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Strong convergence of split equality variational inequality

and fixed point problem

Abstract. The main purpose of this paper is to introduce a new algo-
rithm for finding a solution of split equality variational inequality prob-
lem for monotone and Lipschitz continuous operators and common fixed
points of a finite family of quasi-nonexpansive mappings in the setting
of infinite dimensional Hilbert spaces. Under suitable conditions, we
prove that the sequence generated by the proposed new algorithm con-
verges strongly to a solution of the split equality variational inequality
and fixed point problem in Hilbert spaces. Our results improve and
generalize some recent results in the literature.
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1 - Introduction

Let C' and @) be nonempty closed convex subsets of real Hilbert spaces H;
and Ho, respectively. The split feasibility problem (SFP) is formulated as:

(1) to finding x* € C' such that Az™ € Q,

where A : Hi — Hs is a bounded linear operator.

In 1994, the split feasibility problem (SFP) in finite dimensional Hilbert
spaces was first introduced by Censor and Elfving [9] for modeling inverse
problems which arise from phase retrievals and in medical image reconstruc-
tion. Since then, the split feasibility problem (SFP) has received much attention
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due to its applications in signal processing, image reconstruction, with partic-
ular progress in intensity-modulated radiation therapy, approximation theory,
control theory and geophysics. For examples, one can refer to [6-8] and related
literature.

Let C' be a nonempty closed convex subset of H. Let F' : H — H be a
nonlinear operator. It is well known that the Variational Inequality Problem is
to find u € C such that

(2) (Fu,v —u) >0, Vv e C.

We denote by VI(C, F) the solution set of (2). The theory of variational in-
equalities has played an important role in the study of a wide class of problems
arising in pure and applied sciences including mechanics, optimization and op-
timal control, partial differential equation, operations research and engineering
sciences. During the last decades this problem has been studied by many au-
thors, (see [5,21,33,34]).

We recall the following definition on F : H — H. The fixed point set F' is
denoted by Fiz(F) :={x € H: F(x) = x}. The operator F' is called

e Lipschitz continuous on C' C H with constant L > 0 if

[1F(z) = Fy)l < Lllx —yll,  Vz,yeC
e Nonexpansive on C if

[1F(z) = F)l <llz—yl, Veyel
e Quasi- nonexpansive on C if Fiz(F) # () and

[1F(z) —pll <llz—pl,  Veel, peFiz(F).
e Monotone on C' if
(F(z) = F(y),z—y) >0, Va,yeC.
e Inverse strongly monotone with constant 5 > 0, (8 — ism) if
(F(z) = F(y),x —y) > B|F(z) = F(y)|*, Va,yeC.

We note that every [- inverse strongly monotone operator is monotone and
Lipschitz continuous. It is known that if F' is 8- inverse strongly monotone,
and A\ € (0,20) then Po(I — AF') is nonexpansive. It is worth noting that there
exists a monotone Lipschitz continuous operator F' such that Po(I — AF') fails
to be nonexpansive [14].
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In [10], Censor et al. introduced and studied the following split variational
inequality problem:

Let Hy and Hsy be two real Hilbert spaces. Given operators f : Hi — Hy
and ¢g : Ho — Ho, a bounded linear operator A : H; — Hs, and nonempty
closed and convex subsets C' C H1 and @Q C Ho, the split variational inequality
problem (SVIP) is the problem of finding a point «* € VI(C, f) such that
Ax* € VI(Q,g), that is,

3
¥ yr=AzreQ st (9(y"),y—y) =0, VyeQ.
SVIP is quite general and should enable split minimization between two spaces
so that the image of a solution point of one minimization problem, under a given
bounded linear operator, is a solution point of another minimization problem.
Recently, Moudafi [31] introduced the following split equality problem. Let
H1, Ho and Hz be real Hilbert spaces. Let A : Hi — Hs, B : Ho — Hs be two
bounded linear operators, let C' and @) be nonempty closed convex subsets of
‘Hi1 and Hg, respectively. The split equality problem (SEP) is to find

(4) relC, yeq such that Az = By.

Obviously, if B = I and Ha = Hs3 then (SEP) reduces to (SFP). This kind
of split equality problem allows asymmetric and partial relations between the
variables x and y. The interest is to cover many situations, such as decomposi-
tion methods for PDEs, applications in game theory, and intensity-modulated
radiation therapy, (see [3,4]).

Since, each nonempty closed convex subset of a Hilbert space can be re-
garded as a set of fixed points of a projection. In [30], Moudafi introduced the
following split equality fixed point problem:

let A:Hi1 — Hs, B: Ho — Hs be two bounded linear operators, let S :
Hi — Hy and T : Ho — Ho be two nonlinear operators such that Fiz(S) # ()
and Fiz(T) # 0. The split equality fixed point problem (SEFP) is to find

(5) xz € Fix(S), ye€ Fix(T) such that Az = By.

{.CC*EC st. (f(z*),x —a*) >0, Veel

If Ho = Hs and B = I, then the split equality fixed point problem (5) reduces to
the split common fixed point problem (SCFP) originally introduced in Censor
and Segal [11] which is to find = € Fiz(S) with Az € Fiz(T). Algorithms for
solving the SEP and SCFP receive great attention, (see [12,13,15,16,18,19,
24-27,35,36,40] and references therein).

Moudafi et al. [30,32] proposed some algorithms for solving the split equal-
ity fixed point problem. In these algorithms we need to compute norm of the op-
erators. To solve the split equality fixed point problem for quasi-nonexpansive
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mappings, Zhao [42] proposed the following iteration algorithm which does not
require any knowledge of the operator norms:

Theorem 1.1. Let Hq,Hs and Hs, be real Hilbert spaces, A : Hi1 — Hs
and B : Ho — Hs be bounded linear operators. Let S : H1 — Hi1 and T : Hoy —
Ho be quasi-nonexpansive mappings such that S — I and T — I are demiclosed
at 0. Suppose Q = {z € Fix(S),y € Fiz(T) : Ar = By} # 0. Let {x,} and
{yn} be sequences generated by xo € H1, yo € Ho and by

Tnt1 = Qi + (1 — ap) S(uy),
W, = Yn + WB* (Azy — Byn),
Yn+1 = Bnwn + (1 = Bn) T(wy), Vn > 0.
Assume that the step-size v, is chosen in such a way that
2|| Az, — By ||? )
€ (e —€), nell
o < 1B*(Azy — Byn)|I? + [ A*(Azy — By)||>
otherwise v, = v (v being any nonnegative value), where the index set I1 = {n :

Az, — By, # 0}. Let {a,} C (6,1 —0) and {B,} C (n,1 —n) for small enough
d,m > 0. Then, the sequences {(xn,yn)} converges weakly to (z*,y*) € Q.

(6)

On the other hand, in the last years, many authors studied the problems
of finding a common element of the set of fixed points of nonlinear operators
and the set of solutions of variational inequality problem. The motivation for
studying such a problem is in its possible application to mathematical models
whose constraints can be expressed as fixed point problems and/or variational
inequality problem: see, for instance, ( [20,28,38,41]).

Motivated by the above works, the purpose of this paper is to introduce
a new algorithm for finding a solution of split equality variational inequality
problem for monotone and Lipschitz continuous operators and common fixed
points of a finite family of quasi-nonexpansive mappings which does not require
any knowledge of the operator norms. Under suitable conditions, we prove that
the sequence generated by the proposed new algorithm converges strongly to
a solution of the split equality variational inequality and fixed point problem
in Hilbert spaces. Our results improve and generalize the results of Moudafi
[30,32], Censor et al. [10], Zhao [42] and many others.

2 - Preliminaries

We use the following notation in the sequel:
e — for weak convergence and — for strong convergence.
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Given a nonempty closed convex set C' C H, the mapping that assigns every
point x € H, to its unique nearest point in C is called the metric projection
onto C' and is denoted by Pc; i.e., Pc € C and ||z — Pox|| = infyec|z — vyl
The metric projection Pg is characterized by the fact that Po(z) € C and

(y — Po(z),x — Po(x)) <0, Ve eH,yeC.

The metric projection, Pg, satisfies the nonexpansivity condition with Fix(P¢)

=C.

Definition 2.1. Let U : H — H be a mapping, then I — U is said to be
demiclosed at zero if for any sequence {z,} in H, the conditions z;,, — x and
limy, o0 |27 — Uzy|| = 0, imply x = Ux.

Lemma 2.1 ([1]). Let F': H — H be a monotone and L-Lipschitz operator

on C and X\ be a positive number. Let u, = Po(x, — AF(z,)) and v, =
Po(zy, — AF (uy,)). Then for all x* € VI(C, F) we have

lon = 2*|* < Jlen — 2*|* = (1 = AL)[Jun — @nl* = (1 = A L)t — val|*.

Lemma 2.2 ([39]). Assume that {a,} is a sequence of nonnegative real
numbers such that

an+1 < (1 —9)an + 940n, n >0,
where {0,,} is a sequence in (0,1) and {d,} is a sequence in R such that
(1) 2op2y ¥n = o0,
(i) Hmsup,, o 0n <0 or > 7 [Up0,] < oo
Then lim,,_, s a, = 0.

Lemma 2.3 ([29]). Let {t,} be a sequence of real numbers such that there
exists a subsequence {n;} of {n} such that t,, < tn,+1 for all i € N. Then
there exists a nondecreasing sequence {T(n)} C N such that T(n) — oo and the
following properties are satisfied by all (sufficiently large) numbers n € N:

trn) < lrn)+1 In < lr(n)+1-

In fact
7(n) = max{k <n:ty <t}

Lemma 2.4 ([17]). Let H be a Hilbert space and x; € H, (1 <i < m).
Then for any given {\;}™, C (0,1) with Y"1 X\; = 1 and for any positive
integer k,j with 1 < k < j < m, we have

m m
1Y " il <7 Nillzill® = eyl — 251,
=1 =1



230 MOHAMMAD ESLAMIAN 6]

3 - Algorithm and Convergence Theorem

Now we state and prove our main results of this paper.

Theorem 3.1. Let Hy,Ho and Hs, be real Hilbert spaces, A : Hi —
Hs and B : Ho — Hs, be bounded linear operators and let C' and @, be
two nonempty closed conver subsets of Hi and Ho, respectively. Let for i =
1,2,....om, T; : H1 — H1 and S; : Ho — Ha, be two finite families of quasi-
nonexpansive mappings such that S; — I and T; — I are demiclosed at 0. Let,
F :Hi — Hq be a monotone and L- Lipschitz continuous operator on C and G :
Ho — Ho be a monotone and K- Lipschitz continuous operator on Q. Suppose
Q= {z e ') FiaT)NVIC.F), y e (" Fia(S)NVIQ.C) : Av =
By} #£ 0. Let {x,,} and {y,} be sequences generated by xo,¥ € H1, vyo,( € Ho
and by

(2 = 2 — Y A*(Azy, — Byy),
Up = Po(zn — M F(zn)),
vp = Po(zn — M F(uy)),
Tpi1 = oV + Bpvn + D10 O iTivn,
Wn = Yn + 1B (Azn — Byn),
sn = Po(wn — G (wn)),
tn = Po(wn — G (sn)),
(Yn+1 = an C + Bty + o 0niSity, Yn > 0,

where the step-size v, is chosen in such a way that

Tn € <e 20 Az — Bynl” —e) nell
© U IBH (Azn — Byn)|? + [| A (Azn — Byy)||? ’

otherwise v, = v (v being any nonnegative value), where the index set I1 = {n :

Az, — By, # 0}. Let the sequences {on}, {Bn}t.{0ni}, {Mn} and {n,} satisfy
the following conditions:

(1) an+Bn+>0" 0pi =1, and liminf, 8,0, ; > 0, for each i € {1,2,...,m},

1

(i) A, C [a,b] C (0, %) and n, C [c,d] C (0, E)’

(iii) lmy oo 0y =0, Y07 oy = 0.

Then, the sequences {(xn,yn)} converges strongly to (z*,y*) € Q2.
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Proof. Take (z*,y*) € 2. From Lemma 2.1 we have

(8) lon —2*I* < flzn — 2*[1* = (1 = Aa L)z — wnll* = (1 = An L)l|1n — wal?,

and

(9) litn =y 1 < llwn = y*1I* = (1 = 0 K)l[wn = snll* = (1 = 170 K) [t — sul|*.

Using Lemma 2.4 and inequality (8 ), for each i € {1,2,...,m}, we have

(10)

”xn—i-l - x*H2

llom ¥ + Brvn + Soi%y 8niTive — |2

|| = ¥ + Bullvn — 2*|* + > it On il Tivn — a*||?

- 5n5n,i”Tivn - Un”2

a9 = 2| + Ballvn — a*|* + 374 Gnillvn — 2|12
5n5n,i||TiUn - Un||2

a9 = 2| + (1 = an)llzn — 2% = Bndn,il| Tivn — vnlf?
— (1= an)(1 =X, L) |20 — up?

— (1 = )1 = A L) |y, — v )%

IN

VAN

IN

Similarly, from inequality (9) we have

(11)
s =y 1? = llom ¢ + Butn + 32724 OniSitn — v

< anll¢ = y*IIP + Balltn — v*|1?

+ 20k OnillSitn — y*|1? = Bndn,il| Sitn — tall®

< anll¢ = y*IP + (1 = an)llwn = y*[1> = Bndn.ill Sitn — tall®
— (1= an)(1 = K)|lwn — sa]?

— (1= an)(A =00 K)Itn — sull*.
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From algorithm (7) we have that

lzn —2*|I* = [lzn — A" (Azy — Byz) — 2*||?
= |lzn — 2| + 97 | A* (Azy — Byn)|I?
— 27 (xy — %, A*(Axy, — Byy))
(12) = |lzn — 2| + 92 | A* (Azy — Byn)|I?
— 2y, (Ax,, — Az*, (Az,, — Byy))
= |z — 2*| + 72l A*(Azy, — Byn)[|> — ol Azn — Az*|?
= YullAzn = Bynl|* + | Byn — Az*||2.

By similar way we obtain that

lwp —y*[> = llyn + WB* (Azy, — Byn) — y*|?

(13) = ||yn - y*HQ + ’77%“8*(“43% - Byn)||2 - 'YnHByn - By*HQ
- Tl Az — Byan + Yl Az — By*HQ-

By adding the two last inequalities and by taking into account the fact that
Ax* = By* we obtain
(14)

lzn = 2* [ + lwn =917 = llzn = 2*|* + llyn — y*II?

= nl2llAzn — Byn||? — v (1B*(Azy — Byy)|I?
+ A" (Azn — Bya)|1?)]

< llan = 2P + llyn — y*I1%.

This implies that
(15)
|Zn+1 — 2% + |Ynt1 — v*|°
< (1 —=an)(llzn = 217 + wn = y*I1?) + a9 — 2> + ¢ = v*[1?)
< (1 =an)(lzn = 2P + lyn — y*I1?) + an([9 — 2*[* + ¢ = v*[*)
< max{||lz, — 2*|* + lyn — y*|1% 19 = 2*|1° + IC — y*[I*}

< max{|lzo — %[> + [lyo — y*II7, |19 — 2*||* + 1I¢ — y*[1*}-
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Thus [|zn+1 — 2%]|? + ||ynse1 — y*||? is bounded. Therefore {x,} and {y,} are

bounded. Consequently {z,}, {w,},{v,} and {t,} are all bounded. From in-
equalities (10), (11) and (14) we have that

(16)

|lzns1 = 211 + lynss — v

< (L= an)(lzn — 2 + [lwn = y*11%) + an([[9 — 2] + [I¢ — y*[*)

— Bunill Tvn — vall? = Budn,illSitn — tal®

— (1= an)(1 = A L)[|lzn — un[* = (1 = @) (1 = Ay L) lun — vn?

— (1= an)(1 =1 K)llwn = sull* = (1 = ) (1 = 1o K) [t — 50|

< (1= an)(lzn = 212 + llyn — y*I1*) + an (9 — %[> + [ = y*[1?)

— (1= an) (2 Azn = Byall? — 1 (1B*(Azy — Byn)II” + A" (Azrn — Bya)[1?)]
— Bn0n il Tivn — v — Bnbnil|Sitn — tol?

— (1= an)(1 = Ay L)l|zn — un[* = (1 = @) (1 = Ay L) lun — vn?

— (1= ap)(1 = K)lJwn = sull> = (1 = o) (1 = 1 K) [[tn — 50|

From above inequality we have that

(1= an)(1 = A L)lzn —unl® < (1= )|z — 2| + [lyn — v*[I*)
(17) — #nsr = 22 = [ynr1 — v
+an([[9 = 2| + 1< = y*I).

By our assumption that

e (e 2|| Az, — By, ||? B e>
H1B*(Azn — Byn)||? + | A*(Azyn — Byn)|? ’

we have that
(Y + )(||B* (Azr, — Byn)|I” + [ A" (Az, — Byn)|I”) < 2|l Az, — By ||

From above inequality and inequality (16) we have that

(18)

(1 — o)y (I1B* (Azn = Byn)|I? + A" (Azn — Byn)|I?)

< (1= an)yn 2l Azn — Bynl|* = 1 (1B*(Azy — Byn)|* + [ A* (Azn — Bya)[I*)]
*H2

< (L= an)(llzn = 2P + llyn = y*1?) = l2nsr — 2* 12 = lynrs — y* |12

+om (|19 — 2% + [I¢ — 5 [1?).
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Put Ty, = ||z, — 9|2+ ||lyn — ¢*||? for all n € N, where 9* = Pq 9 and (* = Py (.
We finally analyze the inequalities (17) and (18) by considering the following
two cases.

Case A. Suppose that I', ;1 < Ty, for all n > ng (for ng large enough). In this
case, since I',, is bounded, the limit lim,,_, . I';, exists. Since lim,_,~ o, = 0,
from (18) and by our assumption that on {7,} we have

lim ([|B*(Azy — Byn)|* + A" (Azn — Bya)|*) = 0.

n—oo

So we obtain that lim, . ||B*(Az, — By,)|| = 0 and lim,_ || A*(Az, —
By,)|| = 0. This implies that lim, . || Az, — By,|| = 0. Also from (17) we
deduce

lim (1 — o) (1 — Ny L)|| 20 — un||* = 0.

n—oo
1

By our assumption that A, C [a,b] C (0, Z)’ we obtain that
(19) Tim |20 = | = 0.
By similar argument we get that
(20) lim [Ju, — v,|| = lim ||w, — sp|| = lim ||t, — sp| = 0;
and
(21) lim [|Sity, —t,|| = lim ||Tiv, —v,|| =0, i€{1,2,...,m}.

Since ||z, — zn|| = Wl A*(Az, — Byy)| and {v,} is bounded, we have
(22) nh_)n;o |zn — zp| = 0.
From (19), (20) and (22) we have

[z = vnll < [l = 20l + |20 = unll + |lun — vnll = 0, as n — oco.

Therefore
(23)

m
[Zn+1—2n| < O‘nHﬁ_an“‘ﬁnHUn_an“‘Z5n,iHTivn_$nH —0, as n— oo
i=1

Similarly we get that lim, o ||yn+1 — ynll = 0.
Now we claim that (wqy, (), ww(yn)) C 2, where

wy(xn) = {x € Hy @ xy, — xfor some subsequence {zy,} of {x,}}.
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Since the sequences {z,} and {y,} are bounded we have wy,(z,) and wy,(y,)
are nonempty. Now, take T € wy(z,) and ¥ € wy(y,). Thus, there exists
a subsequence {z,,} of {z,} which converges weakly to . Without loss of
generality, we can assume that z, — Z. Since lim,_, ||z, — z,|| = 0, we have
zp — Z. From u, = Po(z, — M F(2y)), for each x € C' we have that

(24) (T — Up, 2, — M F(2n) — up) <0.
Since, F' is monotone, for each z € C we have

(25) (MF (), 2n — ) < (MF(2n), 2n — ).
Utilizing the inequalities (24) and (25) we have

(MF(x),zn —x) < (AF(zn),2n — )
= (MF(zn), 2n — un) + (A F(2n), up — )
= (M F(2n), 2n — un) + M F(2n) — 2n + Up, uy, — )

26
( ) +<2n_unvun_$>

< An<F(2n)72n - Un> + <Zn — Up, Un CU>

< /\nHF(Zn)HHZn - UnH + Hzn - unHHun - JZH
Hence

1
(Fo,zn = 2) < [F(zn)llllzn — unll + = ll2n = unllun - 2].
n

Since {F'(zy)} is bounded, z, — u,, — 0 and z, — Z, we have

(F(x),r —x) = lim (F(z),z, —x) <0, Vo e C.
n—o0
This implies that z € VI(C,F). By similar argument we can obtain that
y € VI(Q,G). Next we show that € (°; Fiz(T;) and § € (-, Fiz(S;).
Since lim,, o ||vn, — 2| = 0, we have v, — Z. From inequality (21), and the
demiclosedness of T; — I in 0, for each ¢ € {1,2,...,m}, we get that T € Fixz(T;).
By similar argument we obtain that y € ()", Fiz(S;). On the other hand,
Az — By € wy(Ax, — By,,) and weakly lower semi continuity of the norm imply
that
|AZ — By|| < liminf || Az, — By,|| = 0.
n—oo

Thus (Z,y) € Q. We also have the uniqueness of the weak cluster point of {z,,}
are {yn }, (see [42] for details) which implies that the whole sequences {(z,, yn)}
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weakly convergence to a point (Z,y) € . Next we prove that the sequences
{(zn,yn)} converges strongly to (9*,(*) where 9* = P and (* = P (. First
we show that

(27) lm supy,— oo (9 — 9, 2, — 9*) < 0.
To show this inequality, we choose a subsequence {z, } of {z,} such that

lim (¥ — V%, x,, —¥*) = limsup(V¥ — 9*, z, — V%).

k—o0 n—00

Since {xy, } converges weakly to z, it follows that

(28) limsup(¥ — 9, z, — ") = lim (¥ — 9", 2z, — %) = (9 — 9", 2 —9*) <O.

n—00 k—o0

By similar argument we obtain that
(29) lim SUPn— o0 <C - C*a Yn — C*> S 0.

From the inequality, ||z + y[|* < ||z]|* + 2(y,z + y), (Vz,y € H1), we find
that
lZnr1 = 92 < [1Bavn + 32721 OniTivn — (1 — an)0*1?
+ 2 (0 — 0%, Tpp1 — 0F)

+ 20 (0 — 0, 2ppq — 9F)

< Bl = an)lon — 92 + 52, 8ai(1 — @) [ Tivg — 0¥
+ 20 (0 — 0, 2ppq — 9F)

< (1 - an)?lon — 9|2

+ 20, (0 — 9%, g1 — ).

Similarly we obtain that
(30)  llynsr = C*I* < (1 = ) [lwn — P + 20m(C = ¢y — €.
By adding the two last inequalities we have that
[@ng1 =07+ [yngr — I
(31) < (1= a2l — 9P + llga — 1)
+ 20‘“((19 - 19*7'%714—1 - 19*> + <C - C*ayN-i-l - C*>)
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It immediately follows that
I‘n-&-l < (1 - O‘n)QFn + 20,1y,

= (1 =20, + 2Ty, + 20
(32)

IN

an, N
(1 - 2an)rn + 2ay, ( n2 + 77n>

< (1 - pn)rn + pn5n7
where ¢, = (J — 9%, 241 — ) + (C — 5, Ynt1 — ¢*), N = sup{||x, — z*||> +

o
lyn — v*|> : n > 0}, pn = 20, and 6, = —

+ ¢,. It is easy to see that

pn — 0,37, pn = 00 and limsup,,_, 0, < 0. Hence, all conditions of Lemma
2.2 are satisfied. Therefore, we immediately deduce that lim, ., I', = 0. Con-
sequently lim, o ||z, =] = lim,— 00 ||yn—C*|| = 0, that is (z,, yn) — (9%, C*).

Case B. Assume that {T', } is not a monotone sequence. Then, we can define
an integer sequence {7(n)} for all n > ng (for some ny large enough) by

7(n) = max{k <n:Tj < Tk}

Clearly, 7 is a nondecreasing sequence such that 7(n) — oo as n — oo and for
all n > ng, 'r() < T'7(n)41- Now, it follows from (16) that

F‘1'(71)-1-1 - 1—“r(n) < Oén(”ﬂ - 19*”2 + ”C - C*HQ) - O‘nl—“r(n)'
Since lim;, 0 o, = 0 and {x,,} and {y,} are bounded, we derive that

(33) lim (Tr(n)11 — Dr(ny) = 0.

n—oo

Following an argument similar to that in Case A we have
Lryr1 < (1= pr@)Trm) + Pr(n)0r(n)»
where limsup,,_, . 0() < 0. Since I'7(,;) < T'7(;)41, we have
p‘r(n)r‘r(n) < pT(n)(S‘r(n)
Since pr(,) > 0 we deduce that
Trm) < 0r(n)-

From limsup,,_, ., ;) < 0 we get that lim;,, . I'7(,) = 0. This together with
(33), implies that lim;, 00 I'7()41 = 0. Thus by Lemma 2.3, we have

0 <T, <max{T; ), [} < Ty

Therefore (z,,y,) — (¥*,¢*). This completes the proof. O
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Remark 3.1. In [10], the authors present an algorithm for solving split
variational inequality problem for inverse strongly monotone operators, but
in this paper we consider a new algorithm for solving split equality variational
inequality problem for monotone and Lipschitz continuous operators which does
not require any knowledge of the operator norms. We also present a strong
convergence theorem which is more desirable than weak convergence.

Remark 3.2. In [11,18,19,25], the authors present some algorithms for
solving split fixed point problem but in this paper we introduce a new algorithm
for solving split equality variational inequality and fixed point problem which
does not require any knowledge of the operator norms.

Remark 3.3. Our main theorem, generalized the main result of Moudafi
[30, 32] from firmly quasi-nonexpansive mapping to a finite family of quasi-
nonexpansive mappings. Our algorithm does not require any knowledge of the
operator norms. We also present a strong convergence theorem which is more
desirable than weak convergence.

Remark 3.4. In [42], Zhao present a weak convergence theorem for solving
split equality fixed point problem of quasi-nonexpansive mapping, (see Theorem
1.1 of this paper). In this paper we extend the result for solving split equality
common fixed problem of a finite family of quasi-nonexpansive mappings and
variational inequality problem of monotone and Lipschitz continuous operator.
We also present a strong convergence theorem which is more desirable than
weak convergence.

4 - Results

In [2], Aoyoma, Iemoto, Kohsaka, and Takahashi introduced an important
class of mapping which called A— hybrid mapping as following: Let A\ be a real
number. A mapping T : C' — C' is called A— hybrid if

1Tz — Ty|* < || -yl + Mz = Tz,y = Ty),  Va,yeC.

In particular, if A = 0, then 7" is a nonexpansive mapping. If A\ = 1, then
T is called a hybrid mapping [37], and if A = 2, then T is called a non-
spreading mapping [22, 23]|. It is obvious that every A— hybrid mapping is
quasi-nonexpansive.

Lemma 4.1 ([2]). Let C be nonempty closed convex subset of a real Hilbert
space H, and let T : C — C' be A— hybrid mapping. Then I — T is demiclosed
at 0. Also Fiz(T) is closed and convex.

From Theorem 3.1 and above lemma we obtain the following result.
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Theorem 4.1. Let Hi,Hs and Hz, be real Hilbert spaces, A : H1 — Hs
and B : Ho — Hs be bounded linear operators and let C' and Q, be two nonempty
closed convexr subsets of Hi and Hs, respectively. Let for i = 1,2,...,m,
T; : H1 — Hy be a finite family of A— hybrid mappings and S; : Ho — Ho
be a finite family of ¢<— hybrid mappings. Let, F : Hi — Hi be a mono-
tone and L- Lipschitz continuous operator on C and G : Ho — Ho be a
monotone and K- Lipschitz continuous operator on Q. Suppose @ = {x €
N, Piae(T) NVIC.F), y € N Fiz(S)NVI@Q.G) : Ar = By} # 0.
Let {x,} and {y,} be sequences generated by xo,9 € H1, yo,( € Ha and by

Zn = Tp — YA (Az, — Byy),

Up = Po(zn — M F(zn)),

vn = Po(zn — M F (uy)),

Tpt1 = a0+ Buvp + D> ity 0 i Tivn,

Wy, = Yn + Y B*(Azy, — Byyn),

sn = Po(wn — mnG(wn)),

tn = Po(wn — nnG(sn)),

Ynt1 = Qn C+ Bntn + D iy 0n,iSity Vn > 0,

where the step-size v, is chosen in such a way that

2| Az, — By, | —e>
)I?

n 9 9 H
T S ( 1B*(Az, — By,)|? + [[A*(Az,, — By, "e

otherwise v, = v (v being any nonnegative value), where the index set I1 = {n :

Az, — By, # 0}. Let the sequences {an}, {Bn}.{0ni}, {M} and {n,} satisfy
the following conditions:

(i) an+Bn+> it 0ni =1, and liminf, 8,0, > 0, for eachi € {1,2,...,m},

(i) A © [0.6] € (0, 7) and nn  [e,d] € (0, 1)
(iii) lmy oo 0 =0, Y07 0ty = 0.

Then, the sequences {(xy,yn)} converges strongly to (z*,y*) € Q.

As a corollary of our main result we obtain the following strong convergence
theorem for solving the split equality common fixed point problem for A— hybrid
mappings.
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Theorem 4.2. Let Hi,Ho and Hg, be real Hilbert spaces, A : H1 — Hs
and B : Ho — Hs be bounded linear operators. Let for for i = 1,2,....m,
T; : H1 — Hi be a finite family of A— hybrid mappings and S; : Ho — Ha be
a finite family of s— hybrid mappings. Suppose Q = {x € ", Fiz(T;), y¢€
Nty Fix(S;) : Az = By} # 0. Let {xn} and {y,} be sequences generated by
o,V € H1, yo,( € Ho and by

Zn = Tn — Y A (Azy, — Byy,),

Tnt1 = a0+ Buzn + > ity 0niLizn,

Wy, = Yn + VB (Azy, — Byy),

Ynt1 = 0 €+ Bpwy + D ity 8y iSiwy, Vn > 0,

(35)

where the step-size v, is chosen in such a way that

Tn € <€ 2”./43:” — Byn|]2 — e> n eIl
"B (A, — Byn)||? + [|A* (Azy, — Byn) |2 ’

otherwise v, = 7 (7 being any nonnegative value), where the index set 11 = {n :
Az, — By, # 0}. Let the sequences {on}, {Bn} and {6y}, satisfy the following
conditions:

(1) an+Bn+>0" 0pi =1, and liminf, 8,0, ; > 0, for each i € {1,2,...,m},
(iii) limy oo 0 =0, Y07 (0 = 00.
Then, the sequences {(xn,yn)} converges strongly to (z*,y*) € Q.

As another corollary we obtain the following result for split equality varia-
tional inequality problem for monotone and Lipschitz continuous operators.

Theorem 4.3. Let Hy,Ho and Hs, be real Hilbert spaces, A : H1 — Hs
and B : Ho — Hs be bounded linear operators and let C and QQ, be two nonempty
closed convex subsets of Hi and Ho, respectively. Let, F : Hi — Hi be a
monotone and L- Lipschitz continuous operator on C and G : Ho — Ho be
a monotone and K- Lipschitz continuous operator on Q. Suppose Q) = {x €

VIC,F), yeVIQ,G): Av = By} # 0. Let {x,} and {y,} be sequences
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generated by xo, ¥ € Hi, yo,( € Ha and by

Zn = Tp — YA (Ax,, — Byy),
un = Po(zn — M F(2n)),

vp = Po(zn — M F(up)),

(36) Tpy1 = an ¥+ (1 — ap)o,

Wy, = Yn + VB (Ax,, — Byp),

sn = Pq(wn — nnG(wn)),

tn = Po(wn — nnG(sn)),

Ynt1 = an ¢+ (1 — o)ty Yn >0,

where the step-size v, is chosen in such a way that

Yn € <6 2l Az = Byn|” —e> nell
"B (Azy — Byn) |12 + [[A* (Azy — Bya)||? ’

otherwise v, = v (v being any nonnegative value), where the index set I1 = {n :
Az, — By, # 0}. Let the sequences {an,}, {\} and {n,} satisfy the following
conditions:

(i) an € (0,1), limp oo 0 =0, D07 (o = 00.
1
E);
Then, the sequences {(xn,yn)} converges strongly to (z*,y*) € Q.

(i) Ay C [a,8] € (0, %) and n, C [e,d) C (0,

From our main result, we can easily obtain the following result.

Theorem 4.4. Let C' be a nonempty closed convex subset of a Hilbert space

H. Let fori=1,2,....m, T; : H — H be a finite family of A— hybrid mappings
and F' : H — H be a monotone and L- Lipschitz continuous operator on C'.
Suppose Q = (2, Fix(T;) \VI(C,F) # 0. Let {x,} be sequence generated by
xo, 9 € H and by

Up = PC’(xn - AnF(xn))a
(37) vn = Po(xn — M F(uy)),

Tnt1 = Qp 9+ Bpvn + 2111 (5n,i,Ti'Una Vn > 0.

Let the sequences {au, }, {Bn}.{0ni}and {\,} satisfy the following conditions:
(i) an+Bn+> it 0ni =1, and liminf, 8,0,, > 0, for each i € {1,2,...,m},



242 MOHAMMAD ESLAMIAN [18]

(ii) A\, C [a,b] C (0, f)’

(iii) limp oo 0 =0, Y07 0y = 00.

Then, the sequences {xy,} converges strongly to z* € Q) .

4.1 - Numerical Example

Let H1 =Ho=H3 =R, C =[0,1] and Q = [0, 3]. We define the operators
Ax = 2z, Bx = 3z, Fz = gm and Gz = §a: It is easy to see that A and

B are bounded linear operators. We observe that F' and GG are monotone and
Lipschitz continuous operators. We have A*z = 2z and B*x = 3z. We also

1
define the nonexpansive mapplngs Tr = g and Sz = z. Put A\, =3 Ny = 5’
1 1
’Yn:§719:C:§704 :n+1”8n_2 +2and5 o™ . Then these

sequences satisfy the conditions of Theorem 3.1. Now we have the following
algorithm

1 3
Zn = Tn — ’Yn-A*(Axn - Byn) = §xn + Zym
Zn
Up = PC(Zn - )\nF(Zn)) = PC (7) 5
Unp,
vp = Po(zn — M F(uy)) = Po (zn -5 )
1
Tn41 = Qp 9+ Bpvp + 0T, = + o

3n+3  dn+4"

Wy = Yn + 'VnB*(Axn - Byn) =

1
8
w—"n
Sn:PQ(wn_nnG(wn)) :PQ< 9 >7

tn = Po(wn — 1.G(sn)) = Py (wn - %L) )

1 n
yn-i-l:ang"‘/@ntn‘i‘énstn:3n+3+n+1tn’ vn 20,

11
Taking (xo,yo) = <§, §>, we obtain the following algorithm:

. B 1 n In _— 27n
(39) T T3 32n 327" 6an + 647"
1 In 3n

Vn > 0,

Uil = g e T e+ 167" 3on 132"
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We observe that, {(zn,yn)} is convergent to (0,0). We note that € = {(0,0)}.
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