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Abstract. In these lectures we review on a recently developed line of
research, concerning the existence of ground states with prescribed mass
(i.e. L2-morm) for the focusing nonlinear Schrédinger equation with a
power nonlinearity, on noncompact quantum graphs.

Nonlinear dynamics on graphs has rapidly become a topical issue with
many physical applications, ranging from nonlinear optics to Bose-
Einstein condensation. Whenever in a physical experiment a ramified
structure is involved (e.g. in the propagation of signals, in a circuit
of quantum wires or in trapping a boson gas), it can prove useful to
approximate such a structure by a metric graph, or network.

For the Schrodinger equation it turns out that the sizth power in the
nonlinear term of the energy (corresponding to the guintic nonlinearity
in the evolution equation) is critical in the sense that below that power
the constrained energy is lower bounded irrespectively of the value of
the mass (subcritical case). On the other hand, if the nonlinearity power
equals six, then the lower boundedness depends on the value of the
mass: below a critical mass, the constrained energy is lower bounded,
beyond it, it is not. For powers larger than six the constrained energy
functional is never lower bounded, so that it is meaningless to speak
about ground states (supercritical case). These results are the same as
in the case of the nonlinear Schrodinger equation on the real line. In
fact, as regards the existence of ground states, the results for systems on
graphs differ, in general, from the ones for systems on the line even in
the subcritical case: in the latter case, whenever the constrained energy
is lower bounded there always exist ground states (the solitons, whose
shape is explicitly known), whereas for graphs the existence of a ground
state is not guaranteed.

More precisely, we show that the existence of such constrained ground
states is strongly conditioned by the topology of the graph. In partic-
ular, in the subcritical case we single out a topological hypothesis that
prevents a graph from having ground states for every value of the mass.
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For the critical case, our results show a phenomenology much richer
than the analogous on the line: if some topological assumptions are
fulfilled, then there may exist a whole interval of masses for which a
ground state exist. This behaviour is highly non-standard for L2-critical
nonlinearities.
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Schréodinger Equation.
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1 - Introduction: why dynamics on networks?

Evolution on metric graphs, or networks, is a mathematical model used
in order to approximate the dynamics of systems located on branched spatial
structures. Such structures are characterized by the fact that locally only one
direction is important, except for some points where several directions are avail-
able. Such special points in the structure are called vertices, nodes or bifurcation
points, and the (possible) connections between two of them are called edges.

The research on dynamics of networks started in 1953 with the seminal work
by Ruedenberg and Scherr ([55]) where the dynamics of valence electrons in
organic molecules was approximated by defining a suitable Schrédinger operator
on the molecular bonds, treated as edges of a metric graph. This paper initiated
the research line nowadays known as evolution on quantum graphs (see the
milestone paper by Kostrykin and Schrader [44] and the treatise by Berkolaiko
and Kuchment [17]). By definition, a quantum graph is a network, made of
edges and vertices, on which functions are defined and a linear differential
operator acts.

More recently, several papers appeared, in which a nonlinear evolution on
branched structure was proposed ([1,2,3,5,19, 22,23, 35,37,50,51, 52, 56,
58,59,61]). The first systematic study of nonlinear dynamics on networks is
contained in [11], however it is only in the last two years that a great deal of
efforts in this direction has been carried out.

Here we focus on the problem of establishing the existence of ground states
for the Nonlinear Schrodinger (NLS) Equation on metric graphs. In particular,
we shall review the results given in [8,9,10].

The problem generalizes along two directions the issue of finding the ground
state of a Bose-Einstein condensate: first, the chosen domain is not standard,
as it consists of a network instead of a three-dimensional regular region, or a
disc, or a “cigar”; second, the nonlinearity we consider in the energy functional
displays an arbitrary power, whilst typically for condensates in the so-called
Gross-Pitaevskii regime the quartic power emerges as the effective one. Fur-
thermore, we limit our analysis to the focusing case, i.e. the case in which the
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net effect of the nonlinearity on the time evolution is the concentration of the
wave packets.

The present note is organized as follows: in the rest of the introduction we
give a historical overview on the mean-field limit for a many-boson system and
draw a link between the problem of minimizing the constrained energy, possi-
bly on graphs, and the Bose-Einstein condensation; we finally give the basic
definitions and notation and state the problem we shall focus on. In Section 2
we illustrate in a rather formal way the role of the so-called critical nonlinear-
ity power, then we write down the Euler-Lagrange equation and the Kirchhoff
condition. In Section 3 we give some well-known and some others less known
examples in which the problem is solved, trying to convey some general ideas.
Section 4 is devoted to the introduction of a topological hypothesis (Assump-
tion (H)) that is the core of the key nonexistence result given in Theorem 5.1,
to which Section 5 is devoted together with a review of rearrangement theory
(for non-experts). In Section 6 we give many examples in which Assumption
(H) is not satisfied and show how to prove existence of ground states through a
technique of graph surgery. The point we stress here is that in all cases where
topological information is not sufficient to solve the problem, analysis needs to
be carried out case by case; to this aim, Theorem 6.2 with its operative Corol-
lary 6.1 can give a great help, as it states that in order to ensure the existence
of a ground state it is sufficient to find a state that does better than a soliton
on the line, i.e. a state whose energy level is lower than the level of the solution
to the same problem on the line. Finally, in Section 7 we treat the case of the
critical power nonlinearity, where the role of topology overwhelms that of the
metric, at least for simple cases, but the lack of compactness of minimizing
sequences is much more serious. The analysis becomes thus more involved but,
as a result, graphs can be classified in four disjoint categories, for each of those
we give an exhaustive result (Theorems 7.1-7.4).

1.1 - Nonlinearity and Condensation

It is nowadays well-established both theoretically (][20,28,53]) and exper-
imentally ([26,27]) that, at a critical (usually very low, amounting to few
Kelvin) temperature, an ultracold gas of identical bosons (e.g. atoms and ions
like sodium, rubidium and potassium) in a magnetic and/or optical trap experi-
ences a phase transition that turns the system into a Bose-Finstein condensate,
i.e. a phase in which a macroscopic fraction of the elementary components ac-
quires a one-particle quantum state (i.e. a wave function ¢): furthermore, the
bosonic symmetry imposes that such a state is the same for all particles. The
system then can be thought of as a unique giant quantum particle lying in the
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state ¢, called ground state of the condensate. Such a state can be found as a
solution to the variational problem

i E
wem @R oy Fort)

where the Gross-Pitaevskii functional Egp reads

(1) Eop(u) = %/|Vu(m)|2dx+87ra/|u(x)|4d:c.
Q Q

Here « is the scattering length of the two-body interaction between the particles
of the gas, 2 is the spatial domain defined by the trap, and N is the number
of particles in the condensate.

Sometimes, the presence of the trap is not modeled just by bounding the
integral to the domain €2, but rather endowing the functional with an additional
term that takes into account the presence of a confining potential, often a
harmonic one.

The rigorous derivation of the functional (1) is the core result of the Gross-
Pitaevskii theory, that is an effective theory used in order to describe the be-
haviour of a Bose-Einstein condensate. As we shall point out later in some
more detail, the main merit of such a theory is that it reduces the complexity
of the problem from N-body to one-body, even though the resulting system is
nonlinear.

In the first experimental realizations of condensation, the shape of the trap
was definitely three-dimensional and regular. Since then, the technology of
traps underwent an impressive development, so that nowadays disc-shaped and
cigar-shaped traps are currently produced, and some indication of the occur-
rence of a Bose-Einstein condensation on a ramified structure (i.e. in a Joseph-
son junction) has been recently provided ([49]).

1.2 - From a linear N-body to a nonlinear 1-body problem

The dynamics of the Bose-Einstein condensates naturally raises a question:
given that quantum mechanics is a linear theory, where does the nonlinearity
(i.e. the quartic power in the energy functional (1)) come from?

Such a problem can be formulated in the time-independent or in the time-
dependent framework.

The time-independent formulation is closer to the problem of the ground
state. The validity of the Gross-Pitaevskii theory and of the functional (1)
was rigorously established in a series of works by E.-H. Lieb, R. Seiringer and
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J. Yngvason (see e.g. [46,47,48]). Among their achievements, we recall that
they found the correct scaling for the potential describing the pair interaction
between the particles, namely

(2) V(wi —xj) — V(i — ;) = N*V(N(z; — ;)

so that the scattering length of the interaction scales as 1/N.

A celebrated result in the cited paper is the proof of the Bose-Einstein
condensation in the ground state of the N-body system of bosons. This means
that in the ground state of the N-body Hamiltonian operator

N

Hy = Y (g + W(x;)) + > Vnlai — )
= i<j

representing the energy of the boson gas, the k-particle correlation function
converges to the factorized state ¢(z1)...p(zk) as the number of particles N
grows to infinity. The resulting function ¢ minimizes the constrained functional
(1).

In physical terms, in the limit N — oo all particles collapse in the same
quantum state, represented by a wave function ¢ minimizing the Gross-Pitaev-
skii energy functional (1). Thus, one has condensation in the ground state.

On the other hand, the emergence of factorized states and of a nonlinearity
out of a linear dynamics can be described also in the time-dependent framework.
The time-dependent formulation of the problem of the description of a dilute
boson gas in the Gross-Pitaevskii regime historically arises from one of the most
topical and active fields of research of the mathematical physics in the last two
decades, namely the mean field limit for the dynamics of many-body systems.
The problem can be summarized as follows: one is interested in studying the
evolution in time of a system made of a huge number N of identical particles.
According to the basics of quantum mechanics, the state of the whole system
at time t is represented by a wave function ¥y (t,z1,...,xx), where z; is the
position variable of the i.th particle and the evolution of Wy is described by
the N-body, linear Schrédinger equation

N
iat\I’N(tvxlw"axN) = _ZAIj\I’N(t7x17"' 733]\7)
(3) =1
+ZV(£L‘Z —xj)\I’N(t,azl,...,xN)

i<j

where the potential V' models the (two-body) interaction between the particles.
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Such an equation is in general impossible to solve or even to study numeri-
cally, due to the fact that N is often very large (from around millions to 10%3).
However, it is well-known that physicists are used to deal with such a systems
by reducing the equation from N-body to one-body, but paying the price of
introducing a nonlinear term in the equation. Justifying such an approxima-
tion and providing an estimate for the error made when employing it, has been
the main task of the research on mean-field limit for large systems of identical
interacting bosons. In its simplest version, the problem of the mean-field limit
can be expressed as follows: prove that the evolution provided by the equation
(3) with the potential modified through a weak coupling scaling V. — V/N,
ie.

N
iat\IIN(t7x17"'7xN) = _Zij\I/N(tvxlv"'va)
j=1
1
+N;V(.’L‘i—.’L‘j)\IfN(t,.’L‘l,...,:EN)
i<j

with the factorized initial data

\Ifo(Il, e .:EN) = gf)o(l‘l) e gbo(.%‘N)

can be approximated by the evolution of N independent particles, following
each the dynamics given by

(4) i0h(t, ) = —Ad(t, ) + (V x |¢(t, 2)]*)d(t, ).

More precisely, the task is to prove that in the limit N — oo the correlation
functions of the k-particle subsystems converge to ¢(t,x1)...¢(t, xx) where
¢(t,x) solves (4). The history of the main achievements of this research line
starts with the work of K. Hepp ([41]), who stated the problem (even though his
celebrated work is rather devoted to the classical limit of quantum mechanics).
Then, J. Ginibre and G. Velo ([36]) treated the problem of mean field for
Coulombian systems in the second-quantized framework. On the other hand,
H. Spohn ([60]) proved the mean-field limit for systems of particles interacting
through a bounded potential, using a first quantization formalism. In 2000, C.
Bardos, F. Golse and N. Mauser ([14]) re-obtained Spohn’s result by splitting
the problem in the issue of the convergence as N goes to infinity of the N-
body Schrédinger equation to an infinite hierarchy, and in the problem of the
uniqueness of the solution to such resulting hierarchy. For Coulombian systems,
the latter problem was solved one year later by L. Erdés and H.-T. Yau ([33]).

All the cited works are purely mean-field, so that the main result they get is
equation (4), that bears a non-local nonlinearity. The first result that opened
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the road to the derivation of an effective equation with a local nonlinearity
was given in [29], where a mixed scaling V — N3V (N7-)/N was introduced.
This can be formally interpreted as a mean-field theory for a smoothened Dirac’s
delta. The effective equation yielded by the limit is then (4) with the replace-
ment of V' with the Dirac’s delta potential, so that

i06(t7) = —Ad(t,z) + ( / de) 6(t, 2)[26(t, 7)

is the target dynamics: this is the time-dependent Gross-Pitaevskii equation
that describes the evolution of Bose-Einstein condensates. The derivation was
not complete, since the problem of the uniqueness of the solution to the limit
hierarchy, stated in ([14]) was not solved.

Later, R.A., F. Golse and A. Teta ([6]) derived the cubic Schrédinger equa-
tion in dimension one by studying a scaling limit for a system of one-dimensional
identical bosons interacting through a repulsive pointwise interaction: morally,
again, the limit whose existence they proved is a mean-field limit with a Dirac’s
delta potential. Since the result is limited to one-dimensional systems, its va-
lidity is restricted to cigar-shaped condensates. A more general result, valid for
attractive interaction too, was given later in [25].

Finally, in a series of works dating from 2006 to 2010 ([30, 31, 32]), L.
Erdoés, B. Schlein and H.-T. Yau derived the Gross-Pitaevskii equation for three-
dimensional systems. The scaling they adopted is the one discovered by E.-H.
Lieb and R. Seiringer for the time-independent framework (2).

Once derived the effective equation, it remained to estimate the error made
by replacing the N-body linear Schrédinger equation by the one-body non-
linear equation: for the pure mean-field scaling, the breakthrough came by I.
Rodnianski and B. Schlein [54], who provided a new proof of the mean field
limit, inspired to the work of Ginibre and Velo [36] and gave also the first es-
timate of the error. In 2010, A. Knowles and P. Pickl [43] gave a further proof
of the limit, in the first-quantized formalism but avoiding use of hierarchies.
The method allowed to deal with more singular potentials and produced a new
estimate of the error.

Further improvements on the rate of convergence for the mean field have
been achieved in [12,13,21,38,39,45], while for the Gross-Pitaevskii regime a
similar estimate has been proved in [15]. For a complete review on most recent
results see the monography [16].

In this review there are no proofs of the condensation or of the Gross-
Pitaevskii regime for systems on graphs. In fact, it is widely known that no
condensation can occur in one-dimensional systems, in the sense that the phase
transition that defines the condensation cannot take place: however, in 2015
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J. Bolte and Kerner [18] proved condensation for free gas and no condensation
for interacting gases in graphs, considered as quasi-dimensional systems, in the
sense of the presence of the phase transition. Moreover, in 1996 W. Ketterle
and N.J. van Druten [42] gave an evidence of a concentration phenomenon un-
der some aspects analogous to condensation. Finally, one-dimensional conden-
sates can be considered as squeezing limits of three-dimensional condensates,
as proved by R. Seiringer and Lin [57].

1.3 - The problem

In these lectures we search for the simplest solutions to the nonlinear fo-
cusing Schrodinger equation on graphs, avoiding the problem of the rigorous
derivation from first principles. Simplest solutions are particular cases of stand-
ing waves, that minimize the energy under some physical constraints: in par-
ticular, we consider the so-called mass constraint.

Before stating the problem precisely, we need some definitions and notation.

e A graph G i.e. a couple of sets (V, B), where B is a subset of V x V.

The set V is interpreted as the set of the vertices, i.e. points in the space,
while B is the set of the edges or bonds, e.g. links between vertices: every
edge is then identified with the couple of vertices it connects.

The degree of a vertex v € V is the number of edges starting from or
ending at v.

Both V and B are finite sets, so that we shall always deal with graphs
with a finite number of edges and vertices.

There is a non-empty subset Vo, of V, made of vertices at infinity. Two
vertices at infinity cannot be connected by edges, and every vertex at
infinity has degree equal to one. We shall refer to edges ending at a
vertex at infinity as to halflines.

Two graphs are topologically equivalent if they can be deformed into each
other without changing the sets V, V., and B.

e In order to construct a metric graph, an edge e is identified with an
interval I, := [0, ], where ¢, € [0,+occ]. This correspondence fixes the
metric of the graph.

Given a topology, several metrics are possible, as every finite edge can
have an arbitrary length. Conversely, the metric on the halflines is fixed.

For a pictorial idea of a generic graph see Fig. 1, that show an example
where selfloops, multiple connections, and haflines are present.
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e A function u : G — C is a bunch of functions u = (u¢)ceg, with ue : I, —

C.

A function w is continuous on G if every u, is continuous in I, and if u
is continuous at vertices, namely, if the value attained at a vertex Vv is
independent of the edge chosen to reach v.

e A function u : G — C is integrable if every function u,. is integrable on

I., and
/ude‘: Z/ueﬂfe ) dx, .

g EEB 0
The usual functional spaces can be defined as
= EBLP(IGL ||UHI£p(g) = Z HueHip I
eeB eeB

The space H'(G) is defined as the set of continuous functions u = (uc)ees
such that

Ue € Hl(Ie) Ve € B, |UHH1 Z HUeHHl
eeB

We stress that continuity is imposed at vertices too, so that no jump can
occur.

e Fixed p > 0, we define
that is the space of the functions in H'(G) that fulfil the mass constraint.

On the metric graph G let us define

1
B(w0) = 31 Iag) — llulfg)

that is a functional in C'(H,(G),R) for all p € [2,400).
The problem we treat is the following:

Problem P. Given a connected, non-compact metric graph G and fixed
w > 0, does there exist a ground state at mass p, namely a minimizer of E(-,G)
in the space H(G)?

In other words, we look for functions v € H ,}L(g) such that
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Fig. 1. How a connected, non-compact metric graph may look like.

E(u,G) = &(u)

where we introduced the notation

(5) E(p) = UG%f(g) E(v,G).

Notice that, as regards the problem of the existence of a minimizer, if G is
compact and Eg(p) is finite, then every minimizing sequence is compact, so that
a minimizer always exists. For this reason we restrict to non-compact graphs,
i.e. graphs that contain at least one halfline. On the other hand, it will be clear
from the analysis that if a graph is not connected, then minimizers concentrate
on the most convenient connected component, so that the hypothesis that the
graph is connected is not restrictive.

We end this introductory part by noticing that, due to the shape of the
energy functional, we shall limit the analysis to nonnegative functions.

2 - Preliminary remarks
2.1 - Mass constraint and lower boundedness

First of all observe that, regardless of the chosen graph G, if no constraint
is imposed then the functional E(-,G) is not lower bounded. Indeed, fixed
u € HY(G), one has

z? 112 AP p
BOw.G) = 31 By — Tl > =0, A+
On the other hand, let us restrict to the case of star graphs made of halflines,
and impose the mass constraint HUH%Q(Q) = p. On these particular graphs,

one can perform mass preserving transformations u(z) — \/Xu()\:r) = up(z),
so that ) -
A A2™
E(uy,G) = ?HU/H%Z(Q) - THUHiP(g)‘
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Now,

e if p < 6, then kinetic energy prevails and this suggests that the energy is
lower bounded. Indeed by using Gagliardo-Nirenberg estimates one can
prove that this is actually the case. The problem with 2 < p < 6 is
referred to as the subcritical case.

e If p > 6, then the potential term overwhelms the kinetic one and E(uy,G)
— —00, a8 A — 400, so the energy is not lower bounded. The problem
with p > 6 is then referred to as the supercritical case.

e If p =6, then there is a delicate balance between kinetic and nonlinear
term. As we shall see, lower boundedness of E depends on the value of
. The problem with p = 6 is referred to as the critical case.

2.2 - The Euler-Lagrange equation: Kirchhoff’s rule

As a minimum of the constrained functional, every ground state u must
satisfy the Lagrange Multiplier Theorem

VE(u,9)(w) = 5 V(1= Julz(g)

for some w € R (notice that in order to simplify notation here we called % the
Lagrange multiplier). Then, for every n € H*(G),

0 = VE@.Gn - 5V~ [ulP)y = [~ u Ty + wun)da

g
Le
= Z /(u;ncla - Ug_lﬂe + wueﬂe) dme
eeB 0
Le
= Z ulmell + Z/(—u’cf — P wue)ne dz. .
ecB e€EB Y

Notice that the first term concerns vertices, while the second is determined by
the values of the integrand inside the edges.

Now pick an edge € and consider a function n € C§°(e). Then the second
term only survives and forces the Stationary Nonlinear Schridinger equation

(6) ulél + ’LLZE)_ = WlUeg

to hold inside e, and, by arbitrarity of €, on every edge.
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Now consider n € C§°(G) that vanishes in all vertices except one, say V.
Then, boundary terms survive if and only if they refer to edges starting from
or ending at V. Their contribution reads

S el = D wllen(te) = S ul(0)n(0)

eck e—V eV

= (Z up(le) =) u;(0)> n(v)
e—V eV

where we denoted e — V the edges ending at vV and e < V the edges starting
from V.
Thus

Z ug(Le) — Z u (0) = 0

e—V eV
that is called Kirchhoff’s rule, and is often expressed by saying that at every
vertex the global ingoing (or outgoing) derivative vanishes. A common compact
form of Kirchhoff’s rule is

(1) 3 Zz (V) = 0.

eV

Let us finally recall that the Euler-Lagrange equations (6) together with the
Kirchhoff’s conditions can be summarized in the equation

(8) Aru(z) +uP~H(z) = wu(x)

where Ak is the operator acting as the laplacian on functions that are H? on
every edge and fulfil Kirchhoff’s rule at all vertices. It is immediately seen
that equation (8) is the stationary equation associated to the time-dependent
nonlinear Schrodinger equation

(9) O(x) = —Ary(t) — [W(t)[P (),

and it is well-known that for such equation the dynamics preserves the L?-norm
and the value of the energy E(-,G).

We stress that (8) is equivalent to the condition of stationarity of the func-
tional, so that it is satisfied not only by ground states, but also by every standing
wave of the nonlinear Schrodinger equation, namely by all solutions to (9) of
the type

Y(t,z) = e u(x),

so that it is clear that the Lagrange multiplier w has the dynamical meaning of
a frequency.
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A

Fig. 2. The soliton ¢,,.

3 - Examples

In this section we give some basic examples of graphs and the related results
concerning the existence or the nonexistence of ground states.

3.1 - The real line

It is well-known ([24, 40, 62]) that for p € (2,6) and p > 0 ground states
exist and are all translated of the soliton (Fig. 2)

du(z) = Cu%sechz% (cu%x).

where C' and c¢ are irrelevant constants dependent on p only and not on p.
If p =4, i.e. in the case of the cubic Schrodinger equation, one gets

3
H (M ) H
r) = —/——=sech|=z), E(¢,,R)=——.
Let us point out that the solitons and their translated are the only stationary
solutions to (9) on the line. In order to prove it, notice that the Euler-Lagrange
equation on the line
u” +uP™t = wu,

can be rewritten as

dVv
10 h=___
(10) W' = - (w)
where we defined )
P
V(u) = % - wu? .

Equation (10) can be interpreted as a mechanical conservative problem, whose
phase portrait is displayed in Fig. 3.

It is then clear that all solutions are periodic (and therefore not in H'(R))
except the non-constant ones contained in the separatriz, corresponding to so-
lutions to (10) with vanishing mechanical energy. They turn out to be the
solitons and their translated.
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Fig. 3. Left: The profile of the potential V. Right: The phase portrait induced by

the potential V.
&

Fig. 4. Half a soliton.

3.2 - The halfline

In the case G = R™, p € (2,6) and p > 0, there is exactly one ground state
given by “half a soliton” (Fig. 4) of mass 2u (notice that in this case the
translational symmetry is broken).

If p =4, then

3.3 - A star-graph made of halflines

The cases of the halfline and of the line naturally generalize to the case of
the star-graph S, made of n halflines (the case n = 4 is represented in Fig. 5).
Yet the result changes, as proved in [2,3,4,5].

Indeed, for p € (2,6) and u > 0,

Es, (1) = Er(p)

but the infimum is not achieved, so that there is no ground state.
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|

Fig. 5. A star-graph made of four halflines.

In order to prove it, restrict to the simplest case p = 4 and consider the star-

graph S3 made of three halflines H1, H2, and Hs, and a function u € H;(Sg).

Let us introduce the notation u = (u1,u2,us), where u; is the restriction of u

to the halfline H;, and p; := HujH%Q( ;) With no loss of generality, suppose
J

w1 = min(pg, pe, 13) and construct a function u € Hi(Sg) such that FE(u,S3) <
E(u, S3) proceeding as follows:

1. On Hq, replace u; with the half-soliton xg+ @2, -

2. On Hg U Hs, replace the couple of functions (ug,us) with the soliton

¢u2+u3-

At this point, on Sz set the function (Xr+®u; s XR+Puotpuss XR+ Protpus)s
that may not be continuous.

Translate the soliton sat on Hqi U Hy in order to obtain a continuous
function w on Ss. It is immediate that u belongs to H i (S3).

Then, exploiting the minimum properties of the half-soliton on the half-
line, and of the soliton on the line,

E(u,S3) = E(ui,H1)+ E((ug,us), Ha U Hsz)
> E(XR+ ¢2u1aR+) + E(¢u2+#37R)

3 3
N N sl L) Ay
Y o6~ — PwSs)

By construction g > 31, then the minimum is attained for
H1 = 0.

Therefore, minimizing sequences concentrate on one halfline only, and
reconstruct a soliton at infinity. An analogous result can be obtained for
every p < 6.
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This simple example provides at least two important messages: first, as
regards the minimization of the energy, it is not convenient to spread the wave
functions on many edges. Second, for every candidate ground state, the soliton
is a serious competitor!

3.4 - The 3-Bridge B3

The first non-star cases treated in literature were the so-called bridge graphs,
first dealt with in [7] (the triple bridge Bs is represented in Fig. 6). For p € (2,6)

00- - < - 00

Fig. 6. The 3-bridge Bs.

and p > 0,
&y (1) = Er(p)

and again the infimum is not achieved, so that there is no ground state.

Fig. 7. Unfolding Bs into a line.

Fixed p > 0 It turns out that for every function v € H ;(Bg) one gets
E(u,Bs) > E(¢,,R).

To prove it, the key observation is that Bs is semi-Eulerian, namely, it can be
unfolded into a line together with every function v € H'(Bs) (Fig. 7).

So, let u € H(Bs) and & € H,(R) its unfolded version on the line. Then,
denoting by Vi, Vo the two vertices, on the line they correspond to points

T < 22 < Y1 < Y2
with x;,y; associated to the vertex v;. Therefore, by continuity

u(zi) =ulyr),  ulra) = ulya).
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Now, if @w(z1) < u(xz), then there is a minimum in the interval (z2,y2).
If w(z1) > u(xz), then there is a minimum in the interval (z1,y1).
If u(x1) = u(xs), then u takes the same value in four points.

In all cases @ cannot be a soliton, then
E(U,Bg) = E(avR) > E(¢uaR) = ER(:U’)

Nevertheless, it is possible to define a sequence that asymptotically reconstructs
a soliton on a halfline, so that

Ey(n) = Er(p)

but such a minimum is not attained.

3.5 - The double bridge Ba

The double bridge By (Fig. 8) is not semi-Eulerian, and the problem of
establishing the existence or the nonexistence of ground states becomes much
more difficult than in Bs.

Fig. 8. The two-bridge Bs.

However, once again, as we shall see

&, (1) = Er(p)

and there is no ground state.
We can then conclude that on bridge-graphs the infimum is never achieved.

4 - A key assumption

From the examples of existence and of nonexistence given in the last section,
one can single out some observations:

1. It seems convenient to escape “intricated” zones, e.g. vertices with high
degree: at least, this is what happens for the star-graphs and for the
bridges.



[19] NONLINEAR DYNAMICS ON BRANCHED STRUCTURES AND NETWORKS 127

Fig. 9. A point z in the graph and a trail containing = and two halflines.

2. Tt is always possible to construct a soliton (possibly at infinity, as the
asymptotics of a sequence), so, in order to be a ground state, a function
must reach an energy level which is lower than the level of the soliton.

3. Therefore, in order to ensure existence of a ground state, the graph must
exhibit structures able to trap functions that do better than the soliton.

4. On the other hand, in order not to have minimizers, it seems sufficient
for the graph to be, in some sense, more intricated than a line.

The last observation is embodied in a topological assumption, that we call
(H). We give three alternative formulations of such assumption. The proof of
the equivalence of the three formulations is not completely straightforward, and
will not be given here.

The first formulation is based on the graph-theoretical notion of trail (Fig.
9). A path made of adjacent edges, in which every edge is run through exactly
once, is called a trail. Notice that in a trail vertices can be run through more
than once.

Assumption (H), first formulation. Every x € G lies on a trail that
contains two halflines.

Assumption (H) can also be expressed as the absence of structure like ”bot-
tlenecks”:

Assumption (H), second formulation. After removing an arbitrary
edge from G, every resulting connected component contains a vertex at infinity
(Fig. 10, 11).

The last formulation we give is more pictorial and considers the possibility
of covering the graph (vertex at infinity included) by cycles.

Assumption (H), third formulation. After identifying all vertices at
infinity, the graph G admits a cycle covering (Fig. 12).
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) M -
00— @ZOO\OO
Fig. 10. Once removed the only finite cut-edge of the graph, each connected com-
ponent contains a halfline, and therefore a vertex at infinity.

oO———4 o0

Fig. 11. Assumption (H) in the second formulation applies to halflines too: After
removing a halfline, two connected components result: one contains some halflines, and
therefore vertices at infinity; the other is made of one vertex at infinity.

4.1 - If (H) is violated

Assumption (H) can be violated in several ways. Notice indeed that (H)
implies that G has at least two vertices at infinity, so it is violated by every graph
having less than two halflines. Furthermore, it is immediately seen that (H) is
violated not only by having less than two halflines, but also by the presence of
a terminal edge or pendant (Fig. 13):

It is also possible to violate assumption (H) without having a pendant, like in
the signpost graph (Fig. 14).

5 - A nonexistence result

The first general result we give on graphs is negative:

Theorem 5.1 (Nonexistence). Assume that G satisfies assumption (H).
Then, for any p >0

Eg(p) = Er(p)

and the infium is never attained, so that a ground state does not exist, except
if G is a “bubble tower” (Fig. 15).

The key idea of the theorem is strictly related to rearrangement theory.
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Fig. 12. A possible cycle covering,.

\% oV
00- - - 4L - -00 00~ ———&——— - --00

Fig. 13. Left: line with a pendant. Right: after the removal of the pendant, there
remains a connected compact component made of a vertex, violating (H) (see the
second formulation).

5.1 - Rearrangements

The technique of rearrangements is nowadays classical in calculus of vari-
ations, and is widely used in order to show the existence of minimizers and
possibly to establish some of their features, like for instance the symmetries.
Its first extension to graphs is due to L. Friedlander ([34]). In our proofs we
use rearrangements to show the nonexistence of ground states. In what follows
we give an intuitive and tutorial summary of the results we will use, for readers
non familiar with rearrangements.

Given a nonnegative function u € H }L(g), we aim at constructing another
nonnegative function v € H'(R") s.t. E(v,R") < E(u,G). To this purpose,
one can construct the so-called monotone rearrangement. The idea behind it
can be roughly summarized as to cutting the graph of the function in vertical

0

Fig. 14. Left: Signpost graph. Right: after the removal of the pendant, there
remains a connected compact component made of a loop, violating (H) (see the second
formulation).
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o Q.

Fig. 15. A bubble tower.

Fig. 16. Monotone rearrangement of a piecewise constant function: this example
shows pictorially the fact that integral norms are preserved while oscillations are re-
duced, so that the nonlinear term in the energy is left untouched, while the kinetic
term is dumped, so that the energy has diminished.

slices and locating them on a halfline in order of decreasing height.

As it appears from Fig.16, LP-norms are preserved, while oscillations are
suppressed, so that one can argue that, generalizing the procedure to regular
functions, after rearranging a function the kinetic energy diminishes.

Of course, one can give a more formal and general definition of monotone
rearrangement: let (2, F,m) be a measure space, and consider a nonnegative
function f : @ — RT. One can define the distribution function py of the
function f as

pi(t) i=m({z € Q, f() > 1}).

Clearly, py is defined RT™ — R™ and is monotonically decreasing. The mono-
tone rearrangement f* of f is a function defined on R* with values in R, given
by

ff(x) :=1inf{t >0, ps(t) < x}.

It is straightforward that, if py is invertible, then

* _ —1
f =Py -
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2 02 04 06 08 1

Fig. 17. Left: f(z) = |sinz|. Right: ps(t) = 27 — 4arcsinx.

/N ] TN

0.6

0.4

0.2

2 2 1 6

Fig. 18. Left: f(z) = |sin(x)|. Right: f*(x) = cos(z/4).

Since py = py+, f and f* have the same level sets, so that

1 fllrx) = I1f | ety

As an example, consider the measure space X = [—m, 7], and the func-
tion f(x) = |sinz|. Then, one can directly compute p¢(t) = 27 — 4arcsinz and
f*(x) = cos(z/4) (Fig. 17, 18).

The main result that we borrow from rearrangement theory consists in
quantitatively estimating the decrease of the kinetic energy induced by a rear-
rangement.

To this aim, we first show that the kinetic energy of the monotone rear-
rangement u* € H!(RT) cannot exceed the energy of the original function
u € HY(G). We limit ourselves to the case of a function u regular enough, so
that p, is differentiable and G can be partitioned in intervals I; = [a;, b;] such
that u is monotone in every I; (see Fig. 19). Then, it is easily seen that

p(t+h)—pt) = m{u()>1t+h})—m{u(z)>1t})
= > (m{z €I, u(z) > t+h}) —m({z € I, u(x) > t}))

1R

J
1
"L o
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10 | \

Fig. 19. Partition of the domain of a function in intervals of monotonicity.

where x;(t) is the only point in I; where u = ¢. Then

, 1
0= 2

z, 8.t u(z)=t

Thus, computing the kinetic energy one finds
max(a, b, ]u(x)

ORI / /(@) do = Z / 5 () | dt
g

J aj mln[a b ) u(z)

IK(ES

= / > | (x)]dt

0 z,s.t.u(x)=t

where, in every interval [}, t = u(x).

Let a; > 0. By Cauchy-Schwarz inequality,

N N P N 12 /N 1/2
2,-1/2 —1
Y-yt < (Sa) (L)
j=1 j=1 j=1 j=1
so that, replacing a; with |u/(x)],
[l oo ) -1
/|u'(x)|2d33 > / N2(t) > - dt
G 0 z, 8.5 u(z)=t ‘u (aj)‘
l[w]oo
= N2(t) ,1 dt,
[0, (2)]
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where, for every ¢ in the range of u, we defined the number of preimages of t

N(t) := tu 1 (2).

1

Now, as u* = p~, one gets
flulloo N2t llulloo ”
/\u’(x)yZda: > / U / ,
[P ()] AL
g 0 0
llwlloo

S OB E OV
0
AR
R+
where equality holds iff N(¢) = 1 for almost every t.
We then proved the Pdlya-Szegd inequality:

(W) 2@y < 1] 2(g)-

Therefore, as the monotone rearrangement lowers the kinetic energy and pre-
serves the nonlinear term, one has

E(u,G) > E(u*,R").
Notice that this implies that the halfline is optimal among non-compact graphs:

Er+ () < Eg(p),

for every graph G containing at least one halfline.

5.2 - Symmetric rearrangement

To prove Theorem 5.1 we need to introduce the symmetric rearrangement
(Fig. 20), defined as

u(z) = u*(2]z|), z €R.
One immediately has that @ is even and

pa = pur (= pu)-



134 RICCARDO ADAMI, ENRICO SERRA, PAOLO TILLI |26]

N I
NG e\

0.5 1 15 2 —2 —1 1 2

Fig. 20. Left: The monotone rearrangement u*. Right: The symmetric rearrange-
ment .

By an elementary change of variable,

/ﬂpdac = /(u*)pdm = /updx
g

R R+

and, analogously to the case of the monotone rarrangement, one finally has

[lw]|co
~/\2 _ u* 12 T = dt
/“” dv = 4/“ JFd 4/ FAGI
R R+ 0
[lw]lco
N(t)2 _ u/ 2 T
G g/< )

provided that N(t) > 2 for almost every t.
We finally proved the following

Proposition 5.1. Let G be a connected non-compact metric graph, and
u be a nonnegative function in H(G). Then, denoted

N(t) :=#{zx € G : u(z) =t}, t € (0, max u],

the following inequality holds true:

/ ()P de < / 2 da,
R+ g

with strict inequality unless N (t) = 1 almost everywhere.
Moreover, if N(t) > 2 almost everywhere, then

/(a)’|2dx < /u’|2dx,
R g
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where equality implies that N(t) = 2 almost everywhere, and thus
E(u,G) > BE@,R) > &r(n) = E(éu,R).
We are now ready to prove the Theorem 5.1.

Proof of Theorem 5.1. Let u € H;(g), and let xg be a global maxi-
mum point for u.

Owing to Assumption (H) (see e.g. the first formulation), there exists a
trail T passing through zy and containing two halflines. Clearly, the restriction
of u to T belongs to H*(T) and maxy u = maxg u.

Furthermore, since T connects two vertices at infinity and xg € T,

#{reG ux)=t}>#{zxeT ulx)=t}>2 for ae.t.

Due to the proposition on symmetric rearrangement, and to the existence of
runaway soliton sequences mimicking the soliton, the infimum can be attained
by a function u, namely a ground state may exist, if and only if

1. Almost every point in Ranwu has exactly two preimages.
2. B(u,G) = E(6,,R).

Suppose that such a ground state u exists, and call g a maximum point of wu.
Then, by assumption (H), there is a trail 7 passing through zy and containing
two halflines. On this trail every value in Ranu is attained twice.

If there were other edges starting from (or arriving to) the trail, then further
counterimages would be created, and some interval in Ran u would be made of
points with at least three preimages, so that

E(u,G) > &(p)

contradicting the hypothesis of u being a ground state.

Then, G = T, i.e., G must be the real line (up to some possible identification
of vertices), and u must be a soliton.
The only identification of vertices that preserve the symmetry of the soliton
gives rise to the family of tower of bubbles. For an extended explanation of this
point, see [8]. O

6 - Ground states in the subcritical case

In this section, given an exponent p € (2,6) and a mass u > 0, we con-
tinue our study on the existence of absolute minimizers (ground states) for the
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functional . .
BEu,G) = §/|u'2dac—];/|updx,
g g

subject to the mass constraint
/ lu|? dz = p.
g

Here G is an arbitrary noncompact metric graph (see Figure 1), and the range
(2,6) for the exponent p is called the “subcritical case” (see Section 7 for the
critical case where p = 6).

Therefore, in trying to investigate ground states, we shall be concerned with
the case where G does not satisfy assumption (H).

A first result, regardless of ground states, is that the ground state energy
level is always intermediate between the half-soliton’s (on the real halfline) and
the soliton’s (on real the line) of the same mass p. More precisely, we have the
following

Theorem 6.1 (Level-pinching). For every non—compact graph G,

E(¢2u,RT) < Ue}%f(g)E@’g) < E(¢uR).

The first inequality is due to rearrangements: as explained in Sec. 5.1, given
v € HY(G), its decreasing rearrangement v* (over RT) has a lower (possibly
equal) energy. In other words, no function v on G can ever beat the half-soliton
on R*.

The second inequality (as explained in Section 4) is due to the possibility
of constructing “quasi-solitons” escaping at oo, along any half-line of G (since
G is noncompact, at least one of its edges must be unbounded, i.e. a half-line).
More precisely, G contains arbitrarily large intervals (in any half-line), and
these intervals can be used to support functions arbitrarily close to a soliton of
mass [i.

Of particular relevance is the case where the second inequality is strict.
Theorem 6.2 (Existence of ground states). If G is non—compact and

inf FE(v, < FE(¢,,R),
ve}%(g) (v g) <¢M )

then the infimum in (5) is attained, i.e. G supports a ground state.
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Observe that the non-strict inequality “<” is always satisfied, due to the
level-pinching inequality (Thm. 6.1).

The proof (see [9]) is quite delicate, and is based on the following dichotomy
principle for minimizing sequences (relative to the infimum in (5)). It turns
out that, in general, any minimizing sequence {u,} is either

(i) weakly convergent to zero, or

(ii) strongly convergent to a ground state.

But it can be proved that (i) is (in this case) incompatible with the assumption
of the theorem, because u, would then “escape to co” along a halfline of G,
approaching the shape of a soliton, and its energy level would then be equal to
(and not less than) the energy level of the soliton, in the limit.

The previous result is quite abstract, but it has the following consequence,
which is of quite practical use in the applications.

Corollary 6.1 (Operative version of the existence theorem). If there ex-
ists a competitor u € Hﬁ(g) such that E(u,G) < E(¢,,R), then G admits a
ground state.

A sketch of the proof is as follows. Let u be a competitor satisfying the
assumption of the theorem: if, by any chance, u is a ground state, then there
is nothing to prove. Otherwise u is not optimal, which amounts to

inf Fw,G) < E(u,g)<FE R
UEH}L(Q) ( ) ) ( ) ) = (¢u7 )7
but in this case a ground state still exists (other than u) by the previous The-
orem.

This corollary is quite useful in several concrete cases, where one can try to
obtain estimates (on the ground state energy level) by graph surgery: starting
from a soliton ¢, on R, one can try to “fit it to G”, without increasing its
energy. Whenever this can be done, the Theorem guarantees that G admits a
ground state.

A simple example where this can be done is the real line with a pendant,
that is, the graph in Fig. 21.

Theorem 6.3. Let G be the real line with a pendant of length £. Then

inf E(u,G) < E(¢,,R),
L P,9) < B0 )

so that G admits a ground state.
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Fig. 21. A line with one pendant (bounded edge) attached to it.

The idea of the proof goes as follows. Due to the previous corollary, it
suffices to construct a function u € H,(G) such that E(u,G) < E(¢,,R), and
this can be done by graph surgery combined with rearrangements, as follows.

(1) Take the soliton ¢, centred at zero and “cut it” at a width ¢ (Fig. 22,23).

Fig. 22. First step: cut the head of the soliton.

4 \\ I |
) ) 1

—0/2 £/2 —£/2 /2

Fig. 23. One is left with one head and two tails.

(2) Join the two resulting soliton tails at their maximum, and place them on
the line in G, with the maximum at the vertex (Fig. 24).

(3) Rearrange the head of the soliton to a monotone function on the interval
[0,4] (Fig. 25). This monotone rearrangement lowers the energy level of
this portion of function.

(4) The function on the interval can be attached to the function on the line,
thus building a function on G (Fig. 26): In this way, one produces a
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Fig. 24. Second step: glue the two tails together.

Fig. 25. Third step: rearrange monotonically the head of the soliton.

function v € H ;(g) such that
E(U, g) < E(Qbu, R)

(the strict inequality is due to the rearrangement performed on the in-
terval, “from symmetric to monotone”, in step (3)). By the existence
theorem, then, G admits a ground state.

We point out that we did not construct the ground state, but just a com-
petitor u, with an energy level lower than the soliton’s.

Other examples of graphs where the corollary can be successfully applied
are shown in Fig. 27, 28.

For each of these graphs, let us shortly see how one can build a function
u € Hﬁ(g) such that E(u,G) < E(¢,,R), and thus prove the existence of a
ground state.

The first case, the so called “bubble towers”, are graph of the kind portrayed
in Fig. 29 (as already seen in Theorem 5.1):

Each of them is obtained from R, with the identification of some pairs of
opposite points:

xj~ —xj, j=1,...,n (n bubbles).

The symmetry of these graphs enables them to support a soliton ¢, ex-
ploting the even symmetry of the soliton:

Ou(rj) = du(=25),  J=1,...,n.
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Fig. 26. Last step: mount the function on G.

Fig. 27. Left: A line with a tower of bubbles. Right: A signpost graph.

As Fig. 30 shows, a soliton ¢,, can indeed be folded and placed, isometrically,
on the line with two bubbles:

Thus, in a sense, G “supports” a soliton ¢, and this fact, combined with
the level-pinching inequality, shows that

inf F(v,G) = E(é,,R).
o) (v,G) = E(¢u, R)

This “folded soliton” is therefore not just a competitor, but precisely the ground
state.

In a similar way, one can see that any tower of bubbles supports a (suitably
folded) soliton, hence any tower of bubbles has a ground state, and it is not
difficult to show that the ground state is unique, up to multiplication by a
phase.

Also in the second example, the “signpost graph”, there is a ground state.
Indeed, a soliton ¢,,, initially folded on a “double bubble”, can be partially
rearranged and fitted to the signpost (see Fig. 31).

- O - <

Fig. 28. Left: A tadpole graph. Right: A 3-fork graph.
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Fig. 29. Some examples of bubble towers.

Fig. 30. How to cut a soliton to fix it on a given bubble tower.

Fig. 31. From a bubble tower to a signpost.
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Fig. 32. From bubble tower to tadpole.

In the above picture, v* denotes the monotone rearrangement of v (from the
circle to an interval of the same length, that is, “from symmetric to monotone”).
The loss of preimages in passing from v (regarded as an even function) to v*
(regarded as a decreasing function) makes the energy decrease and go below
E(¢u,R). As before, we did not build a ground state, just a good competitor.

Also in the case of the “tadpole graph” we can partially rearrange the com-
petitor alredy built on the double bubble (see Fig. 32)

Here, in addition to the rarrangement of v, we also rearrange w (from the
real line) to w* (to the half-line), which further decreases energy.

Finally, a similar procedure applies to the case where the graph is a “3—
fork”. Starting from the competitor on a double bubble, we first “open up” the
two circles corresponding to the two bubbles, and we rearrange w to w* (on the
half-line), as illustrated in Fig. 33.

Now, the arc of circle with the free endpoint from the lower bubble, and
the two arcs of circle from the upper bubble, can be seen as the three bounded
edges forming the fork (see Fig. 34). Of course, by a proper choice of the size of
the bubbles and the cut-points, a 3-fork with edges of any size (not necessarily
equal) can be handled.

In the examples we have seen, the topology of G was enough to guarantee a
ground state, while the metric of G (i.e. the lengths of its edges) was irrelevant.
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Fig. 33. Open the arcs in the bubble tower.
U
/ u
00 + ®
w* v
x

Fig. 34. Reconstruct the 3-fork.

However, in general, things are more complicated, and also the metric of G
may play a role.

We will consider two examples where this is the case:

e graphs with just one half-line;

e graphs where phase transitions occur, from existence to nonexistence of
ground states, if we vary the length of just one edge.

Let G be a graph with just one half-line (Fig. 35).

The main question is, of course, whether G admits a ground state for every
value of the prescribed mass p. This is nontrivial, since one can check that such
a graph (due to the presence of just one half-line) does not satisfy assumption
(H), and hence the existence of ground states cannot be a priori ruled out.

Fig. 35. A graph with one halfline.
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Fig. 36. A graph obtained by attaching a half-line to a compact graph K.

K

Fig. 37. The n-fork graph.

As we have seen, several examples of graphs with just one half-line (tadpole,
2—fork, 3—fork) indeed admit a ground state for every p.

However, this is not true in general, and counterexamples can be con-
structed.

Let I be any compact graph, and let G be the graph obtained by attaching
one half-line to K (Fig. 36):

Theorem 6.4. There exists € > 0 such that if

1 p—2

B d; - - _£ -
w” diam(KC) + 7 length (K) <e, p )

then G has no ground state with mass p.

The proof is quite involved and requires several sharp estimates, the in-
terested reader is referred to [9]. The main idea, however, is simple: a small
diameter of the compact core K, combined with a long total length, rules out
ground states, because tangled compact parts are not energetically convenient.
Any competitor u, due to the structure of K, is indeed forced to either oscillate
(and thus have many preimages) or, on the contrary, to be almost constant,
and neither behaviour is energetically convenient if u is compared to a soliton
of the same mass.

A concrete case where this result applies is when G has the shape of an
n—fork, namely n terminal edges of length ¢, attached to a half-line (Fig. 37).
In this case, we clearly have diam(K) = 2¢ and length(K) = n (. If we fix
the value of the mass p > 0, and then we take ¢ small enough (depending on
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Ie
00 00

Fig. 38. A graph made of three half-lines and a terminal edge.

w) and n large enough (depending on p and ¢), then the theorem applies, and
the resulting G has no ground state.

Explicit computations show that, at least when p = 4, any n > 5 is sufficient
for the counterexample, while on the other hand n > 3 is necessary, because we
know that any 3—fork has a ground state.

Finally, it is not known whether one can build the counterexample with
n = 4, that is, it is not known whether a 4-fork always has a ground state.

Now we discuss an example of a metric graph G such that varying the length
of just one edge (without affecting the topology of G) may lead from existence
to nonexistence of a ground state.

Let G, consist of three half-lines and one terminal edge of length /¢, all
emanating from a common vertex (Fig. 38)

Clearly, as long as £ > 0, the topology of G, is independent of the length £.
Nevertheless, we have the following

Theorem 6.5 (phase transition). There exists a critical length £* > 0 such
that:
Gr has a ground state <= £ > {*.

The idea of the proof is that, once the mass p has been fixed, if £ is long
enough then G, has a ground state (this is true in general, as soon as a graph
G has a long enough terminal edge), which resembles a half-soliton with the
head at the tip of the bounded edge. On the other hand, if Gy had a ground
state for every ¢ > 0, then by a compactness argument also the 3-star graph
Go would inherit a ground state, which is a contradiction since Gy is known to
have no ground state. This shows that at least one transition (from existence
to nonexistence of a ground state) must occur, as ¢ is decreased: then, the fact
that exactly one transition occurs requires a more careful analysis, based on a
monotonicity argument.

This example shows that, in general, the topology of G is not enough, alone,



146 RICCARDO ADAMI, ENRICO SERRA, PAOLO TILLI |38]

to establish whether G has a ground state of a given mass, and also the metric
properties of G (together with its topology) should be considered.

7 - The critical case: p =26

In this section we describe some results concerning the existence of ground
states for the critical NLS energy functional

1 1
B(u,G) §/|u'|2dg[,-— 6/u|6dx
g g

on the space H}\(G), where G is a noncompact metric graph (see Fig. 1). The
content of this section refers to [10].

According to (6), the solutions to (5) are solutions of the L?—critical stationary
NLS equation
u +u® = wu on G,

with Kirchhoff conditions (7) at each vertex v of the graph.

This problem is much more delicate than the subcritical one, where the
exponent in the nonlinearity lies in the interval (2,6). One of the reasons is
that, as discussed in Sec. 2.1 under the formal mass-preserving transformation

w(x) — ux(z) = Vau(Az),
the kinetic and the potential terms in E scale in the same way:
(11) E(uy,A7'G) = N E(u,9),

which is typical of problems with serious loss of compactness.

In the critical case the problem depends very strongly on the mass y and on
the ground state energy function £g(u) defined in (5), which will play a central
role in all of our results.

Example 7.1. The real line (G = R). The situation is very different from
the one encountered in Sec. 3.1 for the subcritical case.
Indeed, it is known that there exists a number ugr > 0, the critical mass, such

that
_J0 if < pr _
= {—00 if b > pr <MR N m/ﬁ/z) '

Moreover Er(p) is attained if and only if p = pgr. The ground states, called
solitons, form a quite large family: up to phase and translations, they can be

written as

oa(z) = VAp(Az),  A>0,
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where ¢(z) = sechl/Q(%x).
Example 7.2. The half-line (G = RT). Again, there erists a number
pr+ = pr/2, such that

Ene (1) = {0 Vs b (mr = 7v3/4).

—00 if > pg+

Moreover Er(p) is attained if and only if 4 = ug+. The ground states (half-
solitons) are the restrictions to Rt of the family ¢).

Thus on the standard domains R and R the minimization process (5) is
extremely unstable, with solutions existing for a single value of the mass.

This behavior is due to the same homogeneity of the kinetic and potential
terms under mass-preserving scalings and the invariance of R and R™ under
dilations.

On a generic noncompact graph G however, the problem can be highly
nontrivial and entirely new phenomena may arise, depending on the topology
of the graph.

Here we describe these new phenomena, essentially by classifying all graphs
from the point of view of existence of ground states.

7.1 - The critical mass

The first thing to do is to understand the appearance of the critical mass pg
(or pg+) in the problems on classical domains and to identify the same notion
for general graphs. This is carried out by analyzing the Gagliardo-Nirenberg
inequality, a fundamental tool in all the existence proofs.

The Gagliardo—Nirenberg inequality on R reads

lullg < Cllallz - llu'l13 Vu € H'(R).
The best constant (the smallest C') is

6 6
u u
Koe wp Bl
wert@®) ullz - W13 weniwy w? - llvl3
uZ0

Therefore
ull§ < Krp?|lu'||3 Vu € H,(R).
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Now for every u € H}L(R),
65 (u,R) = 3]l'[[5 — llull§g > 3llu'13 — Krp|lu'|I3
= [lu/l3 (3 — Kap?)

so that
p? <3/Kg = FE(u,R) >0 for alluEH;(R).

On the other hand, if y? > 3/Kg, and u is close to optimality in the Gagliardo—
Nirenberg inequality, i.e. ||ul|$ > (Kg — )u?||v’'||3, then

65 (u,R) = 313 — llullé < /)3 (3 — (K — £)u?) < 0
for small €, and therefore
p?>3/Kp — Eu,R)<0 for someueH}L(R).
By mass—preserving scalings (11) it is then easy to see that
p? <3/Kp = Er(u) =0,

/LQ > 3/KR = Er(p) = —o0.

Therefore,
3

2—_

This motivates the following definition.

Definition 7.1. The critical mass for a noncompact metric graph G is
the number
3

ug = K—97

where K is the best constant for the Gagliardo—Nirenberg inequality on G.

Remark 7.1. It is not difficult to see that for every noncompact G,
Kr < Kg < Kp+
so that
pr+ < pg < UR.
Thus every noncompact graph is in this sense intermediate between R™ and R.

In view of the preceding discussion it is easy to prove the following state-
ments
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Proposition 7.1. Let G be a noncompact metric graph.

o If < g, then Eg(p) =0, and is not attained when p < pg.
o If > ug, then Eg(p) < 0 (possibly —oo).

o If > ug, then Eg(u) = —oo.

Corollary 7.1. A necessary condition for the existence of a ground state
of mass p is that
1€ (g, pr].

7.2 - The results

The necessary condition of Corollary 7.1 is far from being sufficient. The
existence of ground states depends mainly on the topology of the graph G,
according to the following four mutually exclusive cases:

1. G has a terminal point (Fig. 39).
2. G satisfies Assumption (H) introduced in Sec. 4 (Fig. 40, 41).
3. G has exactly one half-line and no terminal point (Fig. 42).

4. G has none of the above properties (Fig. 43).

Fig. 39. Case 1: a graph with a terminal point.

We now list the main results, case by case.

Theorem 7.1 (Case 1). Assume that G has at least one terminal point.
Then
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oo

o o
Fig. 40. Case 2: a graph satisfying assumption (H).

o

& 0o

Fig. 41. The graph portrayed in Fig. 40 and a covering made of 7 cycles.

® g = PR+
o when p € (uge,pr), Egln) = —o0

o when = up+, Eg(p) =0 but is attained if and only if G is a half-line.

The result shows that in the presence of a terminal point ground states do
not exist (except when G = R™).

The terminal edge behaves like R, almost supporting a half-soliton. The
“almost” however cannot be eliminated, resulting in nonexistence of ground
states.

It is easy to check the second statement in the theorem. Indeed, take u
compactly supported on RT, with ||ul|3 > pr+, and such that E(u,R*) < 0.
The last condition can be fulfilled because the mass of u is strictly larger than
U+, the critical mass for the half-line. Now scale u by introducing uy(z) =
Vu(Az), with A so large that the support of uy is contained in an interval
shorter than the terminal edge of G. Place u) on the terminal edge of G and
extend it to zero elsewhere on G. Then

E(uy,G) = E(uy,RT) <0,
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Fig. 42. Case 3: a graph with exactly one half-line.

Fig. 43. Case 4: a graph without terminal points, without cycle covering and with
more than one half-line. No cycle can cover the thick edge.

so that

lim F(uy,G) = lim E(uy,R") = lim M E(u,RT) = —oo.
o0

A—00 A—00

Theorem 7.2 (Case 2). Assume that G satisfies Assumption (H), so that
it has a cycle covering. Then

° [ig = IR

e &;(ur) =0 and is attained if and only if G is R or a tower of bubbles.

This result shows that in the presence of a cycle covering ground states do
not exist, except when G is R or a tower of bubbles (Fig. 29).

Theorem 7.3 (Case 3). Assume that G has exactly one half-line and no
terminal point. Then

* g = g+
o &(pn) <0 (and finite) for every u € (ugp+, Ur]

o Eg(p) is attained if and only if p € (up+, ur)-
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This result unveils totally new phenomena: first of all, ground states exist
for a whole interval of masses, a feature that is completely absent on the stan-
dard domains R and R™. Secondly, ground states have negative energy, which is
normal for subcritical problems, but highly unexpected in the L?—critical case.
The ultimate reason for this is the nontrivial topology of certain graphs with
respect to that of R or RT.

The proof of Theorem 7.3, is very involved. A sketch of some key steps will
be given in Section 7.3.

We conclude with the last result, whose structure is a bit different from that
of the preceding Theorems.

Theorem 7.4 (Case 4). Assume that G has no terminal point, no cycle
covering and more than one half-line. If, in addition,

HG < HR,

then

e £(u) <0 (and finite) for cvery € (g, pe]
o &g(u) is attained if and only if u € [ug, ur].

The same comments of Theorem 7.3 apply: again ground states exist for a
whole interval of masses, and again ground states have negative energy. This
time however a new feature appears: ground states exist also for y = ug. This
fact is particularly interesting from the functional analytic point of view. In-
deed, since £g(ug) = 0, any sequence such that [luy|[12(g) — 0 is a minimizing
sequence and clearly compactness is lost at this level: there exist minimizing se-
quences at level zero that are not precompact. However, a minimizer exists. To
obtain a ground state it is therefore necessary to select accurately a particular
minimizing sequence, in order to avoid falling onto a bad sequence.

Finally, some comments on the assumption pug < pg are in order.
There are graphs where it is automatically satisfied, for example the signpost
graph (44), independently of the lengths ¢;, f:

The existence of graphs of the fourth kind where pug = pgr is an open
problem. We conjecture that in this case the sole topology of the graph is not
enough to guarantee the existence of ground states. Most likely the metric
properties of the graph play a role too in this case.
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¢
’ pg < pr VL1, 4o

12

Fig. 44. A signpost graph: for every value of £1, {5, this graph satisfies the hypothe-
ses of Thm. 7.4.

7.3 - Some key steps of the existence proofs

The main ingredient of the existence proofs in Theorems 7.3 and 7.4 is the
following modified Gagliardo-Nirenberg inequality, whose proof is technically
very involved.

Lemma 7.1 (Modified Gagliardo—Nirenberg inequality). Assume that G
has no terminal point and let p < ugr. For every u € Hﬁ(g) there exists
0 € [0, u] such that

(12) [ullfeg) < Kl — 0)%|[u/|[72() + CO"?,
with C' depending only on G.

We recall that the standard Gagliardo-Nirenberg inequality (with best con-

stant) reads

lullfog) < Kol 7oy Vu € Hy(9).
In (12) the constant 6 depends on u. However, the inequality holds with a
smaller constant (Kr < Kg), a smaller mass (u — 6 < p) and the price is
reasonable: C0Y2 < Cpl/2.

With this inequality, it is simple to show that minimizing sequences are
bounded, which is the first (and in this case more delicate) step towards an
existence result.

Indeed, take p € (ug, ur]. Then, by Proposition 7.1, Eg(u) < 0, say Eg(p) <
—a < 0.

Let now u, be a minimizing sequence for E and let ,, be the constant in
(12) associated to u,. Then, for n large,

—6a > 6E(up, G) = 3y |13 — [lunll§ > (by (12))

> 3[up5 — Ke(p — 6n)* |[u |3 — €62
lu 3 (3 — Kg(p — 0n)?) — COY/?
—CoL2,

(AVAY
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since
3 — Kr(p—0n)* >3 — Kpp® > 3 — Kppk = 0.

This shows that
CHL/? > 6a,

uniformly in n.
For this reason, 3 — Kg(u — 6,)? > 6, so that

6o > 2l 3~ €03

from which we see that |u),||2 is uniformly bounded. Once this is established,
it is also very easy to see that ||u,[|rr(g) is uniformly bounded too. Then one
can extract suitable subsequences and the proof of existence follows easily (in
most cases). Only in Theorem 7.4 (when p = ug) a supplementary analysis is
needed in order to construct a particular minimizing sequence.

8 - Conclusions and perspectives

Inspired by physical applications, the problem of the existence of ground
states for the focusing NLS on branched structures has proved challenging from
the mathematical point of view too, giving rise to a new chapter in the Cal-
culus of Variations, in which established techniques mix with graph theoretical
notions and results. In particular, topology and metric of a graph interact in a
highly nontrivial way, so that investigating the existence of a ground state can
involve either topological consideration or hard estimates.

The results we presented here focus on graphs with a finite number of edges
and vertices, that include at least one halfline. This means that, on the large
spatial scale, all these graphs look as star graphs, and the compact core plays
the role of a vertex, possibly with an internal structure. This large-scale point
of view has never been seriously considered, but it could be effective in order
to describe ground states at low masses.

However, in all these examples the large-scale structure is still the same of
a network, while it would be interesting to consider examples in which such
a structure becomes genuinely two-dimensional, reconstructing for instance a
stripe in the plane or even the entire plane. For the first example, one could con-
sider the case of a graph made of two parallel halflines joined together through
infinitely many parallel edges, in such a way that the distance between two
consecutive edges is constant (infinite ladder graph); for the second case, the
most immediate example is surely given by the square grid. We are currently
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investigating this case, and we found that the two-dimensional large-scale struc-
ture plays a very important role resulting in a substantial change in the kind of
results we are proving. Furthermore, periodicity avoids the presence of halflines
and then of quasi-solitons, so that lack of compactness in minimizing sequences
can be due either by spreading or by concentration only.

Beyond the problem of ground states, the issue of the existence and the
shape of generic standing waves is very topical and will be addressed in forth-
coming papers too.

Far beyond these investigations, one could also think of the possibility of
approximating regular domains in more dimensions with metric graphs becom-
ing more and more dense. This research line is very likely for a future long-term
project.
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