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Three solutions for elliptic systems
involving p(z)-biharmonic operators

Abstract. In this paper, we study the existence of solutions for elliptic
systems with variable exponents. Under some suitable conditions and
by applying an equivalent variational approach to a recent Ricceris three
critical points theorem, we established the existence of at least three
weak solutions.
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1 - Introduction

In this article, we consider the existence of solutions for the following system
A(AuP@ 2 A + [uP@) 20 = AF, (2, u,v) + pGy(z,u,v) in €,

(1) A(| AT @72 A0) + [0]1®) 720 = AF, (@, u,v) + puGy(z,u,v) in Q,
ou 0 0 ov
o2 p(z)—2 - 2 q(z)—2 — =
9 = By (|Au| Au) 5 (|Av| Av) 5 0 on 09,
where Q is an open bounded subset of RY (N > 2), with smooth boundary
wit

— N
00, A, are real parameters and p, ¢ € C(Q) 5 < p = inf p(z) <
zef)
N
pT = supp(z) < +oo, — < ¢ = inf q(z) < ¢" = supq(x) < +o0. F,G :
- T€EQ 2 e z€Q
Q x R? — R are functions such that F(.,s,t),G(.,s,t) are measurable in €2, for
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all (s,t) € R%, F(z,.,.) is C' in R? for every z € Q, F,, F, denote the partial
derivatives of I’ with respect to u, v respectively.

The study of differential equations and variational problems with variable
exponents has attracted intense research interests in recent years. Such prob-
lems arise from the study of electrorheological fluids, image processing, and the
theory of nonlinear elasticity (see [18,23]).

There are many works devoted to the existence of solutions for variable
exponent problems, both on bounded domain and unbounded domain, we refer
to [3,10, 22| as examples. For existence results on elliptic systems, we refer
to [2,11,19,21].

The investigation of existence and multiplicity of solutions for problems
involving biharmonic, p-biharmonic and p(x)-biharmonic operators has drawn
the attention of many authors, see [1,4,5,8,9,12,15,16] and references therein.
Candito and Livrea [8] considered the nonlinear elliptic Navier boundary-value
problem

@) A(|Au|P72Au) = M\f(x,u) in Q,
u=Au=0 on 0.

There the authors established the existence of infinitely many solutions. Here
we point out that the p(z)-biharmonic operator possesses more complicated
nonlinearities than p-biharmonic, for example, it is inhomogeneous and usually
it does not have the so-called first eigenvalue, since the infimum of its principle
eigenvalue is zero (see [6]).

We will use the notations such as h~, h™ and h**(x) where

h™ = inf h(x) < h(z) < AT :=sup h(z) < +o0,

€N z€Q
Nh(x) . N
———— ifh(z) < —;

Throughout this paper, we suppose the following assumptions.
There exist a positive constant C' and two functions a,8 € C(Q) with
l<a <a™,1<pB <A and

1 + 1 +
(3) faol J1E6T
p q

such that
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(Fy) |Fs(z,s,t)| < C|s|*@¢|f@)+1] |EFy(z, 5,t)| < C|s]*@H1¢|8=) for a.e.
r € Q and all (s,t) € R2

(F1) F(x,s,t) <0, for all x € Q and s,t €]0, 1].

(Fy) F(x,s,t) > M >0, forallz e, s>s9>1andt >ty > 1.

G : Q x R? — R is function such that G(.,s,t) is measurable in  for all
(s,t) € R? and G(,.,.) is continuously differentiable in R? for a.e. = € Q. Gj,
G are the partial derivatives of G which satisfy the following condition.

(Go) SUp(j<o,ti<0} (|Gs(.,s,t)| n |Gt(.,s,t)|) e LY(Q) for all > 0.
Through this paper, we will consider the following spaces:

ou 9 oz v
: %‘89 = 0} and Xy = {U e W) (Q) . @‘89 = 0}.
The goal of this paper is to prove the following result.

Theorem 1.1. Assume (Fy), (F1), (Fz) and (Go) hold. Then there exist
an open interval A C (0,400) and a positive real number r with the following
property: for each X € A there exists & such that for each p € [—6,0], problem
(1) has at least three weak solutions whose norms in Xy x Xo are less than r.

X, = {u e W2r)(Q)

This article is organized as follows. In Section 2, we introduce the general-
ized Lebesgue-Sobolev spaces and some important related results. In Section 3,
we use the general variational principle by B. Ricceri to prove the main result.

2 - Preliminaries

To study p(x)-Laplacian problems, we need some results on the spaces
Lr@)(Q), WHhPE)(Q) and properties of p(x)-Laplacian used later.
Define the generalized Lebesgue space by

LP@)(Q) = {u: Q — R measurable and / u(z)|P® de < 00},
Q

where p € C;(Q) and
Ci(Q):={peC@):px)>1 VreQ}.

One introduces in LP(*)(Q) the norm

|t]p(zy = inf {X >0 / |u(>\x)|p(x) do <1}.
0
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The space (LP®) (1), |-|p(z)) i3 a Banach space.

Proposition 2.1 (cf. [14]). The space (LP™)(Q), |-lp()) s separable, uni-
formly convex and its conjugate space is LY (Q) where q(z) is the conjugate

function of p(x), i.e
1
— =1, Vre.

_|_
p(x)  q(x)
Foru € LP®)(Q) and v € LI (Q) we have

|Q/u(ac)v(x)dx‘ < <pl + ;) |ty [V]g()-

The Sobolev space with variable exponents W*»(®)(Q) is defined as

WhP@(Q) = {u € LP@(Q) : Du € LPD(Q), |o] < k},

olal
where D% = u (the derivation in distributional sense) with
01 0xg? ... Oz ( )
a = (a1,...,ay) is a multi-index and |a] = 3.V, oy The space W5P(*)((),

equipped with the norm

||k p(a) = Z | DU (),

la| <k

also becomes a Banach, separable and reflexive space. For more details, we
refer the reader to [13,14].
In this paper, we shall look for weak solutions of problem (1) in the space
X defined by
X = X1 X Xg,

which is separable and reflexive Banach spaces with the norm
[(w, 0)|| = llullp@) + [[0llge)
where |||,y (resp. [|.][4(z)) is the norm of W2P@)(Q) (resp. W24#)(Q)),

Au Vu U
_ . pz) 4 p(@) 4 | Zp(e) <
[[llpz) mf{0>0-/<! jrl Eh ol bl L o P > dv < 1},
Q

and

[ullg(z) = inf{o >0 / (IIq(” |Vu|q(x + Iulq(”> dz < 1}.
g

Q



15] THREE SOLUTIONS FOR ELLIPTIC SYSTEMS INVOLVING ETC. 215

According to [20], the norm |.| ) is equivalent to the norm |A.|, gy + | |p@)
in the space W2P(*)(Q). Consequently, the norms l-l2,p(2)s 1D Ip@) + |-y and
|-l p(z) are equivalent.

Proposition 2.2 (cf. [4]). For p,r € C(Q) such that r(z) < p**(x) for
all x € Q, there is a continuous and compact embedding

WP@)/(Q) — L7@(Q).

Proposition 2.3 (cf. [6]). If 2p(z) > N for all x € Q, then the set
X = duew2ro). % g

is a closed subspace of W*P(*)(Q).

Proposition 2.4. The embedding X — C(Q)xC(Q) is compact whenever
__N __N .
p- > 5 and g~ > 5 So there is a constant Cy > 0 such that

max|u(z)] max|v(z)|
4) Cp:= max sup L, sup e Lo
(4)
weW2:2(@) (Q)\ {0} [ullp) veW2:a(@) (Q)\{0} [[v]lg(a)

Proof. Tt is well known that W2P®)(Q) x W29®)(Q) — W?2P™ (Q) x
W24 (Q) are all continuous embedding. And the embedding WP~ (Q) x

_ — — N N
W24 (Q) — C(Q) x C(Q) is compact when p~ > 5} and ¢~ > 5 So we get,

_ _ N N
the embedding X — C(2) x C(£2) is compact when p~ > 5 and ¢~ > 5 O

Using the similar proof method with [13], we have the following result.

Proposition 2.5. Let I,y (u) = [, | Au P@) fuP@de, for u €
W2r®)(Q) we have

L. Foru #0, [[ullp) 5©I<%) =

2. ullpy < 1(=1,> 1) & I(u) < 1(=1,> 1);
3. ullpy < 1= ullly < 1u) < [ull,);
A fully) > 1= (ully, < T(u) < [lull,
5. limg sy o0 ||ukllpz) = 0 © limg oo I(ug) = 0;
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6. limg 4 oo [[ug|lp@) = +00 € limg 4o I (ug) = +o0.

To prove our main result, we will use the following result proved in [17]
that, on the basis of [7], can be equivalently stated as follows:

Proposition 2.6. Let X be a reflexive real Banach space, ®: X — R be
a continuously Gateaux differentiable and sequentially weakly lower semicon-
tinuous functional whose Gateauz derivative admits a continuous inverse on
X* and ® is bounded on each bounded subset of X; ¥: X — R is a contin-
uously Gateaux differentiable functional whose Gateaux derivative is compact.
Moreover, assume that
(5) lim  (®(u) + A¥(u)) = +o0,

llullx —=+o0

for all A € (0,400), and that there exist p € R and ug,u; € X such that

(6) D(ug) < p < ®(uy),
: (P(u1) — p)¥(uo) + (p — P(ug)) ¥ (u1)
(7) ueé—llﬁf—oo,p]) \IJ(U) - q)(ul) — CI)(U()) ’

Then, there exist an open interval A C (0,+00) and a positive real number r
with the following property:

For every A\ € A and every C' functional J: X + R with compact deriva-
tive, there exists 0 > 0 such that, for each p € [0,0] the equation

' (u) + AV (u) + pJ' (u) =0,
has at least three solutions in X whose norms are less than r.

For each u € X7, we define

r) = [ o5 (18P ) de
Q

Then, the operator L := T" : X; — XJ, where X7 is the dual space of Xq,
defined by
(8) (L(u),v) = / |AuP@ 2 AuAv + [P 2uvds Vo € X,
Q
satisfies the assertions of the following proposition.

Proposition 2.7 (cf. [12]).
1. L is continuous, bounded and strictly monotone.

2. L is of (Sy) type.

3. L is a homeomorphism.
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3 - Proof of the main result

Definition 3.1. We say that (u,v) € X is a weak solution of problem
(1) if

/ |AuP@ 2 AuAg + |[uPD2up da + / |AV|[I®) =2 ApAY + [0]1®) 20y dx
Q Q
- )\/Fu(x,u,v)godx - )\/Fv(x,u, V) dr — u/Gu(x,u, v)pdz

Q Q Q

- u/Gy(x,u, ) dr =0,
Q

for all (p,9) € X.
Define the functional E) , : X — R, by

Expu(u,0) = @(u,0) + AV (u, v) + pJ (u, v),

for all (u,v) € X, where

1 1
O (u,v) = /@ (!Au]p(x) + ]u|p(x)> dx + / pes) <|AU’q(w) + |v|<1(95)> dr,
Q Q

U(u,v) = —/F(m,u,v)d:c, J(u,v) = —/G(m,u,v)d:c.
Q Q

The functionals ®, ¥, J : X — R are well defined, Gateaux differentiable func-
tionals whose Gateaux derivatives at (u,v) € X are given by

(@ (4, 0), (9, )) = / AP AuAG + (@2 wpda
Q

+ / | A 1@ 2 Av Ay + [0]9® 72 yepde,
Q

<\Ill(u, ’U),(QO, ¢)> = _/Fu(zaua U)‘)Odl‘ - /Fv(zaua UWCLT,
Q

Gy(z,u,v)de,

D\D

<J/(U7U)7 (<P,¢)> = _/Gu(xaug U)(PdCU —
Q
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for all (p,¢) € X.
Hence, (u,v) € X is a weak solution of (1) if and only if (u,v) is a critical
point of the functional E) ,.

We now turn to the proof of Theorem 1.1. First, we check the conditions
of Proposition 2.6.

According to Proposition 2.7, of course, ® is a continuously Gateaux dif-
ferentiable and sequentially weakly lower semi-continuous functional whose
Gateaux derivative admits a continuous inverse on X*, moreover, ¥ and J
are continuously Gateaux differentiable functional whose Gateaux derivative
are compact. Obviously, ® is bounded on each bounded subset of X under our
assumptions.

Moreover, we have

(P(u,v) + AU (u,v)) = +o0,

1
l[(u,v) |00

for all A € (0, +00). Indeed,

1 1
— [ p(z) p(x) . q(x) q()
D (u,v) /p(m) (\Au\ + |ul )dw+/q(a:) (|Av\ + |v] )da:
(9) Q Q

1 . 1 .
> min (lullyc, el ) + 5 min (ol Ioly)-

By (Fp), we have |F(z,u,v)| < Clu|*®*1y|f@+L for all (u,v) € X.
Therefore

W, v) = — /F(w,u,v)dﬂc

Q
—C/ |u‘a(x)+1‘v‘6(x)+ldm

v

v

+ + -
—C10fmax ([lul ", ) max (JlolZ7" o).

We know that W2P(®)(Q) and W22®)(Q) are continuously embedded in C(Q),
so there is a constant C such that

(10) W(u,v) > ~CColfmax (Jlull 55" lullifs ) mas (el ol ) -

Without loss of generality, we will distinguish two cases since ||(u,v)|| is consid-
ered to tend to +oo. We will restrict ourselves to the cases when [|u||, ) — +00,
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|vl4(z) bounded and when [Jull,), [|v]lg@) — +o0. In view of (3), there exist

1 o1 +
ra + P = 1. Hence from (10)
b1 a1

p1 € (1,p7) and ¢; € (1,q7) such that
and Young’s inequality we get

1+ at
b1

1447
w(u,0) = ~CCl (Ll + EE (ol 1) )

The above inequality and (9) imply the coercivity of ® + AW since p; < p~.
On the other hand, let [|ul|,), [|v]lg@) — +00, we have

+ +
U(u,v) > —=ClQ[Jul| ;T |v)| 7
> 1+at

q(z)

1+ %
_CQMN< m%@y+—;;—wW1>.

Then, the coercivity of ®+ AW can be easily deduced since p1 < p~ and ¢1 < ¢~
Hence (5) of Proposition 2.6 is verified.Now, from (F}) we can choose § > 1
such that F(z,s,t) > 0, for all s,t > 6, z € Q.

Then using (F,) we get F(x,s,t) > 0= F(x,0,0) > F(z,01,09), Vs,t > 4,
01,09 € (0, 1).

Let a,b be two real numbers such that 0 < a < min{1,Cy}, with Cy given
by (4) and b > § such thatmin {bp_, bq_} |2] > 1. Then we obtain

+ +
aP al

sup  F(z,u,v)dr <0 < min , /F(w, b,b)dx.
Q/0<u|,|v|<a Cg+bp_ Cg+bq_ o

S B A A
P pt \ Co “qt \Co '

By choosing (ug,vo) = (0,0) and (uq,v1) = (b,b), we obtain

Set

P (ug,v9) = ¥(ug,vp) = 0,

O (up,v) = / pr(x) + qu(x)dx > <pl+bp + ql+bq> 1 > p.

Hence
D (ug,v9) < p < P(ug,vr).

Therefore (6) of Proposition 2.6 is verified.
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On the other hand, we have
(®((u1,v1) = p)¥(uo, v0) + (p = P(uo, v0))¥(u1,v1) _ _p‘I’(Ulam)
D (ug,v1) — P(up, vo) D (ug,vr)

Jo F(x,b,b)dx

=0r 1 - 1 1 o(z
Joy P + L b da

> 0.

Let (u,v) € X be such that ®(u,v) < p. Thus
1 1
CI)(U,’U) > Fjp(m) (u) + q_+Iq(:E) (1))7

which implies that
[p(m)(u) < p+p <1 and Iq(m)(v) < q+p < 1.
According to Proposition 2.5, we get

Hqu(x) <1 and HUHq(x) <L

Therefore )

+ 1 +
EHUHZZZ(I) + quuHZ(x) < @(u,v) < p.

Taking into account that

1

[u(z)] < Co (p+ﬁ’)”% <a and |v(z)] <Co (¢ p)r" <a,

for all z € Q and (u,v) € X.

It follows
_ inf U(u,v) =  sup  —V(u,v
(u,v)€P~1 (—00,p] ( ) ue®~1(—o0,p| ( )
g/ sup  F(z,u,v)dr <0.
A 0<|ul,jv|<a
Then

: (P(u1,v1) — 1)V (ug, v0) + (p — (o, v0)) V¥ (u1,v1)
inf U(u,v) > .
(u,0) €D~ (—00,p] (u,0) ®(uy,v1) — P(ug, vo)

Which means that condition (7) in Proposition 2.6 is obtained.
Hence, in view of Proposition 2.6, the proof of Theorem 1.1 is achieved.
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In the next, we consider the following system

(11)
A Auf@=2Au) + \u|p<1’>-2u:A( | @) =Lyl @@+1 qu) +pluf@ 1y inQ,
A(|Av[ID=2 Ap) + |v|q<1’>-2v:A( | @)Ly [a@=1, u%) + @1y inQ,

ou 0 0 ov
_— = — p(:c)—Q = — q(z)—? = — =
5~ By ( | Al Au) ey < |Av] Av) £ 0 on 01,

where

(12) B,yeCy(Q), BT <p  and 7t <q,

and « satisfies

(13) (@t +1) <pl_ + ql_> <1.

Corollary 3.1. Let o € C(Q2) satisfying (13). Then there exist an open
interval K of (0,+00) and a positive real number r such that, for every A € K
and for two functions B, satisfying (12), there exists § > 0 such that for each
w € [—0,0] the system (11) has at least three solutions whose norms in X are
less than .

Proof. Let the functional ® defined as before and set

\I/(u ’U) _ _/ ; |u‘a(:p)+1|v|a(m)+1 - 1u2,02 dr
’ a(r) +1 2 ’
Q

and ) )
_ B P VL€ R P C))
J(u,v) = / <ﬂ(x) |ul”'*) 4 7@ [v]7 > dx.
Q

Clearly ¥’ and J’ are compact. From Proposition 2.4, there exists Cy > 0 such
that

1
> _ a(z)+1 a(z)+1
\I/(u,v) = / <O£(I') +1 ||uHoo HvHoo dx
Q

Q _ _

> I (e ) e (ot o)
C'0|Q\ 14at 1+a~ 1+at 14+a~

> = 0 e ([l ) mase (ol ™ ol ™)
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As in proof of Theorem 1.1, we may assume that [[u[|,), [|v]lq@) — +oc. Then

CO‘Q| H ||1+a+H H1+a+

Uluv) 2 = = o)

Since (a™ + 1) <1

1
— + _) < 1, there exist ps € (1,p7) and g2 € (1,47 ) such
p q
that

(a++1)<p1_+ql_>:1.

In view of Young’s inequality, we obtain

ColQ) <a+—|—1 ot +1 )
\Ij ) Z - x + x .
(u,v) i Nl p() - ]| g(x)

This and (9) imply that

lim  (®(u,v) + A¥(u,v)) = +oo,
ll(uv) |00
for all A € (0, +00).

Let
1 |o¢(:c)+1|t|o¢(:c)+1 _ 182152.
alz)+1 2

Since a(z) > 1 for all z € Q, we can choose 6 > 1 such that

H(z,s,t) = |s

H(xz,s,t) >0=H(x,0,0) > H(x,01,03), Vs,t>0d, 01,02 € (0,1).

Then adapting the same technique as in the proof of the previous theorem, we
deduce that all the assumptions of Proposition 2.6 hold. Hence, our conclusion
follows from Proposition 2.6. O
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