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Low genus curves with low degree on a general quintic 3-fold
are finite and they have maximal rank

Abstract. Let W C P* be a general quintic 3-fold. Fix integers d, g
with 1 < g <3 and g+ 3 < d < 11. In this paper we prove that W
contains only finitely many smooth curves C' C P* of degree d and genus
g, all of them smooth and isolated points of the Hilbert scheme of W
and that each such C has maximal rank, i.e. h*(Zc(t)) - h°(Zc(t)) = 0
for all ¢t € N.
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Clemens conjectured the finiteness of the set of rational curves of prescribed
degree on a general quintic hypersurface of P* ( [1], [4], [5], [6], [13], [14], [15],
[16], [17], [21], [22]; some authors also considered curves with positive genus).

Let Mgy, denote the set of all smooth curves C' C P* with degree d, genus
g and h'(Oc(1)) = 0. Let X C P", r > 2, be any integral curve. Recall
that X is said to have mazimal rank (or mazimal rank in P") if for all integers
t > 0 either h°(P",Zxpr(t)) = 0 or K} (P",Zxpr(t)) = 0. We always specify
the ambient projective space (P* for Theorem 1) for the following reason. If
X is contained in a proper linear subspace of P" (call N the linear span of X),
then X has maximal rank if and only if X is a projectively normal curve of N,
because h'(N,Zx n(t)) = hH(P", Zx pr(t)) for all t € Z and h(P", Zx pr(t)) > 0
for all ¢t > 0.

For any curve C contained in a smooth variety W let Ncw denote the
normal bundle of C' in W. The vector space H(N¢cw) is the tangent space
at [C] of the Hilbert scheme of W, while H'(N¢ ) is an obstruction space for

Received: August 25, 2016; accepted in revised form: May 22, 2017.
The author was partially supported by MIUR and GNSAGA of INdAM (Italy).



272 EDOARDO BALLICO 12]

the same functor, so that if H'(Now) = 0, then the Hilbert space of W at [C]
is smooth and of dimension h°(Nx, W) at [C]. If C € My, and W C P* is a
smooth quintic 3-fold, then y(Ncw) = 0. Hence h*(Now) =0, i = 0,1, if and
only if C' is a smooth and isolated point of the Hilbert scheme of W.

Theorem 1. Let W be a general quintic hypersurface of P*. Then W
contains only finitely many elements C € My,, 1< g<3, g+3<d <11, all
of them have mazimal rank, and they are smooth isolated points of the Hilbert
scheme of W, i.e. h'(Neyw) =0, i = 0,1; they are non-degenerate if and only
ifd # g+ 3.

When 1 < g <3 and d < g+ 3, then we come into two cases: (d,g) = (3,1),
i.e. plane cubics, and (d,g) = (4,3), i.e. plane quartics, i.e. canonically
embedded non-hyperelliptic genus 3 curves. A general quintic hypersurface W
has 2875 irreducible families of plane quartics, each of them parametrized by
an open subset of a projective plane (they are of the form NNW = LUC with
N a plane containing one of the 2875 lines L C W), and 609,250 plane cubics
(they are of the form NNW = DU C with N a plane spanned by one of the
609,250 conics D C W) ( [16, Theorem 3.1], [1, Remark 4]).

Take C € Mg, with maximal rank. Since 5d +1 — g < (Z), we have
h'(Zc(5)) = 0. Now take a general quintic W C P® and fix any C' € M, with
C C W. To prove Theorem 1 we need to prove that for each positive integer
t either h'(Zo(t)) = 0 or h9(Z¢(t)) = 0. In particular we need to prove that
hY(Zc(5)) = 0. To prove that any C C W satisfies h!(Z¢(5)) = 0 is the key
part of the proof. Finiteness, maximal rank and h'(Ncw) = 0, i = 0,1, will
easily follow after we prove that each C' C W satisfies h'(Z¢(5)) = 0. A key
part of the proof that h*(Now) = 0, i = 0,1, for all C contained in a general
quintic hypersuface W C P* is [17, Theorem 1.2], which says that this is true
for at least one C' C W. L. Knutsen proved the existence of curves C' with
h'(Now) = 0, i = 0,1, for other Calabi-Yau 3-folds for certain degrees and
genera ( [17], [18]).

The case g = 0 is also true, but a stronger result (true also for some singular
rational curves) was proved by E. Cotterill ([5, Theorems 1.1 and 1.3]).

It should be difficult to prove the second part of a result like Theorem 1
for certain (d,g) without proving first that h'(Zo(5)) = 0, e.g. using the full
incidence correspondence I , instead of the partial incidence varieties Iz 4.0 or
Ig,4;1 introduced in section 1, because the full incidence correspondence could
be reducible (it is reducible if d > 12 and g = 0 by [14, Proposition 3.2]).
Restricting the incidence correspondence was also effectively used in [13], [14]
and [5], while T. Johnsen and S. Kleiman stressed that maximal rank is a simple
consequence of finiteness and to have (after restricting the data) an irreducible
incidence correspondence ( [14, page 132]).
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1 - Preliminaries

Let W denote the set of all smooth quintic hypersurfaces W C P*. Let W,
be the set of all W € W containing only finitely many lines L, each of them with
Nrw = Or(—1)%? and pairwise disjoint (i.e. containing no reducible conic),
only finitely many conics, no reducible curve with rational components and
degree at most 4 and only finitely many degree 4 rational curves, all of them
spanning P*. W is a non-empty open subset of W by [16] and [5, Theorems
1.1 and 1.3].

For all d,g with 1 < g < 3 and d > g+ 3 let My, denote the set of all
smooth curves C C P* with degree d and genus g. Let M c/l, p be the set of
all C € Mgy, contained in a hyperplane of P%. With our assumptions on d
and g every C' € M, satisfies h'(O¢(1)) = 0 and it is not contained in a
plane. The Euler’s sequence of TP* shows that TP* is a quotient of Opa(1)®°.
Hence N¢ is a quotient of O¢(1)®2. Since C' is a curve, we have h?(F) = 0
for every coherent sheaf F on C. Since h'(O¢(1)) = 0, we get that Mgy, is
smooth of dimension 5d + 1 — ¢ and that for every hyperplane H C P* the
scheme My ,(H) is smooth, and dim My ,(H) = 4d. Since h'(O¢(1)) = 0 for
all C € Mgy (resp. C € Mgyq4(H)) we easily see that My, and My 4,(H) are
irreducible. We write Z¢ for the ideal sheaf of C in P* and write H*(Z¢(t)) and
R (Zo(t)) == dim H*(Z¢(t)) instead of H(P* Zo(t)) and hi (P4, Zo(t)).

Remark 1. Fix C € Mgy, g > 0. If C ¢ M (resp. C € My ), then

hY(Zc(5)) = 0 if d < 9 (vesp. d < 8) by [9, Part (ii) of Theorem at page 492 ],
because g > 0.

We need the following lemma, which is a variation of [4, Lemma 2J; it is a

consequence of the bilinear lemma and it was used several times in the proof
of [6, Theorem 4.1].

Lemma 1. Fix integer t > 2, r > 3 and an integral and non-degenerate
curve T C P" such that h*(Zr(t)) > 0. Let V. C H°(Opr (1)) be a linear subspace
such that h*(M, Zynr.a(t)) = 0 for every hyperplane M C P" whose equation
is in V' \ {0}. Then h*(Zp(t — 1)) > dim(V) — 1+ hY(Zr(t)).

1.1 - Reduction to the proof that h'(Zc(5)) =0

In the next two sections we will prove that every C' € My, contained in a
general quintic hypersurface W C P* satisfies h!'(Z¢(5)) = 0. Assume for the
moment to know this statement. Let I/ be the set of all W € W such that for all
1<g<3andd> g+3every C € My, contained in W satisfies h!(Z¢(5)) = 0.
By assumption U contains a non-empty open subset of |Opa(5)|.
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Fix integers d, g with 1 < g <3 and g+3 < d < 11. Since bd+1—g < (i), a
general C' € My, has h'(Z¢(5)) = 0 (for the case d > g + 4 see [3], for the case
d =g+ 3 and hence C € M, see [2]). Let Uy,y denote the set of all C' € My,
with h!(Z¢(5)) = 0. Uy, is a smooth and irreducible and it has dimension
5d +1—g. Let Ig4.0 (resp. Igg.1) be the set of all pairs (C, W) with W € U
(resp. W € |Ops(5)]), C € Ugg and C C W. Let w3 : Iy g1 — |Ops(5)| and
71 : lgg:1 — Ugg denote the projections. Since each fiber of 7y is a projective
space of dimension (Z) — 2 —5d + g, g4 is irreducible. Since U contains
a non-empty open subset of |Ops(5)| and 72 is dominant, 1,0 = 7, '(U) is
irreducible. A dimensional count gives that a general W € U contains only
finitely many elements of My ,. Fix a general W € U. Since [ 4.9 is irreducible,
to prove that all C' € My, contained in W satisfies R (New) =0,i=0,1, it is
sufficient to know that W contains one C' € M, with h*(New) =0, i = 0,1,
which is the result proved in [17, Theorem 1.2]. C has also maximal rank in
P* for the following reasons.

(a) First assume d > g + 4. Since P* has oo* hyperplanes, the set M clh g has
dimension < 4d + 4 < 5d + 1 — g. Since each C C W is contained in Uy g, a
dimensional count gives that each C' € My, contained in a general W € W is
non-degenerate. By [3] there is a non-empty open subset Vg 4, of Uy 4 such that
all C' € Vg 4 have maximal rank in P*. A dimensional count gives that a general
W € U contains no element of Uy, \ Vg

(b) Now assume d = g + 3. If g # 3, then every C' € My, is projectively
normal, because d > 2¢g + 1 and C is linearly embedded in a hyperplane of P4
([8]). Now take any C € Mgs. Let H C P* be the hyperplane spanned by
C. Since h*(Oc(1)) = 0, the Castelnuovo-Mumford’s lemma gives that C is
projectively normal in H if and only if ' (H,Z¢ 1(2)) = 0, i.e. (Riemann-Roch)
if and only if h°(H,Zc g (2)) = 0. Assume h(H,Zc g (2)) > 0. Since d > 4,
C is contained in a smooth quadric surface, S. Any smooth curve of a quadric
surface cone is projectively normal ([11, Ex. V.2.9]). Thus S is smooth. Up
to a choice of the ruling of S we may assume that C' € |Og(2,4)|. The curve
W NS e|0s(5,5)] contains C. Let E € |Og(3,1)| be the curve linked to C' by
W nS. We have deg(F) = 4. E has no multiple component, except at most
lines in the ruling |Og(1,0)|. Each irreducible component of E,¢q is rational. If
FE is not irreducible, then two of its components meet. If E is irreducible, then
it is a degree 4 rational curve not spanning P*. No W € U N W), contains E.

2 - Non-degenerate curves

In this section we consider C' € My, \ M, (; s By Remark 1 we may assume
d € {10,11}. We saw in Section 1 that to prove Theorem 1 for all elements
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C € Mgy \ M}, it is sufficient to exclude the ones with Y (Zc(5)) > 0.

Lemma 2. There is no non-degenerate C' € Mg, with 9 < d < 11, 1 <
g <3, and h°(Zc(2)) > 3.

Proof. Take a non-degenerate C' € My, with 9 <d <11,1 < g <3, and
h%(Zc(2)) > 3 and let G be the intersection of 2 general elements of [Z¢(2)].
G is a degree 4 complete intersection surface and h’(Zg(2)) = 2. Since d > 8
and h%(Z¢(2)) > 3, there is an irreducible component F' C G of G containing
C. Since C is non-degenerate, F' is non-degenerate and hence deg(F) > 3.
Thus deg(F) = 3, i.e. F is a minimal degree non-degenerate surface of P4. By
the classification of minimal degree surfaces in P*, either F' is a cone over a
rational normal curve D C P32 or F is isomorphic to the Hirzebruch surface F;
embedded by the complete linear system |h + 2f|, where h is a section of the
ruling of F} and f is a fiber of the ruling of F}.

First assume that F' is a cone and call o its vertex. Let u : S — F be
the minimal resolution of F' and let C’ C S be the strict transform of C. S
is isomorphic to the Hirzebruch surface F3 and u is induced by the complete
linear system |h+ 3f|, where f is a fiber of the ruling of F5 and h is the section
of the ruling with negative self-intersection. We have h? = =3, h- f = 1 and
f? = 0 (intersection numbers). Since C’ is smooth, u induces an isomorphism
C’ — C and hence C’ has genus g. Take a,b with C’ € |ah+0bf|. Since C’ is not
a line, we have b > 3a > 0. We have d = (ah 4+ bf) - (h + 3f) = b. Since wp, =
Op,(—2h — 5f), the adjunction formula gives wer = Ocr((a — 2)f + (d — 5) f)
and hence 29 —2 = (ah+df)-((a—2)f+(d—5)f) = (d—3a)(a—2) +a(d—5).
Since g > 0, we have a > 2. Since d = b > 3a, we get 2g — 2 > 2d — 10, a
contradiction.

Now assume F' = Fy. Take a,b € N such that C' € |ah + bf|. Since C is
irreducible and not a line, we have b > a > 0. Since O¢(1) = Oc(h + 2f),
h? = -1, h- f =1, f2 = 0 and deg(C) = d, we have d = a + b. Since
wr, = Op, (—2h—3f), the adjunction formula gives we = Oc((a—2)h+(b—3) f).
Since deg(wc) = 29 — 2, we get (ah +bf) - ((a —2)h+ (b—3)f) =29 — 2, i.e.
—ala—2)+a(b—3)+bla—2)=2¢9—2,ie(b—a)la—2)+a(b—3) =29 —2,
ie. (d—2a)(a—2)+a(d—a—3)=2g—2. Since g > 0, we have a > 2. Since
d=b+a > 2a, we get 2g — 2 > 2d — 10 > 8, a contradiction. O

Remark 2. Fix C € Mdvg\Mc/l,g7 d < 11. Let H C P* be a general
hyperplane. Since H N C' is in uniform position, we have h'(H,Zonp u(3)) <
max{0,d — 10} and h'(H,Zcnm p(3)) = 1 if and only if d = 11 and C N H is
contained in a rational normal curve of H ([10, Lemma 3.9]).
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Remark 3. Fix a non-degenerate C € My 4, d < 11, g > 0, and assume
the existence of a plane conic D with deg(D N C) > 10. Let (D) be the plane
spanned by D. Fix ¢ € C'\ C N (D) and let H, be the hyperplane spanned by
(D)U{q}. Since d < 11 and C'is non-degenerate, we get d = 11, deg(DNC') = 10
and that {¢} = H,N (C \ C N (D)). The pencils of hyperplanes through (D)
shows that C' is rational, a contradiction.

Fix an integer e > 6. For any line L C P* let A(L,d, g,e) denote the set of
all non-degenerate X € My, such that deg(X N L) = e. Let A(d,g,e) be the
union of all A(L,d,g,e). Set A'(d,g,e) = Us>.A(d, g,€).

Lemma 3. Either A(L,d,g,e) =0 or dim A(L,d, g,e) < 5d+1—g—2e or
g =3, C is hyperelliptic, d = e + 4 and dim A(L,d,g,e) <5d+1—g— 2e+ 2.

Proof. Assume the existence of a non-degenerate C' € M, such that
deg(L N C) = e. Let ¢ : P*\ L — P? denote the linear projection from L.
Let ¢’ c P* be the closure of /(C'\ C N L). Since C is non-degenerate, C’ is
non-degenerate, i.e. deg(C’) > 2. Since C is smooth, ¢ induces a morphism
u: C — C" with d — e = deg(u) - deg(C’). Since g > 0, either deg(u) > 1 or
deg(C’) > 2. We get d —e > 3 and that d — e = 3 only if ¢ = 1. Hence we
may assume e < d—3 and e < d—4if g =2,3. Set Z:= CnN L. The vector
space H°(N¢(—Z2)) is the tangent space at [C] of the functor A”(d,g,Z) of
all D € M4 containing Z. Since L has oo® subschemes of degree e, we have
dim A(L,d, g,e) < e+ dim A”(d, g, Z") for some Z' C L with deg(Z’) = e. We
have x(N¢(—Z2)) = 5d+1— g — 3e. Since TP* is a quotient of Ops(1)®° by the
Euler’s sequence, N¢ is a quotient of O¢(1)®. Hence if d — e > 2g — 2, then
h*(Ne¢(=Z)) = 0 and so h®(N¢(—Z)) = 5d + 1 — g — 3e, concluding the proof
unless g = 3 and e = d — 4. In this case we have deg(C’) = 2 and deg(u) = 2
and so C' is hyperelliptic. Let M C P* be a general hyperplane containing L.
We have CNM = ZUS, where S is a reduced set of 4 points (S is an element
of |we|, because it is the inverse image by u of a general hyperplane section of
C"). Since N¢ is a quotient of O¢ (1), No(—2) is a quotient of Oc(S)®°.
Hence N¢(—Z2) fits in an exact sequence

(1) 0—= Oc(8)%? = No(=2Z) = L =0

with £ a line bundle of degree 5d + 2g — 2 — 3e — 8. Since deg(L) > 2g — 2, we
have h*(L) = 0. Since h*(Oc(S)) = 1, (1) gives h'(Ng(—2)) < 2 and hence
hO(No(—2)) <5d+1—g—3e + 2. O

Lemma 4. Assume C € A'(d,g,7), d < 11, and h'(Zc(5)) > 0. Then
W' (Zc(3)) > h1(Ze(4)) > hH(Ze(5)).
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Proof. We prove only the first inequality, since the second one is similar.
Let L be a line such that deg(LNC') > 7. Since d < 11, we have deg(RNC) < 4
for every line R # L. By Remark 3 there is no conic D with deg(D N C) > 10.
Let N C P* be a plane with NN L = . Set V := H(Zy(1)). Let M C P*
be any hyperplane containing N. Since L ¢ M, there is no line R ¢ M
with deg(R N C) > 6 and no conic D C M with deg(D N C) > 10. Hence

Y (M, Zoan(4)) = 0. Use Lemma 1. O
Lemma 5. We have dim A'(d, g,7) < 5d+1—g—8+7 (resp. dim A(d, g, 6)
<5d+1—-6+4+7) withTt=2ifg=3 and d =11 (resp. d =10) and 7 =0
otherwise.
Proof. Use Lemma 3 and that P* has oo® lines. O

Let A(11,g) be the set of all non-degenerate C' € Mj; 4 such that for a
general hyperplane H C P* the set C N H is contained in a rational normal
curve of H.

Lemma 6. Every irreducible component of A(11, g) has dimension < 46+g.

Proof. Fix a hyperplane H, a rational normal curve D C H and S C D
such that £(S) = 11. The tangent space at [C] of the functor U(11,g,S)
of all non-degenerate C' € My, containing S is isomorphic to H(N¢(—5)).
We have y(Ng(—S)) = 67 — g — 33. Since TP* is a quotient of Opa(1)®?,
N¢(—9) is a quotient of O¢(1)(—S)®> and hence there is A C No(—S) with
A = Oc(1)(=S) @ Oc(1)(—S) and B := N¢(—S)/A torsion free. Since C
is a smooth curve, B is a line bundle. Since deg(.A) = 0, we have deg(B) =
5d +1—g—33 > 2g — 2 and hence h'(B) = 0. Since h'(A) = 2g, we have
h'(Nc(—S)) < 2g and hence h°(N¢(—S)) < 23 4 g. Since the set of all S C D
with #(S) = 11 has dimension 11 and H contains co'? rational normal curves,
we get the lemma. O

Proof [ Proof of Theorem 1 for a non-degenerate C' € M, ,]. Fix a non-
degenerate C' € M ,. We assume h'(Z¢o(5)) > 0. If there is no line L C P4
with deg(L N C) > 6, we have h'(Zc(3)) > 8 + h'(Zc(5)) > 9 and A (Z(2)) >
h'(Zc(3)) — max{0,d — 10} (Lemma 1 and Remark 3). Hence h?(Z(2)) =
hYZc(2)) + 14 4+ g — 2d > 23 4+ g — max{0,d — 10} — 2d. If either d = 10 or
d =11 and g = 3, we conclude by Lemma 2. Now assume d = 11, g = 1,2. In
all cases we have h°(Z¢(2)) > 0, because g > 0. We have 5d+1—g—14—3d—g =
2d — 13 — g.

Claim 1: Let I' be the set of all C' € Mg, \ My , such that h(Zc(2)) # 0.
Then dimI' < 3d + 14 + 2g.
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Proof of Claim 1: This proof is a modification of the case g = 0 ( [4, Lemma
14]). The main new trick is the one used in the proof of Lemma 6. Since
dim |Op4(2)| = 14 and singular quadrics occur in codimension 1, it is sufficient
to prove that for every smooth (resp., integral but singular) quadric @ the set
IV of all C' € My, contained in @ has dimension < 3d+2g (resp., < 3d+1+2g);
in the first case we even prove that it has dimension < 3d + g.

First assume that either @ is smooth or C' does not intersect the singular
locus V' of Q. In this case the normal sheaf N¢ ¢ is a rank 2 spanned vector
bundle on C'. Hence there is an inclusion j : Oc — N¢ g with A := Neg/7(Oc¢)
a line bundle. Since deg(A) = 3d +2 — 2g > 2g — 2, we have h!(A) = 0. Hence
hY(Neg) < hH(O¢) = g. Since det(Ne o) has degree 3d — 2 + 2g and N¢ has
rank 2, Riemann-Roch gives h’(N¢.) < 3d+ g, proving the Claim in this case.

Now assume C'NV # () and set z := deg(C' NV). The vector space H°(7g)
is the tangent space at the identity map of the automorphism group Aut(Q).
Since @ \ V' is homogeneous, 7g|(Q \ V) is a spanned vector bundle. Since C' is
not a line and dim V' < 1, the set VNC'is finite. Dualizing the natural map from
the conormal sheaf of C in @ to Qé? we get a map u : 79|C — N¢ g which is
surjective outside the finite set C'\C'NV. Since C is smooth and 7¢) is spanned
at each point of @) \ V, there is an injective map ¢ : (’)20 — N¢,g with cokernel
supported by finitely many points of C'. Thus h'(N¢ o) < 2g. Since we need to
prove that dim I < 3d+1+2g, it is sufficient to check this inequality when C' is
a general element of I". In particular we may assume that deg(C'NV) = x for
a general C’ € IV and use induction on the integer x, the case x = 0 being true
by the case C' NV = () proved before. Set I' := {C' € I" : deg(V NC) = z}. It
is sufficient to prove that dimI"” < 3d + 1+ 2¢. Let v : Q — @ be the blowing
up of V, E := v~ }(V) the exceptional divisor, and CcC @ the strict transform
of C'. Since C' is smooth, v maps isomorphically C onto C and the numerical
class of C' with respect to Pic(Q) only depends on dim(V), d and z. Let ¥
be closure in Hilb(Q) of the strict transforms of all ¢’ € T, It is sufficient to
prove that dim W < 3d + 1 + 2g. Take a general D € U. Since Aut(Q) acts
transitively of @ \ E, the first part of the proof gives h'(N, 5) < 2g. Hence

D?Q
it is sufficient to prove that deg(N, Q) < 3d -1, ie. deg(TQm) < 3d + 1,

ie. deg(wQ|D) > —3d — 1. The group Pic(Q) is freely generated by E and

the pull-back H of Og(1). We have D - H = d and D - E = z. We have

wg = O@(—?)H + cE) with ¢ = —1 if dim(V) = 0 (see for instance [12],

Example 8.5 (2)) and ¢ = 0 if dim(V) = 1 (see for instance [12], Example 8.5

(3)). Hence deg(wélD) = —3d+cx > —3d — 1, concluding the proof of Claim 1.
(a) Now assume C € A'(d, g, 7).

(al) First assume (d, g) # (11,3). We may assume h'(Zc(5)) > 8 (Lemma
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5) and by Lemma 4 we get h'(Zc(3)) > 10. Hence h!(Z¢(2)) > 9 (Remark 2).
Thus h°(Z¢(2)) > 23 — 2d + g. We conclude by Lemma 2, unless d = 11 and
g = 1. In the latter case we conclude if h%(Z¢(2)) > h1(Zc(3)). If hH(Zo(2)) <
hY(Zc(3)), then C € A(11,1). By Lemma 6 we may assume h'(Z¢(5)) > 8 and
hence h'(Zc(3)) > 10 and h'(Zo(2)) > 9, ie. h°(Zo(2)) > 2. By the proof
of Lemma 2 C' is contained in an irreducible surface T', which is the complete
intersection of 2 quadric hypersurfaces. Fix a general hyperplane H C P4,
Sinced >8 CNH CTNH, TN H is irreducible and a rational normal curve
of P3 is cut out by quadrics, Bezout implies C' ¢ A(11,1), a contradiction.

(a2) Now assume (d,g) = (11,3). Lemma 5 gives h'(Z¢(5)) > 6 and so
we get h'(Zc(3)) > 8 and hence h'(Z¢(2)) > 7. Thus h°(Zo(2)) > 2. By
Lemma 2 we have h%(Zo(2)) = 2. Let T C P* be the intersection of two
different elements of |Z¢(2)|. Since h%(Z¢(2)) = 2, T is a degree 4 irreducible
surface. Since h'(Z¢(3)) > 8, we have h°(Z¢(3)) > 12. Hence the natural map
HZe(2)) ® HY(Opa (1)) — H(Zo(3)) is not surjective. Take Y € |Z¢(3)| not
containing T'. Since T'NY is a degree 12 complete intersection curve containing
C and d = 11, T NY links C to a line and so C is arithmetically normal
( [19, Theorem 5.3.1]). In particular h*(Zc(5)) = 0, a contradiction.

(b) Now assume C € A(d,g,6) and C ¢ A'(d,g,7). By Lemma 5 we may
assume h'(Z¢(5)) > 4+ 8 with 8 = 0 if (d,g) = (10,3) and B = 2 otherwise.
Since C' ¢ A'(d,g,7), we get h'(Zc(4)) > 8 + .

Claim 2: There is a unique line L C P* such that C' € A(L,d, g,6).

Proof of Claim 2: Assume the existence of lines L, R such that C' € A(L,d, g,
6) N A(R,d,g,6) and LN R. Since d < 11, we have LN R # (). Let N C P* be
the plane spanned by L U R. Since deg(L N R) = 1, we get deg(N N C) > 11
and so C' is degenerate, a contradiction.

Let £ C P* be any plane such that £ N L = (. No hyperplane M C P*
containing £ contains L. By Remark 3 we have h'(M,Zcnp(4)) = 0 for every
M € |Zg(1)|. Set V := H°(Zg(1)). Lemma 1 gives h'(Z¢(3)) > h'(Zc(4)) and
hence h'(Z¢(2)) > 8 + 8. Thus h%(Z¢(2)) > 3, contradicting Lemma 2. O

3 - Degenerate curves

In this section we consider curves in M c/l, g By Remark 1 we may assume
d > 9. We only need to consider C € M c/l, g contained in some W € W;.

Each such curve C spans a hyperplane H and h'(O¢(1)) = 0. Since
hY(Oc(1)) = 0 for all C € My, (H), My,(H) is smooth, irreducible and of
dimension 4d. Since P* has oo? hyperplanes, to check that a general W € W
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contains no C' € M it is sufficient to check all C' € M}  with Y (Zc(5)) >
5d+1—g—4d+4 = d— 3 — g. However, since a general C € My ,(H)
has h'(H,Zc(5)) = 0 ([2] and the inequality 5d + 1 — g < (g)) we only
need to check and exclude a set of codimension at least d —2 — g of My,
and so we may assume that h'(Z¢(5)) > d —2 —g. Fix C € M, with
h'(Zc(5)) > d — 2 — g and let H C P* be the hyperplane spanned by C.
Note that h'(H,Zc g(t)) = h'(Zc(t)) for all t. Let a be the minimal de-
gree of a surface of H containing C. Since h’(H,Oy(5)) = 56, we have
hO(H,Zc5(5)) > 56 +d—2—g—5d—1+g =53 —4d > 9. Hence a < 5. Since
C is irreducible and h%(Z¢ g(o — 1)) = 0, every degree a surface containing C
is irreducible. Let S C H be a degree a surface containing C'.
By [10, Lemma 3.9] we get the following lemma.

Lemma 7. Let N C H be a general plane. We have h'(N,Zcnn n(t)) <
max{0,d — 2t — 1} and h*(N,Ze,n(t)) =d — 2t —1 > 0 if and only if NN C is
contained in a conic.

Remark 4. Let N C H be a plane. Fix and integer ¢ > 2. Since dim(C N
N) = 0, we have h?(N,Zcngn(t)) = h*(N,On(t)) = 0 and hence the exact
sequence

(2) 0— IC,H(t — 1) — IC’H(t) — ICQN’N(t) — 0.

gives h'(H,Zo y (t—1)) > hY(H,Ze,u(t)) —h (N, Zonn n (t)). Now assume that
N is general. By Lemma 7 we have ht(N,Zoan n(t)) = 0 if either d < 2t + 1
or d =2t + 2 and N NC is not contained in a conic. Since d < 11, we alway
have h*(H,Zc,u(4)) > h(H,Zo g (5)).

Lemma 8. We have o > 3. If a =3, then h°(H,Zc p(3)) = 1

Proof. First assume o = 2. Since d > 4, C' is contained in a unique
quadric, S. Any smooth curve F of a quadric surface cone is projectively
normal ([11, Ex. V.2.9]) and in particular h*(Zg(5)) = 0. Thus S is a smooth
quadric. Take a,b € N such that C € |Og(a,b)| with, say, a < b. We have
d=a+bandg=ab—a—-b+1=ad—a*—-d+1=a(d—a)—d+1. Since
g > 0, we have a > 2 and hence g > 5, a contradiction.

Now assume a = 3 and h®(H,Z¢ g(3)) > 2. Take a degree 3 surface S’ C H
with S # 5" and C C S’. Since S, S’ are integral, C C SN S’ and d > 9, we
have d = 9 and C'= SN S’. C is not a complete intersection of 2 cubic surfaces
of H, because it is not arithmetically normal, since h'(Z¢(5)) > 0. O
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Remark 5. Fix an integer e > 6, a line L C H, a zero-dimensional scheme
Z C L with deg(Z) = e. Let A(H,Z,d,g) be the scheme of all X € My ,(H)
containing Z. Fix X € A(H,Z,d,g). The vector space H’(N¢ x(—Z2)) is the
Zariski tangent space of A(H, Z,d, g) at [X] and deg(Nx g (—Z%2)) = 4d+29—2—
2e. Thus x(N¢,x(—Z)) = 4d — 2e. Take a general plane N C H containing L.
By Bertini’s theorem the scheme NNX is the union of Z and aset E C X\ XNL.
Hence Ox(—Z) = Ox(1)(—E). We have #(E) = d — e. Set 1 := h}(Ox(E)).
Since TH(—1) is a quotient of O%* by the Euler’s sequence, Nx g(—Z) is
quotient of Ox (E)®*. Hence there is a inclusion j : Ox(E) — Nx u(—2)
with Nx g(—=2)/j(Ox(E)) a line bundle. Since deg(Nx,x(—2)/j(Ox(E))) =
4d + 29 — 2 — 3e > 2g — 2, we have h'(Nx g (—Z2)/j(Ox(E))) = 0. Hence
RO (Nx.u(—Z2)/j(Ox(E))) < 4d — 2e + 7. Since g > 0, the pencil of all planes
of of H containing L gives d — e > 2 and h?(O¢(FE)) > 2. Hence n = 0 if either
g=lorg=2andd—e>3org=3andd—e>5 n<1if either g =2 and
d—e=2org=3andd—e>3,n<2ifg=3andd—e=2.

Remark 6. Let A'(d, g,e), e > 6, be the set of all C € M(Ii,g contained in
an element W € W, and such that there is a a line L C P* with deg(LNC) = e.
For any line L C P* let A(L,d,g,e); denote the set of all C € M(Ii,g such that
deg(LNC) = e. We have dim A(L,d, g,e) < 4d—e+n+2 (with n as in Remark 5)
because L has co® degree e subschemes and P* have co? hyperplanes containing
L. Since e > 6, L is contained in any W € W; such that W O C' by Bezout W.
Since on each W € W, there are finitely many lines, to prove that a general
W € W contains no element of A’(d,g,e) it is sufficient to test the curves
C € M}, with RYZc(5) >d—1—g—n+e.

Fix a conic D C H. Let A(d,g,H,D,10) be the set all X € My ,(H)
contained in some W € W; such that there is a conic D with deg(DNX) > 10.
If D ¢ W, then D is smooth by the definition of Wy. If D ¢ W, then
deg(DNW) =deg(X ND)=10and X N D € |Op(5)|.

Lemma 9. Ifd =10 (resp. d = 11) the set A(d, g, H, D,10) has dimension
<4d - 104, where y =g ifd=10 and y=¢g — 1 if d = 11.

Proof. Fix X € A(d, g, H,10) and let D C H be a conic with deg(DNX) >
10. Fix a curvilinear Z C DN X with deg(Z) = 10. Let A(d, g, H, Z) be the the
set of all Y € M, ,(H) containing Z. The vector space HY(Nx g (—2)) is the
tangent space of A(d, g, H, Z) at [X]. We have deg(Nx g (—2)) = 4d+29—2—20
and x(Nx g(—Z%2)) = 4d — 20. First assume d = 10, i.e. Z € |Ox(1)|. Since
Nx p(—1) is spanned, there is A C Nx g(—1) with A= Ox and Nx y(—Z2)/A
locally free. Since deg(Nx u(—Z)/A) = 4d+2g —2 —20 > 2g — 2, we have
hY(Nx.u(=Z)/A) = 0 and hence h!(Nx g(—2)) < h'(A) = g. Now assume
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d =11. Since X is a smooth curve, there is a unique ¢ € X such that ¢+ Z =
X NN as effective divisors of X, where IV is the plane spanned by D. In this
case we find B C Nx g(—1) with B = Ox(q) and Nx x(—Z2)/B locally free.
Since deg(Nx g (—Z)/B) = 4d+2g — 2 — 21 > 29 — 2, we get h'(Nx y(—2)) <
h'(B) = g—1. If D is smooth, then it has 0o'® schemes of degree 10. If D is not
smooth, then we use that X C W for some W € W), and that dim |Op(5)| = 10.
In both cases we get dim A(d, g, H,10) < 4d — 10 + . O

Proof [ Proof of Theorem 1 for a degenerate C]. We saw that to prove
that a general W € W contains no degenerate element of My, it is suf-
ficient to exclude all C' € My, (H) with h'(H,Z;4,(5) > d —2 — g. Set
z:=h'(H,Zc,u(3)) — h' (Ze,u(5)). We have h°(H,Zc g (3)) =20—3d—1+g—
RY(H,Zc,u(3)) >19—-3d+g+x—d+2—g= 17— 2d + x. Hence by Lemma
8 we conclude if z > 2d — 15.

(a) Assume for the moment the non-existence of a line L with deg(LNC) > 6
and the non-existence of a conic D with deg(D N C') > 10. Since d < 12, by [7,
Corollary 2 or Remarques (i)] we have h'(N,Zoann(t)) = 0 for all ¢ > 4.
Lemma 1 gives h(H,Zcu(3)) > 3 + h(H,Zc g(4)) > 6 + h'(H,Zc g (5)).
Hence z > 6 and in particular we conclude if d < 10. Now assume d
11. Since z > 6, we have h%(Zc g(3)) > 0 and hence h°(H,Zc u(5))
10, i.e. hY(H,Zcu(5)) > 10 — g. Hence h'(H,Zc,u(3)) > 16 — g and so
hO(H,Zc 1 (3)) > 2, concluding by Lemma 8.

(b) Now assume the existence of a line L C H such that e := deg(LNC) > 7.
By Remark 6 we may assume h'(H,Zc 1 (5)) > d+ 6 — g —n with n associated
to the integer e = 7 and hence n = 1 if (d,g) = (11,3) and n = 0 otherwise.
Lemma 1 h'(H,Z¢c g(4)) > d+7—g—n. Since h' (N, Zenn n(4)) < 2, (2) gives
hY(H,Zc,u(3)) > d+5—g—mn and so h%(Ze g (3)) > 24 — 2d —n. We conclude
by Lemma 8, unless d = 11 and n = 1, i.e. (d,g) = (11,3). If (d,g9) = (11,3)
we get a = 3. Let S C H be the only irreducible degree 3 surface containing
C' (Lemma 8). Since C'is not a line, it is not contained in the singular locus of
S. Fix a general plane N C H. Since SN N is a irreducible plane cubic and
CNN is contained in the smooth locus of SNN, we have h' (N, Zoqy v (4)) = 0.
Hence (2) gives h'(H,Zc g(3)) > d+7— g —n and so h°(H,Zc u(3)) > 3, a
contradiction.

(c) Now assume the existence of a line L C H such that deg(L N C) = 6,
but that there is no line R with deg(RNC) > 7. By Remarks 6 we may assume
h'(Zc(5)) > d +5 — g. Since there is no line R with deg(RNC) > 7, Lemma 1
gives h1(M,Zc p(4)) > d +8 — g. We conclude as in step (b).

(d) To conclude the proof in the degenerate case it is sufficient to handle
the case in which there is a conic D with deg(DNC') > 10 and in particular d €
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{10,11}. By steps (b) we may assume that there is no line L C M with deg(LnN
C) > 7 and so we may assume that h'(M,Zca(4)) > 3 + b (M, Zo . (5))
(Lemma 1).

(d1) In this step we handle the case in which D is not contained in the
quintic hypersurface W € W; which by assumption contains C. Let A be
the plane spanned by D. Since W is smooth, its Picard group is generated by
Ow (1) and in particular A ¢ W. Hence ANW is a plane quintic. Since D & W,
we get deg(DNW) = 10 = deg(D N (AN W)). Hence deg(D N C) = 10 and
ANC =DNC. Thusd =10 and Z := DNC € |O¢(1)|. We have No a(—2) =
Ncyvi(—1). The Euler sequence of T'M shows that N¢ j is a quotient of (924(1).
Thus N¢ ap(—1) is spanned. Therefore there is A C N¢ a(—1) with A = O¢
and Nca(—1)/A torsion free and so a line bundle. Since deg(Nc a(—1)) =
2d + 2g — 2 = 18 + 2g, we have h'(Nga(—1)/A) =0 and so h'(Ng (1)) <
hY(O¢) = g. Hence h®(No(—1)) = h°(O¢) + h°(Nea(—1)) < 21 + g. There
are oo% planes A C P* and (for a fixed W) each of them is associated to a
unique Z. So we may assume h'(Zg(5)) > 24 — 2g.

(d2) Now we assume that D is contained in the quintic hypersurface W €
Wi containing C'. By the definition of Wy, D is a smooth conic. Thus D has
00!% zero-dimensional schemes of degree 10. Since W only contains finitely
many conics, we conclude as in Remark 6 using smooth conics instead of lines
and quoting Remark 6. O
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