
In this paper we study a problem for the Einstein’s equations in vacuum as-
suming an axially symmetric situation. Stationary axially symmetric solutions
are of great astrophysical importance: they describe the exterior of bodies like
stars, galaxies or accretion disks in equilibrium. We refer to [2] and to [1] for
a comprehensive survey. We adopt here the formulation given by T. Lewis [5]
and prove that the corresponding boundary value problem has one and only one
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solution for certain boundary conditions and no solutions for others. In the first
and second Sections, after recalling how to derive the Weyl-Lewis-Papapetrou
coordinate system, a useful parametrization is used to obtain a reformulation
of the problem which uses only two independent partial differential equations.
This material is largely, but not entirely, contained in [5] and [6]. The method
used in this paper is not the only possible, for various different approaches we
refer to the book [9]. The reduced system of P.D.E is studied in the remaining
sections using the method of the functional solutions. We solve a two-point
problem for a Bernoulli’s ordinary differential equation and obtain, as a corol-
lary, the proposed result of existence and non-existence of solutions.

2 - Derivation of the governing equations

The Einstein’s equations in vacuum, corresponding to the metric

(2.1) ds® = fdad — etda? — etdxd — lda? — 2mdzodas,

were studied by T. Lewis [5], who assumed an axially symmetric situation. The
last term in (2.1) corresponds to the case of a rotating mass. If m =0 in (2.1)
we have the Weyl metric [10]. The field depends, in cylindrical coordinates,
upon two variables x1 and x9, r9 = 0 being the axis of symmetry of the field.
xo is the time coordinate and x3 an angular variable varying from 0 to 2w. The
gravitational field equations will be derived from a variational principle. The
relevant lagrangian is

(g™ +/19])
ox,

d(g™\/1gl)

(2.2) 2G =T7, ST

()

(see [10] and, for a more modern treatment, [4]), where

GO = 2 g = e 22—
(2.3)

g¥ =172f g% =r7%m, |g| =¥
and
(2.4) r? = fl+m?.

1Use is made of the summation convection.
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All the others g;; and g are zero. Calculating the Chistoffel symbols which
appear in (2.2) we find

[/ 1] + [m, m]

(2.5) G = o

+ripi (%)
where
[f, 1= fili [m,m]=m;m,.

) )

This lagrangian can also be written

[fa ” + [ma m] + ,Uf,i f,zl + fl,l + 2mm,i

(26) ¢= 2r 2r

since
f7il + flﬂ' -+ Qmmji
ri= .
’ 2r
We find, as lagrangian binomial corresponding to f = goo,

ofi)i of 2

r

(8G> oG 1(l,i) _i_i([f,l}—l—[m,m]

2
(27) i Ar r2 2V M)’

where VZu = ;i denotes the laplacian. In the same way we have, for the
lagrangian binomial corresponding to [ = gs3,

(06), 20 < (1) £ (e

i 4r

i ol 2
and for m = go3

(22) -8 -} () (Lt

2
(2.8) ) e +2V u).

To compute the lagrangian binomial corresponding to ¢g;; we proceed in a
i

slightly different way. Let v = g11 = —e/, thus p; = . The lagrangian
Y

then becomes

(2.9) G = %(

We have

fili+ m% ) r Vi
T

0G
)71' e (/'5,7,7“,1 T,ll)y 6’7 =€ "Til;

oG r; (aG

O v\

2Here and hereafter we use for the partial derivative with respect to ;1 and x2 the notation
2L=fi i=1,2
Bz, K2 =14
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Hence

(2.10)

o

Equating to zero the lagrangian binomials, we arrive, for the determination of
f, 1, m and p, to the following highly symmetrical, but quite complex system
of partial differential equations

(2.11) Vi =0

e (5 (I )
w2 ()
(2.15) r? = fl+m?.

The important fact that r(z1,22) is an harmonic function was first noticed by
E. Weyl in [10]. Moreover, the equations (2.12), (2.13) and (2.14) are invari-
ant under conformal mapping. On the other hand, if z(x1,z9) is the harmonic
conjugate of r(x1,x9) the analytic function z(x1,x2) + ir(x1, x2) defines a con-
formal mapping from the complex plane x1 + ix2 to 2z + ér. This is the point
of view of the Weyl-Lewis-Papapetrou coordinate systems, see [7] and [8], in
which one takes r and z as independent variables. The system (2.12), (2.13)
and (2.14) retains the same form, but with a new meaning of r. We write it in
a more convenient form as follows:

@0 ) (g s aw)-o
e )L )
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2 2
where now [f,l] = or ot + of ot and V?u = L + % Let us multiply
or? 022

or or 2z 0z
(2.17) by f, (2.16) by [ and (2.18) by m. Adding the resulting equations we
obtain, after simple calculations,

O (10r2\ 0 /10r? 1 9
On the other hand,
9 /1 0r? d /10r?
(220) oG )Fa: (o )=0

Hence (2.19) becomes
1
(2.21) Vi = ?([f, 1] + [m, m]).

Therefore (2.17), (2.16) and (2.18) simplify to

0* 0* 0
2.22) O L0+ )

2 2
(2.23) ol 0’1l 10l l

PR R R
2:21) Oy T L0 170+ )
' Oor? 922 ror 2 e

The system (2.22), (2.23) and (2.24) does not depend on u. Therefore, if we
know f, [ and m we can obtain p solving, with suitable boundary conditions,
(2.21) as a Dirichlet’s problem. Moreover, in view of the condition

(2.25) fl4+m? =r?

the three equations (2.22), (2.23), (2.24) are not independent. It would, there-
fore, be desirable to have a new formulation with only two equations in two
unknowns in which (2.25) is automatically satisfied. To this end we can use the
parametrization of f, [ and m

f =r(cosh A — cosh(2u) sinh \)
(2.26) [ = r(cosh A + cosh(2u) sinh \)

m = rsinh A sinh(2u)
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which can also be written
f =r(e *cosh?u — e sinh® u)
(2.27) [ =

(e* cosh? u — e~ sinh? u)
m = r(e* — e *)sinh u cosh w.

The condition (2.25) is satisfied by (2.26) or (2.27). In terms of X\ and u we
obtain the relatively simple lagrangian

T (OANZ | 0NN\ .9 ou\Z (OuN2) 1 O
) 6=—3|(5,) +(5) [ A[(50) +(5,) J+ar + 5
For a closely related parametrization and for the corresponding lagrangian we

refer to R. A. Matzner and C. W. Misner [6]. The two last terms of the
lagrangian (2.28) do not contribute to the Euler equations, which are

e G5 (g [(5) (G2
(2.30) % (7‘ sinh? )\%) —i—% (7’ sinh? A%) = 0.

The system (2.29), (2.30) represents a considerable simplification with respect
to the previous formulation (2.22)-(2.25). Unfortunately, the parametrization
(2.26) has the disadvantage of not defining a global diffeomorphism. This ques-
tion is studied in the next section.

3 - The range of (3.1)

The mapping (f,1) = F(\,u;r) from R? to R?, depending on the parame-
ter r,

(3.1)

{ f =r(e*cosh?u — e*sin® u)
l A

= r(e* cosh? u — e~ sinh? )

or equivalently

(3.2) { f; i r(cosh A — cosh(2u) sinh \)

r(cosh A + cosh(2u) sinh \)

needs to be studied in details to make the equations (2.29), (2.30) useful. We
note first of all that, if (A, u) is a solution of (3.1) corresponding to a given (f,1),
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then (A, —u) is also a solution. Thus F is certainly not a global diffeomorphism.
This is confirmed by the form of the jacobian of (3.1)

(3.3) J(\, u;r) = 2 sinh(2u)(cosh(2)) — 1)

which vanishes if either u = 0 or A = 0. Moreover, if (A, u) is a solution of (3.1)
corresponding to (f,1) then (—\,u) is a solution when (f,1) = (I, f). Thus
the range R of F is symmetric with respect to the line [ = f. Moreover, the
range of F is strictly contained in R?. In fact, a complete description of R can
be obtained adding and subtracting the first equation of (3.1) from the second
one. We obtain, after simple calculation (see Figure 1),

(3.4) R =D1UDsU D3 U Dy,
where
(3.5) Dy={(f,1); f+1>2r, f>r fl<r®}

(3.6) Dy ={(f,1); f+1>2r 0< f<r fl<r?YU{(f,1); f+1>2r, f<0}
(3.7) Dy ={(f.1); fl=r? f>o0, f#7}

(3.8) Dy={(f,); f=r 1l=r}

If (f,1) € Dy we have two solutions of (3.1), i.e.

(3.9)
B 1 . 1 _ f_l
A = log [Z(f+l_ (f—&—l)2_4r2)}7 u—:tgcosh 1( (f+l)2—47“2).
If (f,1) € Dy we have again two solutions of (3.1), i.e.
(3.10) . 1 I—f
)\Zlog[g(f‘H‘F\/M—z_W)}’u:i§cosh71( (f+l)2—47“2).

If (f,1) € D3 we have the only solution A = log i, u=0. Finally if (f,1) € Dy
r

the system has infinite solutions given by A = 0, u = k, k € R'. We conclude
that the reformulation in terms of A and u of the system (2.22)-(2.25) with the
system (2.29), (2.30) is acceptable only when (f,1) belongs to the range of F.
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2r

Fig. 1

4 - The functional solutions of system (2.29), (2.30) and the cor-
responding Bernoulli equation

The next Lemma refers to the system of P.D.E.

(4.1) %%@(A)%ﬁ%@@)%): 0
R () ()

which reduces to the system (2.29), (2.30) if o(\) = sinh® X\. The system (4.1),
(4.2) can be more compactly written

(4.3) V- (c(\)Vu) =0

(4.4) V- (0(A\)Vu) 4 20" (V)| Vul? = 0,

where V and V- denote respectively the gradient and the divergence operators
in cylindrical coordinates.

Definition 4.1. We say that (A(r, z),u(r, 2)) is a functional solution of
the system (4.3), (4.4) if there exists a regular function w = U(X) such that
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u(r,z) = U(X(r,2z)) or, alternatively, if there exists a function X = L(u) such
that \(r, z) = L(u(r, z)).

The ordinary differential equation which permits to find the function U(\) or
L(u) of the above definition is given in the next

Lemma 4.2. Let (A(r, z),u(r, 2)) be a functional solution of (4.3), (4.4). If
(4.5) IVA(r, 2)|? # 0, and o(\) # 0

then the function U(X) is a solution of the Bernoulli equation

"(N) au
A w, o " _ 94 3 _ r_
(4.6) U+ a()\)u o (MU 0, U )
If
(4.7) |Vu(r,2)|? # 0, and o(\) # 0
then L(u) is a solution of the autonomous equation

/

n_ 9 (L) 2 / _ r_ @

(4.8) L U(L)L +20'(L)=0, L =

Proof. Since Vu =U'(A)VA the equations (4.3) and (4.4) become respec-
tively

(4.9) V- (MU (N)VA) =0

(4.10) V2N = 20" (MU (V)| VA%
From (4.9) we have
(4.11) (MU V)VZX+ U (N |VA? + a(MNU"(N)|VA? = 0.

Substituting (4.10) into (4.11) we have, by (4.5) and taking into account (4.10),

/
A
U’ + o' )u/ o 20_/()\)2/[/3 —0.
a(})
The proof of (4.8) is the similar with minor changes. O

If o(\) = sinh? \, as in the case of interest to us, (4.6) becomes the Bernoulli
equation

(4.12) U" 4 2U' coth X — 2sinh(2A)U"® = 0.
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If U(\) is a solution of (4.12) also —U(\) is a solution. Moreover, the general
solution of (4.12) can be explicitly found. This is the main advantage of the
present approach. We have, in addition to the trivial solution U () = 0, two
families of solutions:

(4.13) UN) = T(H (e, \) + e
and

(4.14) UN) = —T(H(e,\) — e,
where

(4.15) T(z) = %log‘ i . 2
and

(4.16) He ) = —— 20+

V(e —1)2 4 16e2h

5 - A two-point problem for the Bernoulli equation (4.12)

In this section we study the problem

(5.1) U" + 2U' coth A — 2sinh(2A\)U” =0

(5.2) U(a) = A, U(b) = B,
where a, b, A, B are given constants satisfying
(5.3) b>a>0.

This two-point problem will be instrumental in dealing, in the last section of
this paper, with a boundary value problem for the system (2.29), (2.30). In
view of (4.13) and (4.14) the problem (5.1), (5.2) is reduced to the search of
the solutions (¢, ¢1) of the system

(5.4) T(H(c,a))+c=A

(5.5) T(H(c,b))+c1 =B
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and of the system

(5.6) T(H(c,a)) +c=—-A

(5.7) T(H(c,b)) + ¢ = —B.

We discuss (5.4), (5.5). By difference we have

(5.8) F(c,a,b) =B — A,
where
(5.9) F(c,a,b) =T(H(c,b)) —T(H(c,a)).

From (5.6), (5.7) we have, as an equally acceptable equation,
(5.10) F(c,a,b) = A - B.

We study equation (5.8). To this end, we collect below certain properties of
the function H (¢, A) which is defined in the set

S={(c;A); ¢>c"(N), Ae R} ={(c,A); A<A(¢), ceR'},
where \*(c¢) is the inverse of ¢*(\). We have

16e2X 1. c¢c—8—4yd—¢

m, )\>O, )\*(C):—log c < 0.

(5.11) ¢(\) = — 5 -

In view of (5.3) we are interested in the behaviour of H(c, A) in the smaller set

D =Sn{(c,\); ¢>c*(\), A€ R}

We have
lim A(¢c) =0, lim A\ (c) =00, A'(c)>0
c——00 c—0—
and
1 2
(5.12) H(4,0) =1, H(0,)) = ;Ti H(c,0) = 1.
Moreover, since
OH 16e** (4 — ¢) sinh A

(5.13)

N = e 1 (o 1)
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we obtain
H
(5.14) 86>\(c,)\) <0ife>4, and A >0
OH e
(5.15) a(c,/\) >0if ¢*(\) < e < 4,and X > 0.
If 0 < ¢ < 0o we have
(5.16) lim H(c,\) = 2¢ /2

A—00

and, if ¢* < ¢ <0,
lim  H(e,\) = oc.
A= A* (o)
In order to give a meaning to the function F(c,a,b) = T(H(c,b)) — T(H(c,a))
both H(e,b) and H(c,a) must be well-defined. Now, H(c,b) is well-defined if
¢ > c*(b) and H(c,a) if ¢ > ¢*(a). On the other hand, ¢*(b) > ¢*(a) since ¢*(\)
is strictly increasing. Hence F'(c,a,b) is well-defined if

(5.17) 00 > ¢ > c*(b).

We claim that F(c,a,b) < 0 in the range (5.17). We distinguish two cases. (i)
If 4 < ¢ < oo we have

(5.18) 0< H(e,b) < H(c,a) <1

but, in the interval [0, 1) the function T'(x) is strictly increasing. Therefore, by
(5.18) we have F'(c,a,b) < 0. (ii) If ¢*(b) < ¢ < 4 we have H(c,b) > H(c,a) > 1
with T'(z) strictly decreasing in (1, 00), hence, again, F(c,a,b) < 0.

The function F'(c,a,b) could, “a priori”, have a singularity for ¢ = 4. How-
ever, this is not the case. For, we have

(€? +1)(e** — 1)

(5.19) 01_1>H41+ F(c,a,b) = cl_lglﬁ F(c,a,b) =log @)@ 0)
(e? 4+ 1)(e?* - 1) (e? +1)(e** — 1)
Hence F(4,a,b) = log (¢~ 1)(e2 1 1) < 0 because (2~ 1)(e2a 1 1) < 1.
Since
. . .1 14z
c—)lcl’{I(lb)Jf T(H(c,b)) = T(c—}cl?(lbﬁ H(c,b))= xh_}n(}o 3 log ‘ T 3:‘ =0,
we obtain

lim F(c,a,b) = =T (H(c"(b),a)) < 0.

c—c*(b)t
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Moreover, we have

OF 1 1+ e 1+ e
—(c,a,b) = - .
c—4| /c(e2® —1)2 +16e2e  \/c(e2 —1)2 + 16e2b

Jdc

This implies

(5.20)

and the following

F
Lemma 5.1. Forc € (¢"(b),00) and b > a > 0, aa—c(c,a,b) is real analytic

and
F
(5.21) %c(c,a,b) > 0.
o ., OF . .
Proof. The only point in which — could be singular is ¢ = 4. On the

c
other hand, H(c,a) and H(c,b) are both real analytic and
(5.22) H(4,a) = H(4,b).

As a consequence, the difference of the Taylor series of H(c,a) and H(c,b) with
respect to ¢ and with the same initial point ¢ = 4 gives, recalling (5.20),

OF 170H OH
5o (@) = 3|5 a) - G )]
c—2r0°H O*H .
+ = [W(zl,a) — W(Zl’ b)} +higher terms.

OF
Thus ¢ = 4 is not singular and e is real analytic. To prove (5.21) we define,

c
for ¢ > ¢*(b) and b > a > 0,
(5.23) G(c,a,b) = H(c,a) — H(c,b).

We claim that G(c, a,b) vanishes if and only if ¢ = 4. This is equivalent to say
that the equation in ¢

(1+ e%)2
(14 e20)2’

16e?” + c(e?® — 1)?
 16e20 4 ¢e20 — 1)2”

fle) = where f(c)

has the only solution ¢ = 4 and this fact is immediately seen since f’(c) > 0
if b > a > 0. On the other hand, it is easy to verify that G(0,a,b) < 0
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and G(8,a,b) > 0. Hence we have G(c,a,b) < 0 if ¢ < 4, G(4,a,b) = 0 and
G(c,a,b) > 0 if ¢ > 4. Recalling that

oF ~ G(c,a,b)

ac@®b) =505

we arrive at (5.21). O

By Lemma 5.1 we may conclude that the graphs of F'(c,a,b) and —F (¢, a,b)
as functions of ¢ are, for any b > a > 0, qualitatively, those of Figure 2.

T(H(c*(b),a))
—F(c,a,b)
C
c*(b)
F(c,a,b)
—T(H(c*(b),a))
Fig. 2
We have:
Theorem 5.2. Let us consider the two-point problem
d*u du du~N3 |
(5.24) D2 + 25 coth A — <a) sinh(2\) =0
(5.25) U(a) = A, U(b) = B,

where a, b, A, B are given constants satisfying
(5.26) b>a>0.

If B = A the problem (5.24), (5.25) has only the trivial solution U(X) = 0. If
B < A and

(5.27) ~T(H(c"(b),a)) < (B - A)
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the problem (5.24), (5.25) has only and only one solution. If
(5.28) (B—A) < -T(H(c*(b),a))

the problem (5.24), (5.25) has no solutions. If B > A and
(5.20) (B— 4) < T(H(E (b),a))

the problem (5.24), (5.25) has only and only one solution. If
(5.30) (B—A)>T(H(c"(b),a))

the problem (5.24), (5.25) has no solutions.

Proof. If B < A the solutions of (5.24), (5.25) are in a one-to-one corre-
spondence with the solutions of the equation

(5.31) F(c,a,b) = (B — A),
where
F(eya,b) =T(H(e,b)) —T(H(c,a)).

Assume (5.27). By Lemma 5.1 the equation (5.31) has one and only one solution
¢ (see Figure 2). From (5.4) we have

(5.32) & = —T(H(¢ a)) + A.
Thus the unique solution of problem (5.24), (5.25) is given, in this case, by
(5.33) UN) = T(H(E N) — T(H(Z a)) + A

If, on the other hand, we assume (5.28) the equation (5.31) has no solution and
therefore this is also the case for problem (5.24), (5.25). The two remaining
cases can be proved in the same way starting now with equation —F(c,a,b) =
(B—A). O

6 - Existence and non-existence for problem (6.1)-(6.4)

In this section we use Theorem 5.2 to prove a result of existence, uniqueness
and non-existence of functional solutions for a boundary value problem for the
system of Einstein’s equations

0?f 9*f 10
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Pl P 10l

(6:2) 2 T oE ror

(70 + o)

Pm  9?m  10m m
(6.3) WJFW—;E:—Q(UJ]JF[WW%D

(6.4) fl4+m? =172

All the matter producing the field is contained inside an indefinite circular
cylinder of surface I'1 and radius 1 with axis coincident with the z axis. This
matter is supposed to determine on I'; the values of f and [ as given constants
f1 and ll, ie.

(6.5) f(z) = fi, I(1,2) =1

A second cylindrical surface I'g, coaxial to I'; and of radius R > 1, is taken as
“horizon” (). We assume on I'p the values of f and [ pertaining to the flat
space solution, i.e.

(6.6) f(R,2) =1, I(R,2) = R

MOI'GOVQI“, we assuime

(6.7) ZEI};OO %(r, z) =0, le}rﬂrtloo %(7‘, z) =0.

These conditions at infinity are compatible with the request of flatness at in-
finity. We wish to solve the system (6.1)-(6.4) in the region  between the
two surfaces I'1, I'r with the boundary conditions (6.5)-(6.7). To this end we
reformulate this boundary value problem in terms of A(r,z) and wu(r, z) with
the aid of the transformation (3.1). This will lead to the simpler system

(6.8) V - (sinh? A\Vu) = 0

(6.9) V2\ + 2sinh(2))|Vul? = 0.

With this approach, however, care must be taken to accept only boundary
values for f and [ which belong to the range of (3.1) to make the formulation
meaningful. For the boundary condition (6.6) there is no problem since (1, R?)
belongs to the range of (3.1) if » = R. For the boundary condition (6.6), on
the contrary, we must assume (f1,l1) to belong to the range of (3.1) if r = 1.

31If R is very large in comparison with 1 this does not seem to be too unrealistic.
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This means to suppose, for example, (f1,l1) € D9 i.e., in view of the results of
Section 3, (%)

(6.10) b <l fi+h>2 fi<Ll

To find the boundary conditions corresponding to (6.6) in terms of A and u we
need to solve with respect to (A, u) the system

R(e *cosh? u — e} sinh?u) = 1
(6.11)

R(e* cosh? u — e~} sinh? u) = R2.
Since R > 1, it is easy to see that the only solution of (6.11) is given by
(6.12) (A, u) = (log R,0).

The boundary conditions corresponding to (6.5) in terms of A and u are obtained
solving the system

6.13
( ) e* cosh?u — e A sinh? u = 1.

{ e *cosh?u — e*sinh?u = f;

We must distinguish various cases according to the position of (f1,/1) in the
range of (3.1). If we assume e.g. (6.10) we have, in view of (3.10) two solutions
(A u) = (a,A4) and (\,u) = (a,—A) with a > 0 and A > 0 (°). We proceed
with the first solution, i.e. (a, A). There is no indeterminacy in this choice,
since with both solutions we arrive at the same (f1,[/;) which is the physically
significant datum. We obtain the boundary value problem

(6.14) V- (sinh? AVu) =0 in Q
(6.15) V2\ + 2sinh(2))|[Vul> =0 in Q
(6.16) AM1,2) =a, u(l,z) =A
(6.17) AMR,z) =logR, u(R,z) =0

. OA
(6.18) zgl:Ttloo g(r, z) =0

4The other cases, in which (f1,11) belongs to other parts of the range of F, can be dealt
with in a similar manner.

5 . _ 1 \/72_ _ 1 -1 =f
According to (3.10) a = log [2 (f+l—|— (f+10 4)] and A = 5 cosh (m)
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. Ou
(6.19) zEI:Eoo 5(7’, z) =0.

We search the functional solutions of problem (6.14)-(6.19) in the sense of
Section 4. Therefore we consider the corresponding Bernoulli equation i.e

2 3
(6.20) U o tnx - (%) sinh(2)) = 0.

dX2 T d)
In view of the boundary conditions (6.16), (6.17) we add to (6.20) the conditions
(6.21) U(a) = A, U(logR) = 0.

If we assume log R > a (%) we can apply Theorem 5.2 to the two-point problem
(6.20), (6.21) with b = log R and B = 0. Thus, if

(6.22) T(H(c*(logR),a)) > A
the two-point problem (6.20), (6.21) has one and only one solution and when
(6.23) A>T(H(c"(log R),a))

it has no solution. Let (A(r, 2), u(r, z)) be a functional solution of the boundary
value problem (6.14)-(6.19). We have u(r, z) = U(X(r, z)) with U(\) a solution
of (6.20), (6.21), therefore

(6.24) Vu =U'(A)VA.

The equation (6.14) becomes

(6.25) V- (S(A)VA) =0 in €,
where
(6.26) S(\) =U'(\)sinh? \.

To (6.25) we must add the boundary conditions

(6.27) AM1,2)=a
(6.28) AMR,z)=logR

. OA
(6.29) Zgrjl:aoo g(r, z) = 0.

5The external cylinder I'r is our “horizon”. Therefore, this hypothesis is not restrictive.
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The nonlinear Dirichlet’s problem (6.25)-(6.29) can be solved with the aid of
the Kirchhoff’s transformation. Let us define

A
(6.30) w=G(\), where G(\) = /S(t)dt.
In term of w the problem (6.25), (6.27), (6.28) and (6.29) becomes
(6.31) V2w =0 in Q
(6.32) w(0,2) =0
(6.33) w(log R, z) = G(log R)
. Ow
(6.34) le)rinoo a(r, z) =0.
The solution of problem (6.31)-(6.34) is
~ G(log R)logr
(6.35) w(r) = log, R .
From (6.30) we have
~ G(log R)logr
(6.36) G(\) = g R
dG

The function S(\) = ﬁ()\) has a positive lower bound if A € [a,log R]. Hence
G(A) is globally invertible. Thus we can solve (6.36) with respect to A obtaining
< _1/G(log R) log r

. Nr) =g 12 e ),
(6.37) (r) =G ( T )

Hence, as functional solution of problem (6.14)-(6.19), we have

(6.38) (A u) = (), UN(r))).

Using the parametrization (3.2) we obtain the solution of the boundary value
problem (6.1)-(6.6)
f(r,z) = r(cosh(A(r)) — cosh(2U
(6.39) l(r,z) = r(cosh(A(r)) + cosh(2U
m(r, z) = rsinh(A(r)) sinh(2U (A(r))).
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