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their consequences

Abstract. We consider evolution operators G(t,s) associated to a class of non-
autonomous elliptic operators with unbounded coefficients, in the space of bounded
and continuous functions over R?. We prove some new pointwise estimates for the
spatial derivatives of the function G(¢,s)f, when f is bounded and continuous or
much smoother. We then use these estimates to prove smoothing effects of the
evolution operator in L”-spaces. Finally, we show how pointwise gradient estimates
have been used in the literature to study the asymptotic behaviour of the evolution
operator and to prove summability improving results in the L”-spaces related to the
so-called tight evolution system of measures.
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1 - Introduction

In this paper we deal with nonautonomous Kolmogorov elliptic operators for-
mally defined on smooth functions v : R - R by

d
(Zp)t,0) =Y gyt Diy@) + > byt )Diy() + et ()
(1.1) ij=1 j=1
=Tr(Q(t, »)D?y(@)) + (b(t, ), V(@) + c(t, x)y ()

for any (¢,x) € I x Rd, where [ is a right-halfline (possibly I = R). In [4, 28] it has
been proved that, under mild assumptions on the possibly unbounded coefficients

d

gij, b; and ¢, an evolution operator (G(¢, $))i>se ;' can be associated to the operator . 7
in Cy(RY): for any f € Cy(RY) and I>s < t, G(t,s)f is the value at ¢ of the unique
solution u € C([s, + o0) x Rd) N CY2((s, + 00) Rd) to the Cauchy problem

Dy =.7u, in(s,+0o0) x Rd,
(1.2) { t >

U/(S, ) :fa in Rd7

which is bounded in each strip [s,s + T'] x RY. In Section 2 we will show how a so-
lution to problem (1.2) with the previous properties can be obtained.

In recent years several properties of the family G(t, s) have been investigated in
the space of bounded and continuous functions over R?. Among all of them, uniform
estimates for the derivatives of G(t, s)f have played an important role to prove ex-
istence, uniqueness and optimal Schauder estimates for the classical solution to the
nonhomogeneous Cauchy problem

19 {Dtu(t,x) = Zult,x)+g(t,x), tels, T, xecRY,

u(s, ) = f (@), x e R

! In the rest of the paper, we will denote the evolution operator simply by G(z, s).
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for any s € I and T > s. In [32], global uniform estimates for the first-, second- and
third-order derivatives of G(¢, s)f have been proved under growth and dissipativity
assumptions on the coefficients of . 7. Note that some dissipativity condition is ne-
cessary, as the one-dimensional example in [33, Example 5.1.12] shows. Actually, to
get existence and uniqueness of the bounded solution to (1.3), which belongs to
C([s, T x Rd) N CY2((s, T x ]Rd), local uniform estimates for the derivatives of
G(t,s)f are enough (see [9] where the semilinear equation Dyu = . Zu + w(u) is
considered). Uniform gradient estimates have also been proved for the solution of
the Cauchy problem associated to .7 in Cy(R2) (2 C R? being unbounded with
smooth boundary) with homogeneous non-tangential boundary conditions, see [7].

On the other hand, as in the classical case of bounded coefficients, it is natural to
extend each operator G(t, s) to some L”-space. The autonomous case shows that the
usual LP-spaces related to the Lebesgue measure are not the best choice as possible,
see Example 5.1. Sufficient conditions have been proved in [4] for G(Z, s) to preserve
LP(RY) (see also [10] for the case when the elliptic operator (1.1) is replaced by a
system of elliptic operators), which, in particular, imply rather strong growth as-
sumptions on the coefficients of the operator . 7.

The autonomous case shows that the right LP-spaces where to study the semi-
group 7'(t) (the autonomous counterpart of the evolution operator) are those related
to the so-called invariant measure , a probability measure, which exists under an
additional algebraic assumption on the coefficients of the operator .7 and it is
characterized by the invariance property

/ T@)fdp — / fin,  feCyRY.
]

R? R®

In the nonautonomous case the situation is quite different. Indeed, the invariant
measure is replaced by a one parameter family of probability measures {y, : t € I},
usually referred to as evolution system of measures. Whenever such a family exists,
it is characterized by the property

(1.4) / G(t, s)fdu, = / fdu, I35 <t, feCyRY.
{d ad

Through this formula, each operator G(t, s) can be extended to a contraction mapping
LP(RY, 1) into LP(RY, ). The following facts make the analysis of the evolution
operator in these L”-spaces much more difficult, than in the autonomous case:

e evolution systems of measures are infinitely many in general and not explicit
(except in some special case);
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o for different values of s and ¢, the measures z, and g, differ in general: even if
they are equivalent, since they are both equivalent to the Lebesgue measure,
the spaces LP(Rd, 1) and L”(Rd, 1) are different.

Hence, to study the evolution operator G(t,s) in this LP-setting one cannot take
advantage of the classical results, which require to work in spaces L”(J; X), where J
is an interval: in our situation X depends on ¢!

Among the infinitely many evolution systems of measures, the “more important”
ones are the tight evolution systems, where tight means that for any ¢ > 0 there
exists R, > 0 such that for any ¢ € I, 14(Bpg,) > 1 — ¢. The family of tight evolution
systems of measures reduces to a unique system when, for example, the evolution
operator G(t, s) satisfies the pointwise gradient estimate

(15) (V.G(t, 9))@)| < "G, )|V D), t>s, xeR?

for any f € Cg(Rd) and some constant ¢ < 0. Estimate (1.5) is the key tool to prove a
lot of important properties of the evolution operator G(t, s) in the LP-spaces related
to the tight evolution system of measures.

The aim of this paper is twofold. First, in Section 4 we prove different types of
pointwise estimates for the first-, second- and third-order spatial derivatives of
G(t,s)f. More precisely, we provide sufficient conditions for the estimates

(1.6) IDEGt, 9)f P < Tt — )G, 5) ( > |Df'f|2) ,
j=1
h
(1.7) IDEG(t, 9)f " < T, (t — )G, s)( D-7f|2>
j=0

to hold in R? for any t >sel, he {0,...,k}, k=1,2,3 and p € (p*,+ ) for a
suitable p* € [1, 4 o0), where I” ;}?c and I” ;f}?k are positive functions. All of these es-
timates are proved by using a variant of the maximum principle for operator with
unbounded coefficients and, as one expects, they are derived under more restrictive
assumptions on the coefficients of . 7. We deal also with the case p = 1 which is much
more delicate and requires stronger assumptions. Indeed, as [3] shows, the algebraic
condition D;q;; + D;qy; + Djqy = 0in I x R? for any i,j,1 € {1,...,d} with ¢ #£ 1 #j,
is a necessary condition for (1.6) (with & = 1) to hold. For this reason many results
are proved assuming that the diffusion coefficients do not depend on the spatial
variables.

Next in Section 5 we present many interesting consequences of the previous
estimates in the study of G(t, s) in LP-spaces. In particular, we stress the prominent
role played by estimate (1.5), illustrating its main applications known in the litera-
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ture. First of all, estimate (1.5) allows to prove a logarithmic Sobolev inequality for
the unique tight evolution system of measures y, i.e., the estimate

[ 11101V, <1517, 0RO )
d

(1.8)
+Cp / |f|p72|vf|2)({f;e0}dﬂ37

for any smooth enough function f and some positive constant C,, independent of f.
Besides its own interest, which consists of the fact that (1.8) is the counterpart of the
Sobolev embeddings which fail in the LP-spaces related to the measures u; (see
Example 5.2) inequality (1.8) is crucial to deduce the hypercontractivity of the op-
erator G(t, s) in the LP-spaces related to u,. Further and stronger summability im-
proving properties of the operator G(Z, s) are also investigated and, in most the cases,
a characterization of them is given in [5].

In the last subsection we deal with the time behaviour of G(t,s)f, as t — + oo,
when f € LP(R?, us). Using the hypercontractivity of G(t,s) and the Poincaré in-
equality in L2(R?, 11,), we connect the decay rate to zero of [|G(t, s)f — f,|| Lo(re O
the decay rate to zero of ||V,G(t, S)ny»([ ) 38 t — -+ oo, obtaining as a con-
sequence an exponential decay rate to zero 0f |G(t, s)f — ]l Lore, gy 38 T — +00.
Here, f, denotes the average of f with respect to x,. All these results are based
heavily on the estimate (1.5) whose validity, as already observed, is guaranteed
under quite stronger assumptions on the coefficients of . Z. The convergence to
zero of ||G(t,s)f — £l Lore, ) Can also be proved without assuming the validity of
gradient estimates of negative type, using different arguments that we present
with some details. As a matter of fact, in this situation, we can not prove an
exponential decay rate.

We point out that the convergence results are quite involved since the measures
1, depend themselves explicitly on time too.

Notations. Throughout the paper we use the subscripts “6” and “c”, which stand
for “bounded” and “compactly supported”. For instance, C;(R?) denotes the set of all
bounded and continuous functions f : R? — R. We endow it with the sup-norm
| - || - For any k > 0 (possibly k& = + c0), Cé“(]Rd) denotes the subset of Cy(R?) of all
functions f : R? — R that are continuously differentiable in R? up to [k]th-order,
with bounded derivatives and such that the [k]th-order derivatives are (k — [k])-
Hélder continuous in RY. C’“(Rd) is endowed with the norm ||f|lqxge =
> i<t 1% oo + 22 = LD f]Ck gty For any domain D C R and « € (0,1),

C*>*(D) denotes the space of all Holder-continuous functions with respect to the
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parabolic distance of R, Similarly, for any h,k e NU{0} and o€ [0,1),
Ch+2/2k+2(D) denotes the set of all functions f : D — IR which (i) are continuously
differentiable in D up to the Ath-order with respect to time variable, and up to the
kth-order with respect to the spatial variables, (ii) the derivatives of maximum order
are in C*2%(D) (here, C*? := C). By Cﬁ;“/ 25+ D) we denote the set of all functions
f : D — R which are in C"**/2%+%(Dy) for any compact set Dy C D. For any measure
positive u, the Sobolev space W’“”(Rd, w (ke NU{0} p €[1,+occ)) is the set of all
functions f € LP(RY, 1), whose distributional derivatives up to the kth-order are in
LP(RY, ). Tt is normed by setting ||f lwiora ) = Z]k:o | DF || Lord - When g is the
Lebesgue measure we simply write W*?(R?). For any real function f we denote by
/T and f~ respectively its positive and negative part. Finally, by B, and 1 we denote,
respectively, the open ball in RY centered at the origin with radius » and the function
identically equal to one in RY,

2 - Main assumptions and preliminaries

Throughout the paper, we assume the following conditions on the coefficients of
the operator .7 in (1.1).

Hypotheses 2.1. () gy, bi, ¢ belong to Cﬁ)/cz’“(l x RY) for some o € (0,1) and
any 1,7 =1,....d;

(ii) the matrix Q(,x) is symmetric for any (t,x) € I x R? and Vo = inf ItV >0
where v(t, x) is the minimum of the eigenvalues of Q(t, x);

(iii) ¢o := sup;, ga € < +00;

(iv) there exist a positive function ¢ : RY — R blowing up as || tends to + oo,
and, for any [a,b] C I, a positive constant gy such that 7o < l,pp n
[a,b] x R

Under the previous set of assumptions in [4, 28] it has been proved that, for
any f¢€ Cy(RY and s € I, the Cauchy problem (1.2) admits a unique solution
u € CO(s, +00) x RY) N CL2((s, +00) x RY) (a so-called classical solution) which is
bounded in the strip [s, T'] x RY for any 7' > s. In addition, u satisfies the estimate

(2.1) ot oo < €21 s t>s.

Actually, the existence of a solution to problem (1.2) can be proved also without
Hypothesis 2.1(iv) (which is used to prove the uniqueness of the solution) as the
following lemma shows.
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Lemma 2.1. Under Hypotheses 2.1(2)-(i12), for any f € Cb(Rd) the Cauchy
problem (1.2) admits a solution u € C([s, +00) x RY) N CL2((s, + 00) x RY), which
satisfies estimate (2.1).

Proof. Forany n € N and any nonnegative function f € Cyp(RY), consider the
Cauchy-Dirichlet problem

Dy = _7u, in (s,+00) x By,
(2.2) u =0, on (s, + 00) X OBy,
’LL(S,') :fa in Bn

It is well known that, for any n € IN, the previous Cauchy problem admits a unique
classical solution u,, and it satisfies the estimate

(2.3) o, Moy < €N 1l t>s.

As it is immediately seen, the function w,, = u,, — u,.1 satisfies the inequality
Dyw, — 7w, = 0in (s, + 00) X B, is nonpositive on (s, + 0o) x dB,, and vanishes on
{s} x B,,. The classical maximum principle shows that u,, < u,.1 in (s, + c0) X Bj,.
Hence, for any (¢, x) € (s, +00) X Rd, the sequence (u,(t, x)) converges. We can thus
define a function u : (s, + 0c0) x R? = R by setting wu(t, ) = lim,, ., o u,(t, x) for any
(t,x) € (s, 4+ 00) x RY. Clearly, u satisfies (2.1). On the other hand, the convergence is
also in C'2([a, b] x K) for any pair of compact sets [a,b] C (s, +o0) and K C R%asa
consequence of the classical interior Schauder estimates (see e.g., [31])% This implies
that u solves the differential equation in (1.2).

Let us prove that « can be extended to [s, 4+ 0o) x R? with a continuous function
and u(s, -) = f. We use a localization argument and, to avoid cumbersome notation,
we denote simply by C a positive constant, which may depend on m but is in-
dependent of k, and may vary from line to line. We fix m € I\ and a smooth function <
such that yp <d<yp . If k>m then the function v; = du; belongs to
C([s,+ o0) X By, 1) and solves the Cauchy-Dirichlet problem

Dy, = 2 — yy, in(s,+00) X Byyy1,

v, = 0, on (s, +00) X OBy41,
(s, ) = 9f, in By.1,

2 Actually, the interior Schauder estimates imply via a compactness argument that a
subsequence (u,,) converges in C**([a,b] x K) and the pointwise convergence of (u,,) shows
that, in fact, all the sequence u,, converges in C*%([a, b] x K).
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where v, = 2(QV,uy, VI) + u; Tr(QD?S) + uy, (b, V). The solution to the previous
nonhomogeneous Cauchy problem is given by the variation-of-constants formula

t
it ) = Gruna, 9)f — / Gt (ro g, Ve, £ 5,

where G,,.1 denotes the evolution operator associated with the realization in
Cy(By41) of the operator . Z with homogenous Dirichlet boundary conditions.
Since v, = uy, in (s, + 00) X By, if « belongs to B, then it holds that

t
(24)  |ur®, ) — f@)| < |(Gri1(E, ) (@) — f(2)] + / [(Grps1 (7, )y (1, ) (@) |dr,

which implies that
|ult, ) — f@)] < [(Grusa (@, $)f)) — f(@)]

t
+ lim sup/ |(Gm+1(7'7 S)l//k(T’ ))(x)‘dqf‘

k—+ o0

Clearly, (G,,.1(t, s)f)(x) converges to f(x) ast — s*. On the other hand, the integral
term vanishes as ¢t — s, uniformly with respect to k. Indeed, using (2.3) we can
straightforwardly estimate

(2.5) it 2)| < C(eco<t_8)||f“oc + || Veug(t, ')HL*(BWH))a t>8, 0By

Moreover, the estimates in [22, Theorem 3.5] and (4.2) show that |V,u.(t, x)| <
Ct— s)’1/2||f\|Oc for any t € (s,s+ 1] and « € B,,.1. Combining this estimate and
(2.5) we deduce that |y, (t,2)| < C(t — ) /?||f||. for any (t,x) € (5,5 + 1] X Byi1,
and k > m. Since [|Gyy1(t, 9|, ety < € for any t > s and m € N, it thus fol-
lows that (G410, )y (r, N@)| < Clr — $) V2 for any (r,x) € (s,s + 1] x By;+1, and
it is now clear that the integral term in the right-hand side of (2.4) vanishes ast — s™,
uniformly with respect to k.

By the arbitrariness of m we have so proved the assertion of the theorem for
nonnegative functions f € Cy(R%).

For a general f € C,(R?) we split f =+ — f~ and observe that the solution to
problem (2.2) is the sum of the solutions u,, ; and u,, _ of this problem corresponding
to f* and f~ respectively. Since the sequences (u,, ) and (u, _) converge to the
solutions to problem (1.2) with f replaced respectively by f* and f~, u, converges
pointwise to a solution % to problem (1.2) which belongs to C([s,+ oo) X Rd)ﬂ
C12((s, +00) x Rd) and satisfies estimate (2.1). This completes the proof. O
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Remark 2.1. Some remarks are in order.

@) If f > 0, then the solution to problem (1.2) is the minimal among all the so-
lutions which belong to C([s, + oo) x RY) N C12((s, + 00) x R?) and are boun-
ded in each strip [s, T'] x RY. Indeed, if w is any other solution, then, for any
n € N, the function z = w — u,, (where u,, is as in the proof of the previous
theorem) solves the equation Dz = .7z, 2(0,-) = 0 and z is nonnegative on
(s,+ 00) x 9B,,. The maximum principle in [26] and [21, Theorem A.2] implies
that z > 0, i.e., u, < w in (s, + o0) x B,,. Letting n — + co we conclude that
u < win (s, +00) X R,

(ii) Hypothesis 2.1(iii) can not be avoided. Indeed, let us consider the one di-
mensional autonomous operator . Z = D,, + ¢ and assume that c(x) diverges
to +oo as x — +oo. Fix n € N, let M,, > 0 be such that c(x) > n for any
x € (M,,+00) and suppose that u € C2((0,+oc) x R) N C([0, 4 00) x R)
solves the equation Dyu = . Zu in (0,4 00) x R, u(0,-) =1 in R and u(,-) is
bounded in R for any ¢ > 0. Then, Dyu > D .u + nu in (0, + co) x (M, + 00).
A comparison argument (see [26] and [21, Theorem A.2]) shows that
u(t, x) > e"v(t,x — M,) for any (¢,x) € (0,4 o) x (M, + o), where v is the
unique bounded classical solution to the Cauchy-Dirichlet problem

v(t,0) =0, t € (0,4 00),

{ Dw(t, x) = D, v, x), te0,+00), €0+ c0),
v(0,2) =1, x € (0, + o).

It thus follows [ju(, )| > e"(t,1) for any n € N and ¢ € (0, + o). Since
v(t,1) > 0 for any ¢ > 0, letting % tend to + oo in the last inequality we get to a
contradiction.

(iii) Hypothesis 2.1(iv) is used to prove a variant of the classical maximum principle
(see[4, 28]). Without such an assumption, the Cauchy problem (1.2) may admit
more than a unique solution % € C12((s, + 0o) x RY) N C([s, + 00) x R?) which
isboundedin[s, T] x R for any T' > s. This was known since the middle of the
last century in the one-dimensional case. Indeed, Feller provided in [20] a
complete characterization of the operators .72 = qD,, + bD,, for which the
elliptic equation Au — . Z2u = f € C;(R) admits/does not admit for 1 > 0 a un-
ique solution % € Cy(R) N C2(R). The characterization is given in term of in-
tegrability properties at infinity of the functions @ and R defined by

1 [o1

for any x € R, where W is, up to a multiplicative constant, the wronskian
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determinant associated to the ordinary differential operator qD,., + bD,, i.e.,

&€

W(x):exp(—/%ds), x e R.
0

It turns out that the above elliptic equation admits a unique bounded solution
u € C2(R) for any f € Cy(R) if and only if R is not integrable either in a
neighborhood of — oo and in a neighborhood of — oco. On the other hand, if R is
integrable both in a neighborhood of + oo and in a neighborhood of — co, then
all the solutions of the equation Au — qu” — bu' = f € Cy(R) are bounded.
Based on this remark, consider the operators . 7, = D,, +«*D, and .7_ =
D, — x*D,. In the first case,

X X

Q@) = ex4/4/eis4/4ds7 R (x) = 67x4/4/634/4ds
0 0

for any x € R. The function R, belongs to L(( — co,0)) N L} (0, + cc)) and
consequently, for any f € Cp(R?), the equation u — .7 u = f € C3(R) admits
infinitely many bounded solutions v € C?(R). From any of such solution we
obtain a solution % of the parabolic equation Dyu — . Zu = 0 which belongs to
C12([s,4 00) x RY) and is bounded in any strip [s,7]x R% simply by
considering the function u defined by u(t,x) = e/ *v(x) for any (t,x) €
[s, + 00) x R%. Hypothesis 2.1(iv) is not satisfied by operator . 7, .

On the other hand, if we consider the operator .Z_ then the function
¢ : R — R defined by p(x) = 1 + 22 for any « € R satisfies Hypothesis 2.1(iv)
and the Cauchy problem (1.2) is uniquely solvable for any f € Cy(R).

In the rest of this paper we will always assume that Hypotheses 2.1 hold true.

In view of Lemma 2.1 and Remark 2.1(iii), we can associate a family of bounded
operators in C,(R?) to the operator . Z: for any f € C,(R?) and I>s < t, G(¢, s)f is
the value at ¢ of the unique classical solution to problem (1.2). Estimate (2.1)

guarantees that each operator G(t, s) is bounded in Cb(le) and, again the variant of
the classical maximum principle, yields the evolution law G(t,s) = G(t, r)G(r, s) for
any I3s<r<t.

As it has been proved in [4], a Green kernel can be associated with the evolution

operator G(t,s), i.e., there exists a function g : {(t,s) € I x I :t > s} x R? x RY —
(0, + co) such that

(2.6)

(G(t, 8)f () = / f@gtt,s, v, pdy, t>sel ayeR? feCyRY.

R¢
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For any fixed s, t and «, the function g(Z, s, «, -) belongs to LY(RY) and its L!-norm is
bounded from above by e®~%. In particular, if ¢ = 0, then g(t, s, x, y)dy is a prob-
ability measure. From (2.6) it follows immediately that

(2.7) (G, s)(fpl@) < [(G(E, S)Iflp)(%)]f%[(G(t,S)Iglq(%)]%, t>selxweR’
for any f,g € C,(R%) and p, q € (1, + co) such that 1/p + 1/g = 1. Moreover,
(2.8) (Gt )@ < (G, 9)|f )@, t>sel, xeR? feCyRY,

for any p € (1,4 00), if ¢y < 0. For estimates for the Green function g, we refer the
reader to [29, 30].

3 - Uniform estimates for the spatial derivatives of G(, s)f and consequences

One powerful tool used to prove estimates for the derivatives of solutions to
Cauchy problems (mainly in the whole space) is the well celebrated Bernstein
method (see [11]) which goes back to 1906, and the reiteration theorem (see [40]).
The Bernstein method, used in the case of bounded coefficients, works well also in
the case of unbounded coefficients, provided suitable both algebraic and growth
conditions on the coefficients of the operator . Z are prescribed. More precisely,
assume that

Hypotheses 3.1(k). (i) the coefficients q;;,b; (1,7 =1,...,d) and c belong to
CH/2H (o RY):

loc

(ii) there exist two locally bounded functions Ci,Cs : I — R such that
Q(t, x)x| + Tr(Q(t,x)) < C1®)A + [[)n(t, ),
(bt, ), ) < CoA + |x[P)0(t, ),

Joranytelandx e R%

(iii) there exist a locally bounded function C:I — R and functions ry,r, o :
I xR = R, with inf[a’blde 0 > 0 for any [a,b] C I such that ((Jac,b)¢, &) <
70l¢[%, |Dhgy| < Cv, |D2bi| <7, |Dlc| < o in I x R? for any {0,2} # || <k,
1<|0/<k0<|gl<kij=1,...,dand¢c R%

(iv) there exist locally bounded positive functions L and M such that vy + Lyr +
Lo® < Mvin I x R%, where Ly =0, Ly = d32//8 Ls =2/v5 if d =1 and

Lg = \/d?(d + 1)/3 otherwise;
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W) if k > 2 then there exists a locally bounded function K : I — R such that

d d
2
> Dugiayan < Kvy_ ajy,
i ghk=1 =1

m I x Rd, for any symmetric matric A = (ay) and any (t,x) € I x RY
Then, the Bernstein method allows to prove the following result.

Theorem 3.2 (Theorem 2.4 of [32]). Let Hypotheses 3.1(k) be satisfied. Then,
foranyI>s <tand f e Cb(Rd), the function G(,s)f belongs to Cf(Rd). Moreover,
for any h,m € N\, with h < m < kit holds that

m h

(31) IlG(t7 S)fHC}T(Rd) S C]’L’}’Vl(t - S)_ ||f||ch(]Rd)7 t E (8) T]?

forany f € Cg(Rd) and a positive constant Cy, ,, independent of s, T and f.

The reiteration theorem allows to extend the validity of estimate (3.1) to the case
when % and m are not integers. Finally, the evolution law allows to extend (3.1) to any
t > s up to adding an exponential factor e”»=* in its right-hand side, for some
nonnegative constant @y, i.e., one can prove that

m h

”G(t> S)f”Cb’”(Rd) < Ch,m@wh""(tis)(t Hf||ch<1Rd), s <t,

for any m € (0,k), f € C{j(Rd)g. For further details, we refer the reader to [32].
Using the above uniform estimates one can prove the following optimal Schauder
estimates for the solution to the Cauchy problem (1.3).

Theorem 3.3 (Theorem 2.7 of [32]). Let Hypotheses 3.1(3) be satisfied. Fix
0e0,1), sel, geCs,T1x RY) such that supyers 1 9, )”C“ gty < +oo and
fe CQ+9(Rd) Then, problem (1.3) admits a unique solution u € Cb([s T] % RY )N
C'2((s, T) x Rd). Moreover, u(t,-) € Czw(Rd) for any t € [s,T] and there exists a
positive constant Cy such that

Sup ||u(t )chw( rRY) <Cy (”f”CbZ*”(WR“) + ts[ur%] ||g(t, .)|CI[))(R(1)> .
els,

tels,T

3 Clearly, this method is too rough to provide us with the best constant wj, ,,. Different
arguments are used to improve the asymptotic behaviour of the derivatives of the function
G(t,s)f, as we will see in Section 5.
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Proposition 3.1. Under Hypotheses 3.1(k), if f € C,ﬁ“(Rd), then all the spatial
derivatives of G(-, s)f up to the order k are continuous i [s, + co) x RY,

Proof. Since the arguments used are independent of k, to fix the ideas we
consider the case k = 3. Clearly, we have just to prove the continuity on {s} x RY of
the spatial derivatives up to the third-order of the function G(, s), since their con-
tinuity in (s, + 00) x R? is a classical result (see e.g., [22]).

The proof is based on a localization argument as in the proof of Lemma 2.1. We
fix xy € R? and m € N such that X0 € B,, and consider a smooth cut-off function 9
supported in B,,,;; and identically equal to 1 in B,,. Arguing as in the proof of
Lemma 2.1 we immediately see that

t
w(t, ) = Gy, 9)(I) + / G, r)p(r, Ydr = ui (@, ) + us(t, )

in B, for any t € (s, + c0), where y = —G(-,8)f(# — ¢)d — 2(QV,G(-, s)f, V).

By classical results, the function u; and its spatial derivatives up to the third
order are continuous in [s, + co) x By, 1. As far as ug is concerned, we observe that
there exists a positive constant C, depending also on s, such that

C
Gt (t, S)V/HC@(m) < ﬁ HWHCZ(ﬁH)a te(s,s+1),

for any w € C?(B,,,1). Since |[jw(r, Meg— CHG(T‘ )lles@— ) using Theo-

rem 3.2, we immediately deduce that [jy(r,)|g—

m+1) -

— < CHf”C;(]Rd) for any

r € (s,s + 1), where C and C are positive constants independent of 7. Thus, we

conclude that

||u/2(t )HCS(B 1) _/HGerl(t 7’)‘//(7‘ )HC3(B

+1)

g Ca”fncéc(][{d) / (t - T)_%d/}ﬂ

=2CC|| f|\cg(Rd)\/t P

for any t € (s,s + 1). Hence, letting t — s™ we conclude that u(t,-) and its spatial
derivatives up to the third order vanish uniformly in B,, as t — s*. By the arbi-
trariness of m the claim follows. O
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4 - Pointwise estimates for the derivatives of G(Z, s)f

The pointwise gradient estimates for G(t, s)f play an important role in the study
of many properties of the evolution operator, as we have already stressed in the
Introduction. All these properties will be investigated in Section 5. Here, we prove
some pointwise estimates for the derivatives (up to the third order) of G(t, s)f.

Throughout this section, we assume the following set of assumptions.

Hypotheses 4.1(k). Hypotheses 3.1(k) are satisfied with the following dif-
ferences:

o ‘ngiﬂ <Cv in I x R? for any i,j = 1,...,d, some positive constant C and
some y € (0,1);

o 1o+ Lpr+Lp? <MV inI x Rdfor any k = 1,2,3 and some constants L > 0
and M € R, where the constant Ly, is defined in Hypothesis 3.1(k)(1v);

e Hypothesis 3.1(k)(v) is satisfied with Kv being replaced by Kv?, K being a real
constant.

The scheme of this section is the following: first we prove estimate (1.7) (with
h = k) for any k =1,2,3 and p € (1, + o). Next, strengthening the assumptions on
the coefficients of the operator . Z we prove (1.6). Note that if this estimate holds
true, then, taking as f = 1, we conclude that V,G(t, s)1 identically vanishes in Rd,
thatis G(t,s)1 = w(t) for any t > s and some function y € C([s, + c0)) N C'((s, 4 00)),
which solves the equation y/(t) = c(t, x)y(t) and satisfies the condition w(s) = 1. Since
G(-,s)l is positive in (s, + c0) X Rd, it follows that w(t) is positive for any ¢ > s. We
thus conclude that c(t,x) = y/(t)/w(t) for any (t,x) € (s, + 00) X Rd, ie., ¢ is in-
dependent of x. Hence, if u solves the Cauchy problem (1.2), then the function
w:[s, +00) x R? R, defined by

t

w(t, x) = exp ( — /c(r)dr)u(t,m), (t, ) € [s, +00) x ]Rd,

has the same degree of smoothness of the function « and solves the Cauchy problem
(1.2) with .Z# being replaced by the operator .7, = Tr(QD?) + (b, V). For this
reason in the proof of Theorem 4.2 we confine ourselves to the case when ¢ = 0.
Next, we deal with the case p =1 in (1.6). As it has been explained in the
Introduction, to get such an estimate we require that the diffusion coefficients do not
depend on the space variables. Finally, we prove estimate (1.7) with 2 = k — 1 and
k =1,2,3 showing that I” 1(72,271,10(7”) ~ cp,kr‘p/ 2 as r — 07, for some positive constant
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Cpk- As a byproduct, estimate (1.7) follows in its full generality. In particular,
I g%k(r) ~ ci’o"kr‘(k‘h)p/z as 7 — 07, for some positive constant ¢/, ;. All these esti-
mates have been proved in [15] in the autonomous case when ¢ = 0.

To prove the above estimates in the general case we need a preliminary result.

Lemma4.1. Letthe sequence (c,) C Cﬁ)/cz’“(l x RY) N Cyd x RY) converge to ¢
locally wniformly in (s, +o00) x R as n tends to +oo and c,(t,x) < M for any
nel, (t,x) € (s,+00) X R? and some constant M. For any n €N, sel and

fe Cb(Rd), let u, solve the Cauchy problem

(1) {Dtu = Tr(QD?w) + (b, Vyu) + c,u, in (s,+o00) x RY,

u(s,) =1, in RY

Further, denote by u € Cy([s, +00) x RY) N CH#/22+%((s, + 00) x RY) the solution to
the Cauchy problem (1.2), provided by Lemma 2.1. Then, u, converges to u in
C'2([a, b] x K) for any [a,b] C (s, 4 00) and any compact set K ¢ RY.

Finally, if Hypothesis 3.1(1)(3) is satisfied, ¢, € Cff)/f’H“(I x RY) and V¢, con-

verges to Ve locally uniformly in I x RY then Dg’jhun converges to D%hu locally
uniformly in (s, +oo) x R? forany i,5,h =1, ... ,d.

Proof. The proof of the first part follows the same lines as in the proof of
Lemma 2.1; hence, we just sketch it. By Lemma 2.1, the Cauchy problem (4.1) ad-
mits, for any n € IN a solution u,, which satisfies the estimate

(4.2) [, Moo < NSl E>s,

where M is as in the statement. The interior Schauder estimate in [31, Theorem
4.10.1] and a diagonal argument imply that there exists a subsequence (u,, ) which, as
k — + oo, converges in C2([a, b] x K) to a functionu € Cllng“/z‘ZM((s, 1 00) x R for
any [a,b] C (s,+o0) and any compact set K C Rd, and % solves the equation
Dy = Zuin (s, +o00) X RY.

The same arguments used in the proof of Lemma 2.1 and applied to the function
Uy, show that

t
wﬂﬂzammw>/bmwmmywm7 t> s,

in B,,, where G,,1(t,s) denotes the evolution operator associated with the rea-
lization in Cy(B,,+1) of the operator .7 with homogenous Dirichlet boundary
conditions, ,, = w,, + dc —cy )y, v, being as in the proof of Lemma 2.1.
Since |Gyi1(r, )7, (r, )| < Cor—8)2||f||. in By for any r e (s,s+1) and
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some positive constant C, independent of k, as in the proof of Lemma 2.1 we
conclude that u can be extended by continuity in [s,+ co) X R? by setting
u(s, ) =f.

To complete the proof, we assume that the coefficients of the operator . 7 are
once continuously differentiable with respect to the spatial variables in I x R? with
derivatives which belong to Cff)/cz’“(l x R%). Then, by the proof of [22, Theorem 3.10],
it follows that there exists a positive constant C, independent of k, such that
HDiunk CoRa(apIxK) < C for any [a,b] C (s,+o0) and any compact set K C RY.
Hence, up to a subsequence, all the third-order derivatives of u,, converge uni-
formly in [a,b] x K, and clearly they converge to the corresponding third-order
spatial derivative of u. Since [a, b] and K have been arbitrarily fixed, the proof is
complete. O

Theorem 4.1. Let Hypotheses 4.1(k) be satisfied. Then, estimate (1.7) holds
true, with h = k and I') ;. 1.(v) = e’" for any v > 0, where

+

(4.3) arpr = |psup [ —p)v + ci(p)V' 1+ co(p — 1) + peay
IxR?

if p e (1,2] cp(p) and cqy. being positive constants explicitly determined (see the
proof) and oy, = poyz/2if p > 2.

Proof. We split the proof into three steps. In the first one we prove the
estimate when p € (1,2] and ¢ is bounded. In the second step, using Lemma 4.1
we remove the assumption on the boundedness of ¢. Finally in the last one we
obtain the claim also in the case p > 2. To simplify the notation, throughout the
proof, we set

d
200 = QUL Vi), GO = 3 DiggDilDit,
i =1

O = > DugiDylDul, 1) = (Jac,b)Vil, Vil),

1,5, k=1
d
B0 = DpbiDilDy L, 710 = {(Vee, VO),
i,j,h=1

72(0) = (Tr(D3eD30)

for any smooth enough function ¢ : R — R.
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Step 1. Let p € (1,2] and assume that ¢ is bounded. We first consider the case
j = 3. For simplicity, we set u = G(-, s)f and, for any ¢ > 0, we introduce the function
w, = (Zi:() |D’9§u|2 + r)p / ® which is positive and belongs to Cy([s, +00) x RN
Cllo’f((s, +00) X Rd), by virtue of Proposition 3.1 and Theorem 3.2. Moreover, it solves
the differential equation Dyw, — . Zw, = y_ in (s, 4+ 00) X R? where

2
P

, 4
1-2 1-4
yo=pwe 7Y 7,) +p@—phwe (@, &) + (p — Dew, — pewwe

i=1

and

d d d
T1w) == Cow) = > CoDiw) = Y CoDyu) = > CoDy)
i=1

ij=1 ijh=1

d d
+ . 71(w) + 22-%1(02'%) + 3Zﬁ1(Dzju),
i1 i1

d d
T o) =C1w) +2 " &1(Dw) + 3 C1(Diju) + o)

=1 =1
d d
+ 32 Co(Diu) + Z DyjaqiiDijuD e,
=1 i ded=1

d d
T3(w) = Ba(w) +SZ Lo(Diu) + Z DjybiDiuDjyu,

i=1 i5.hk=1
d d
) =71+ 2 21Dw) +3 " 21(Dyu) + Zaw)
i=1 i,j=1

d d
+ 32 Zg(Dlu)—i—u Z DithD@jh,u,
i—1 ijd=1

d d d
& = uVeu + Z D;uN,D;u + Z DijuVmDiju + Z DijhquDijhu.
s i1 i1

Here and below, all the equalities and inequalities that we write are meant in
(s, +00) x R".

Let o and f, with |«], || < 3, be fixed. The Cauchy-Schwarz inequality applied
twice, yields
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d
. %D D* b0 D.DP
9 i a4 i )=
Eq EDuDDuEDuDDu

=1 [a=h Bl=k
(4.4) < 3" ID2ul@ oDz > (Dbl oDk
|| =R 1B|=k

< |Dju| Dl ( > Qb(D;;u))z( 3 gO(Dgu))z.

|| =P |Bl=F

In view of (4.4) we get

1

d 1 d 1
QG0 é) < {|u|(@0<u>>% Dl <Z @‘owiu)) + D2l ( ) Qo(Di]-w)
i=1

1,7=1
3,12 - B ak
+ |Dxu| Z QO(DUhu)
1,J,h=1

) d d d
<t <(/o(u) 3 oD + 3 Gy + > @b(Dijhu)).
i1 i1 i1

Hence, taking Hypotheses 2.1(ii) and 3.1(3)(iii) into account, we can estimate the
“good” terms in the definition of y, as follows:

3
(4.5) 1) < 1A = pv + krollDeuf® + (A — pyv|Diuf®.
k=1

The other terms in the definition of the function y, are estimated using
Hypotheses 3.1(3)(ii), 3.1(3)(v) (Where, now, C and K are constants) and the Cauchy-
Schwarz inequality. We get

d 3
(4.6) G0 <Oy IDiL|Dyl| < Cdiv LD
i,j=1

2
< %wqu + Cdev' | D7,

4.7) (&) < Kv'|D¥?,

d 3
Cd
E Dy1qiiDiiCDpia¢ < 1
i.j k=1 €

VDA + CdPev? | DL
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for any smooth enough function ¢ : R — R and & > 0, which shows that

Cd? . 2 Cd®> Cd?
G < Yy o 7112012
Tyw) < " Vaul” + (CfdJr 2 T 1 +K>v | D]
3Cd2 2 y 3 2 ” 4 2
+ 208d+?+60d + 3K |V'|Dou|” + 3Cedv' |Dyul™.
Similarly,
; d? 2 2012
(4.8) L) < ET|VZ| + deyr| D)7,

d3
Z DjyicbiDiuDyil| < 47:17”|VC|2 + deyr| D3¢

d
i,j k=1

for any ( as above and any ¢ > 0. Hence,
d2 2 3d 2 2 3 2
Tsu) < E(d + Dr|Veul” +dr| e + o0 |Diu|” + 4deyr| Dol
1 1

for any & > 0. Further,

_ 1 _ d
Q< —CHdap VI, 720 < -8+ depp? DA,
4eo 4ep

d 3
d
¢ E DijneDiné < 15 &+ e D3
i =1

for any smooth enough function ( : R? — R and & > 0. It thus follows that

9 < w4 |dep +—+— ||V + co p° 4+ —
7 () P w <d€2 P % | ey > |Vt <3df2p P > |Dza]

+ (6d + Dezp?|D3uf?

3d 2 2 5d 2 2 3 2,12
< — + . +— ||V + + —
. u <d(°2,0 le ) | gcu| <3d82p 1 ) |D®’LL|

+ 7d62p2|Diu|2.

Finally, —ctw!'~2/? < ||c||  7"/%.

Summing up, from all the previous estimates it follows that we can make non-
negative the coefficient in front of [Du[* by taking & = (p — 1)vy 7/(3Cd). With this
choice of ¢, we get
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3C%d3 . d? + d? » bd 9
< — - = 7 7 o
Ve _p{ [(1 p)V+4(p_ ' W g 4 T (dszp +482>] V]

_ P — 1 l—y 302d3 y—l SCZd
+ [(1 p)v—i—( 5 "oy~ 1) +4(p 1)

3d 2 3 \]re
—Hﬂd(al +4—61> + <3d82p +E)] | Dl

2p-1 ,, 38C*&# ., (p-— l)d
+[(1—p)v—|—( 3% +4(p_1)v0 + 3 143K )y

+K)v 27

1-2
4 31y + drend + 7d32p2] |D§u|2}w7 "+ (p — Deow,

3pd3
oty plil

Next, we choose & = 3v/5 /10,ifd = 1,and &g = /3d(d + 1)/4 otherwise (which is the
point where the function x — d max{(d? + d)/(4x), (4x® + 3d)/(8x),4x/3} attains its
minimum value) and & = 3L/(7d), to get

1-2 ) 3 ; [
y. <plp — Dw, "(es(p)v' =) Y IDIuf* + [(p — Deo + peashw: + pllell .2,
=
where ¢g3 = Td*(5 v 83d%)/(12L), c3(p) = max{. % ,,i = 1,2,3} and
3C2d?

T =3— D v+ M,
1 _,  3C*d*(d+2) ,_
Tap =5 — Dy, ’+$ "'+ K +2M,
3 4p-1)
VA ——(d+2)( — Dy 7+ " vi '+ 3K 4+ 3M
Sp— p 4(]0_1) 0 )

M being the constant in Hypothesis 3.1(3)(iv).

Hence, the function w, satisfies the differential inequality Dy, —. 2w, <
3.pW; + plle]| 7% in (s, + 00) x R?, where 03,p 1s as in the statement.

Now, we set z.(t,x) = e 29w, (t,x) — p|c| P2t —s), for any (t,x) €
(s, +00) x Rd, and observe that the function z; solves the problem

Diz.(t,x) < Zzt, %), t>s, xeRY
3 5
2:(s,%) = (Z |Dkf(ac)|2 + r) , xr € RY
k=0
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Then, the maximum principle in [4, Proposition 2.2] implies that,
2e < GC(f1P + [VfF + DY + D + o

in (s, + 00) x Rd, whence estimate (1.7), with k¥ = h = 3, follows letting 7 — 0.

To get (1.7) when h =k = 2, it suffices to apply the previous arguments to
the function w, = (2 + |V,ul® + |D2ul? + /2. Arguing as above and taking ¢ =
(p— 1)v(1)_7 /@Cd), we prove that Dyuw, — . Zw, < ¥., where

' A —=pw+ Cid? vy —Hﬂd—Z—i- de 2—1—i |Vu|2
=P p 2p — 1) 0 0 4z 2P 25 x

1 C2d?
[(1 p)v+(p2 1}+p

1 vt K) v

+ 27y + e1rd + 3d32p2] |D§u|2 }wl_%

+ [(p — Do +ﬁ

P
oo |+ el

Then, we take ¢ = /d/2, to minimize the maximum between d%(4e;) "' and ed/2,
and & = 2L/(3d). We thus get

C2q? -1 ,  8d
Y/fgp{{(l p)v+2(p 1) + My 4+ — }|qu|

-1, C33 -2
+[(1—p)v+(p2 véUrp_l +K+2M)w}|D2u| }w ’

3pd? , 1-2 »
+(p = Deow: + f—L“%’% P+ plle] 7

Hence, (1.7), with & = k = 2, follows with cg» = 3d%(4L) " and

Czdsva 1 p—1, - Czds,
CQ(P)—max{z( 5t + M5 +71

+K+2M}

Finally, to get (1.7) with h=k =1, we consider the function w, =
(u? + |V%u\2 + 7"/ which satisfies the inequality Dyw, <. Zw, + ¥, where
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Cd2 ) 2 2
We=py [A=pv+r0+7+= V7 + deap® | Vel

2

+[A —pyv+ Cdgvy]mguf}wip

P o 1-% 5
+ 15 + (p — Degw: + pll¢|| 72

for any &, ¢z > 0. We take ¢ = (p — vy 7(Cd) ' and & = L/d to get

C2d® , 1-2
‘PTSP{ {(1—p)v+ (4(}0—1)‘)6 1+M>V’:| qulz}Wr r
+ ﬂuz@vk% + (p — Deow: + plle]| . 7.
47, ! ! o
C2dv) !

Thus, (1.7) (with & = k = 1) follows with ¢q; = d/(4L) and ¢;(p) = 1 + M.

(-1
Step 2. Here we prove estimate (1.7) for p € (1,2] in the general case. Just
to fix ideas, we consider the case k = 3. We introduce two sequences (J,) and
() of smooth cut-off functions such that yz <&, <yp ., and Jio/msian <
Y < A(s+1/msrsny for any n € N. Without loss of generality, we can assume that
1D*Y, || < Con I for any |B| <8 and some positive constant Cp. For any
nelN we set c,(t,x) =w,O)I(x)ct,x) for any (¢, x) € (s,+00) x R, Clearly
each function ¢, is bounded. Moreover, |Dic,| < o, := 1+ Cin 1o for any
nelN, |n1=1,2,3 and some positive constant Cj. Note that in view of
Hypothesis 3.1(3)(iv) (where, now, L and M are constants) it follows that
o+ Lyr + L{" 02 < My’ in (5,4 00) x R%, where L =L[1+ (C?+2C)n '],
By Step 1 it follows that the solution u, = G"(.,s)f to problem

{Dtun = TT(QD%@L") + <ba V%un> + Cptty, 1n (s,+00) x Rdy
Un(s,) =1, in RY,

provided by Lemma 2.1 satisfies the estimate

P

3 5
(49) D < 60 3 D'

J=0

in (s,+o00) x Rd, where o3, is defined by (4.3) with cg3 being replaced by
Cizn = Td*(5V 3d?)/(12L,). Note that o3 ,, converges to g3, as n — +oo. By
Lemma 4.1 we can let » tend to + oo in both sides of (4.9) obtaining (1.7).
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Step 3. Finally, the case when p > 2 follows easily from the case p = 2. Indeed,

k
e”"‘Z(t_s)G(t, s) ( Z |Djf2)]
J=0

for k =1,2,3, and we get (1.7) just using (2.8) and observing that (G(t, s)h)”/ Z <
G(t,s)hP/?, for any t > s and any nonnegative function & € Cp(RY) if ¢y < 0. O

P
2
)

IDEG(, 9)f P = (DG, 8)f ) <

Remark 4.1. We stress that the condition |¢| < ¢? in R? is not needed to
prove (1.7) (with & = k) for nonnegative functions f. Indeed, if f € Cb(Rd) is non-
negative, then the function G(t, s)f is strictly positive in R? as a consequence of the
strong maximum principle. Hence, for such functions f, we can replace the function
w. used in the proof of Theorem 4.1 with the function w, = (Zf:o |D§;u|2)p/2, which
is everywhere positive in (s, 4+ 00) X RY.

Now, we prove estimate (1.6).

Hypotheses 4.2(k). The potential term c of the operator 7 identically
vanishes in I x R Moreover,
23,71

0
4(po — 1)
some pg € (1, + oo), where y is as in Hypotheses 4.1(k);

e ifk =1, then the function vy + V' is bounded from above in I x R? for

o if k= 2,3 then there exists My € R such that ro + Lir < MV, where My, 1s
any positive constant and Ly, is the same constant as in Hypothesis 3.1(k)(1v).

Theorem 4.2. Let Hypotheses 4.1(k) be satisfied, with Hypothesis 3.1(k)(iv)
being replaced by Hypothesis 4.2(k). Then, estimate (1.6) 1s satisfied with I” ;(0136(7') =
e for any p € (1, +00), ifk = 2,3, and for any p € [po, + oo), if k = 1, where qbp’k
can be explicitly computed (see the proof).

Proof. Since the proof is similar to that of Theorem 4.1 we adopt here the
notation therein introduced and limit ourselves to sketching it when p € (1,2]. Indeed
the case p > 2 follows from the case p = 2 and the Jensen inequality. We begin with
the case k = 3. Forany 7, &, ¢1, ¢ > 0 the function w, = (22:1 \Diul? + r)p/ ? satisfies
the inequality Dyw, — . 2w, < ¥, in (s, + 00) X RY, where

V. = p{AP (o, eD)|Voul” + 75 (6o, 21, &) D2uf* + ) (o1, &) Diuf?

_2
(@ — pW T+ 3Ced) [ DufP w7
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and
2 3 2
(4.10) 7P (a0, 81) = P :
4é 4e;
2
(4.11) ]/(23;(80, e1,8) = (1—p)v+ (ngd—i— W+K> V' +2rg+rd (81+ i—d)
: : €1

2
(4.12) . 7/(33),3(6 e)=0—pyv+ <Zng + % + eCd? + 3K> V' + 31 + 4rerd.

Choosing & > —Cd?/(4Ms) and ¢, &; as in the proof of Theorem 4.1 we deduce that
1-2 _
(4.13) Dyw, — . Aw, < p¢p73(\qu|Z + |D2ul? + |D3uf)w, " < P, 5t: + pg, 577,

where ¢; , is the minimum attained by the function (— Cd?/(4M3), + o0) > gy —

) ) - - Cd? ,
max{Z P (p, ), 2 (p, &), 7 $(p)} and 7P (p, ) = (4—‘00 + M3> v,

302d3(2 + d) y 1
4p—-1)

C+dp-1 , 9C2d3
1 — ) - - @ ) -
[( P ( 3 oo 4p - g

7P (p, &) = sup [(1 —pv+ (Ceod +

T K+ 2M3) ]
RY

7z $(p) = sup
R?

+3K 430, )|

From (4.13) we get (1.6) with k = 3 arguing as in the proof of Theorem 4.1.
To get the claim when k=2, let us consider the function w,=
(X7, IDkuf +7)” / which satisfies the inequality

Dyw, — A#w. < p{H1pe0,e0)® [Varul* + H2p(e0, 21,62 |D2uf
2

A — p)v + 2Cedv | D3Py 7,

for any &y,é,6>0, where 7/( ) (so,gl) is defined as /5(3) (80,81) with
(d3 + d2)/(4e;) replaced by d2/(4e)), and TP (e, 61,8) is defined as ]/;?j;(eo, e1,8),
with Cd?@2 + d)/(4e) and & + 3d/(4e;) replaced respectively, by Cd?/(2¢) and &;.
Taking & = (p — v} 7/(2Cd), & = /dj2 and & > —Cd?/4Mz) we get y, <
PE,2We + PP, ,™"/2, where ¢, is the minimum attained by the2 function

(= O /(4M5), +50) 5 8 — max{ # D (p, ), 7 X p, eo)}, #'D(p, e0) = (if +M2> i
and 0

75 (p,&) =sup |(1 —pyv+ | Ced +p
R? o

TLK 2M2> vy] .

Estimate (1.6) with k = 2 follows.



[25] ON THE ESTIMATES OF THE DERIVATIVES OF SOLUTIONS ETC. 445

Finally, to prove (1.6) with & = 1, we consider the function w, = (|qu\2 + 1) 2 1In
this case we get

2

Dyw. — 2w, <p{ (7”0 + % vy) Vauf? +[(1 = p)v + Cdsvy]|Diu|2}wi;J

in (s, +00) X RY, for any ¢ > 0. We takee = (p — l)v(lfy(Cal)’1 to get Dyw, — . Zw, <
pgbl’pwf in (s, +00) x RY for P > po, Where

2Py !
=sup|ro+-—"<V|.
P I><TI§< " Tap-D

Thus, (1.6) follows also in this case. O

Under additional assumptions the above estimates can be proved also for p = 1.

Hypotheses 4.3(k). The diffusion coefficients q; (1,j =1,...,d) are in-
dependent of x and ¢ = 0 in I x R%. Moreover, ry + Lir is bounded from above in

I x RY, where L, = ry, Ly = (d/2)*? Ly = d\/3(d + d2)/3.

Theorem 4.3. Under Hypotheses 4.1(k), with Hypothesis 3.1(k)(iv) being re-
placed by Hypothesis 4.3(k), estimate (1.6) holds true also with p = 1.

Proof. We first consider the case k = 3. Since the diffusion coefficients are
independent of z, for any ¢ > 0 the function w, = (|V,u[* + [D?ul* + |D3ul? + )"/
satisfies the differential inequality

Dyw, — 2w, < w17 P(en)|Voul + 7 )| D2ul? + 72 @)\ Diuf],

where

d? + d?
481 ’

TP (er) = 81y + drerdm,

HPe) =1+

KD (er) = 29 +rd (81 - 3d> ,
481

(see (4.10), (4.11) and (4.12)). If we take & = /3(d + d?)/4, then the functions . 7"
are all bounded in I x R? and estimate (1.6) follows.

On the other hand, to prove (1.6) with k = 2, it suffices to observe that the
function w, = (|Vﬂcu|2 + |D§u|2 + )% solves the differential equation Dyw, —
Aw, < w; 1[]5(12)(81)|qu|2 +JZ(22)(81)|D§M|2], where ]Kﬁz)(sl) is defined as JK?),
with d® 4 d? being replaced by d? and .7 (¢;) is defined as .7, with &, + 3d/(4e;)
being replaced by ;. If we take &1 = (d/ 2)V/ 2, then . 7 52) (&1) and .7 (22) (&1) are bounded
in I x R? and (1.6) follows also in this case.
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Finally, the function w, = (|V%u|2 +1)Y% satisfies the differential inequality
Dyw, — #Zw,; < row, and (1.6) follows also in this case with qu = 7. O

To conclude this section we complete the proof of estimate (1.7). In the proof of
Theorem 4.4 we will make use of the following result and the following additional
assumption.

Hypothesis 4.4. For any bounded interval J C I there exists a function
0y € Cz(Rd), which blows up as |x| — + oo, such that . Zp; < My in J x R? and
some positive constant M.

Clearly, this assumption is stronger than Hypothesis 2.1(iv) and it allows to prove
that, if (f,) € Cy(R?) is a bounded sequence which converges locally uniformly to a
function f € Cb(]Rd), asn — + oo, then G(-, -)f,, converges to G(-, -)f locally uniformly
in{(s,t) el x1I:5<t}x R% As a byproduct of this result, it follows that the funec-
tion (s, t,x)— (G(¢,s)g)(x) is continuous in {(s,t) € [ x [ :s <t} x R? for any g €
Cb(Rd). For further details, we refer the reader to [28, Proposition 3.6, Theorem 3.7].

Lemma 4.2. The following properties hold true.

(i) Let the sequence (g,) € C((a,t) x Rd) converge pointwise n (o,t) x R?
to a continuous function g: (o,t) x RY - R satisfying the condition
Sup,ex [190(7, )|l < +00 for any t € (0,t). Further, let G,(,s) be the evo-
lution operator associated with the realization in Cy(B,,) of the operator .7
with homogenous Dirichlet boundary conditions. Then, G,(t, -)g, converges
to G(t, -)g pointwise in (g,t) x R

(ii) Let (f) C Cb(Rd) be a bounded sequence converging to a function f € Cb(Rd),
locally uniformly in R If Hypothesis 4.4 is satisfied, then, G(t,s + 1 /) fn
converges to G(t,s)f, locally uniformly in RY, foranyt > s.

Proof. (i) Since |G, (¢, 0)f| < Gyu(t, 0)|f| < G(¢t,1)|f| for any function f € Cb(Rd)
(where we have used the fact that for any nonnegative function g € C,(RY, G, t,v)g
pointwise increases to G(t, 7)g as n — + 00), we can estimate

(414) ‘Gn(t, T)gn(fy ) - G(ta 7)9(77 )|

S G(t, T)|gn(‘[7 ) - g(T, )| + |G(t7 T)Q(T7 ) - Gn(tu T)g(fv )|7

for any m € N. Using the representation formula (2.6), it is easy to check that
G(t,7)|gn(z, ) — g(z,-)| pointwise converges to zero as n tends to + co. On the other
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hand, the second term in the last side (4.14) vanishes as n — + oo as it has been
already remarked above. Hence, the assertion follows.

(ii) Note that
|G, s +1/n)f, — G, s)f| <|G(t,s+1/n)f, — G(t,s +1/n)f]
+ |G, s+ 1/n)f — G, s)f],

for any n € N. Since G(.,-)f, converges to G(-,-)f locally uniformly in {(s,?) €
IxI:s<t}x IRY, as recalled above, the first term in the right-hand side of the
previous inequality vanishes locally uniformly in R’ Also the second term
vanishes locally uniformly in R? since the function G(-,-)f is continuous in
{(s,) eI xI:s<t} xR O

Theorem 4.4. Let Hypotheses 4.1(k) be satisfied for some k € {1,2,3}, with
the functions in Hypothesis 3.1(k)(11) being replaced by two positive constants Cy
and Ca. Further, assume that also Hypothesis 4.4 is satisfied. Then, estimate (1.7)
1s satisfied for some positive function I'yyj—1, which can be explicitly computed
(see the proof).

Proof. We limit ourselves to proving estimate (1.7) when k = 3, considering
first the case p € (1, 2]. Without loss of generality we can assume that ¢y < 0. Indeed,
if this is not the case, it suffices to replace the evolution operator G(t,s) with the
evolution operator e~ “¢~9G(t,s). We also assume that ¢ is bounded, since if ¢ is
unbounded then it can be approximated by a sequence of smooth functions which
satisfy Hypothesis 4.1(3) (see the proof of Theorem 4.1 for further details).

To simplify the notation, throughout the remaining of the proof, we set
Uy, = G (-, 8)f and u = G(-, s)f, where, as usual, G,,(t, s) is the evolution operator
associated in Cy(B,,) with the operator .7 with homogeneous Dirichlet boundary
conditions, and f € C2(R"). Moreover, for any m € N, we set 9, (x) = I(m " |z|),
where < is a smooth cut-off function such that yjo/9 <& <y Finally, all
the integrals that we consider are to be understood pointwise, i.e., given

g € C([a, b] x R, by } 9(s,-)ds we mean the function x— jb’g(s,x)ds for any
x e RY. ¢ ¢

Forany o, > 0, > 5,0 €(0,1), m € N, and f € C%(Rd) we define the function
gs : [s,t] — C(B,,) by setting gs(,-) = Gu(t, Dp,,(z,-) — 6P%) for any 7 € [s,t],
where y,, = (ot | + ﬁ&fnwwumf + 7.9?”|D§um|2 + 6)P/%. Since ¥,, — O vanishes on
OB, taking [1, Theorem 2.3(ix)] into account, we can show that the function gy is
differentiable in (s, t) and g = G, (¢, )(D-y,, — A~ (Dy,, + c(z, -)51’/ 2), where
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2 s
p( p) <Q5um s éum >’//m

DTWm //l//m pl//m 271( )+

i=1

1-2
+ (p - 1)01//77@ - péc‘//m [)7

d d
T 1) = — 0Do(u) — pS, > CoDiti) — 85, " CoDyjtn)
=1 1,7=1

d
+ B, 1 ) + 28, B (D),

i=1
d
T 5tn) = Py Oru) + 28,3 O1(Ditt) + Sy Cat)
=1

d
— 48, O5() — 85, " Os(Ditt) + S, Ao ),

i=1

d
Tyu) = B, 71n) + 28, Z1(Dittn) + 8, 7 o),
i=1
}4(um) = _g(///O"S%2 )|v'wum| //0794 )|D;2¢um‘27

Eup = Vel [” + B | Vit +a.9m|D§um|2), Ay=(A2—0), C; ((=0,1,2), .5
(j =1,2) are defined at the beginning of the proof of Theorem 4.1 and
©50) = (QVEy, D*¢V{) for any smooth enough function .

Arguing as in the proof of Theorem 4.1 and using the inequality (a + b)* <
(1 + &)a? + (1 + & 1Hb?, which holds true for any a, b, & > 0, we deduce that

<Qéum ) éum>
<(1+e [ocluml(//o(%n))2 + B Vst < < jO(Dium)>2

i=

+’54|D um|<z//O(DL]um) Z:|

TR 8, P 4285 D P C(S)

d 2
<(1+¢ [déo(%m) + ﬁﬁfn Z CoDiu) + 19; Z @‘O(Dijum)] l//gn
=1 i=1

B P+ 462, | D2t PYBSE [Vt 2 + S (D2 Y0,

Further, taking Hypothesis 3.1(3)(ii) and the choice of 9, into account it can be easily
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checked that

[0St ) = 18 n e Pm 2l (Qet, ), )
< ISR+ el P2

< A2 Com 7+ mP,2) = ),
for any (t,x) € I x R? and . Zy(<%,) > — Koy,
(S = 28 (P + 200(L) > 28, 2o(S) > — 2Ka S v,

K
9D )| < 4—jv|vxum\2 + eKs S, v| D% |

d
&> 3D

i=1

< 77.92 VD, P+ eKs S vIDPu, |7,

in I x R, for any ¢ > 0, where K, and Kj are positive constants independent of u
and e.
Taking all the previous estimates, the fact that c is bounded and nonpositive and
(4.6), (4.7) and (4.8) into account, we conclude that
p+d

Dayy — Ay < {4—u T g Vit P+ Ty | Dot

= 1o

+{[@—p)A+¢&)—148eK3]v — ZCedv7}19ﬁl|Dium|2}t//in

1-2
+ p”CHoc&V/m Y,

where
f%'l,a,pZ{[(z—p)(lﬂ)—1]a+/37+%+(2_p %ljﬂv
+B C;d v+ B2, <T0+7"E—|—dgp> 21
g [l vo s Ko 2 se (141,

2
+ (ﬁ(]ds + % + K) V 4 & (2rg + red + 3dep?).

Thanks to Hypothesis 3.1(3)(iv) (where, now, L. and M are constants), we can fix ¢
sufficiently small such that (2 — p)(1 +¢&) — 1+ 8Kz < 0 and 27y + red + 3dep? <
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2Mv" in I x R, Next, we fix § > 1 such that the supremum over I x R? of TE2sp 18
negative and ry + rd2(4pe) ! + dep? < My in I x R?. Finally, we choose o > f8 large
enough to make negative the supremum over I x R of T1.p- As a byproduct,
taking into account that we are assuming that ¢ is bounded, we can determine two
positive constants K; , and Kj, such that

Dy~ < — Ko (Vi P+ (DBt + Do )5

WL

1-2
+ KZ.pugnl//m "+ pHC”oo&//m

2
P

and, thus,
— Ky Gt Vit 2 + (D21t P+ (Dt PYS
+ Ko Gt Wy, + el c0G(t, W "
Integrating this inequality over [s + ¢,t — ¢] (for € € (0, (t — s)/2)), pointwise in Rd,
and observing that G, (¢, b /7 < 6?271G(t, )1 < 6P/>7! yield
t—e

415 K., / Gt DVt (t, I + D2, 2 + Dt , NS e Pt

S+e
t—e

SGut, s+ oy, (s +e-)+ Koy / G, Dy, (T, )dr + p||c\|m65(t —5).

St+e

Next, using Lemma 4.2 and the dominated convergence theorem, we let first m
tend to + oo and then & tend to 0" to get?

K., / G(t, DI Vau(z, I + D2z, P + |DPule, Pyt $1de

<G, (s, )+ Ka, / G(t, Dy(r, Y + pllc] 0%t — 5),

where y is defined as y,,,, with u,, being replaced by . Now, using estimate (1.7) with
h = k = 3, splitting u(t, -) = G(t, 1)u(z, -), from Young and Hdlder inequalities, (2.7)
and (2.8), which shows that G(t, 7)|u(z, )|’ < G(t,s)|f|F, we deduce that

4 We stress that the proof of the uniform estimates in Theorem 3.2, given in [32], shows
that the function in square brackets in (4.15) can be estimated from above by a constant,
independent of m, times (¢t — s)’l/ 2,
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(4.16) e T EO(Vult, P + [D2udt, ) + [DPudt, )¢
< G(t,0) [(|qu(r, I+ |DPule, ) + |DPucr, .)\2)5] + Gt Oz, )

P

< G, 9| (Voule, ) + [D3utx, O + Diute, )P 8]+ Get, )l
< {69 |(Vaute, )P +1D2ute, P+ Dkt Pt F| (G o)

+ Gt )Y
< L6, 0 [(Vaue, )P + D2tz )P+ Ddutz, o ']

2 —
L2op

GG, Dw(r, ) + G, s)|fIP

for any ¢ > 0. From now on, we assume that both the constants a2, and a3, do not
vanish.
Since « > f > 1, arguing as in the proof of Theorem 4.1 it can be shown that

(417) Gt D(r,) < G, D{e™ " VbG(, )I(f* + |VfF + D + 0F1)
= obe™ G I + [V + D+ OF ]

for any 7 € [s,t] and, consequently,

T G IR + |V + DY+ 0.
Gg,p

! a9, (t—S)
(4.18) / G(t, Dz, )dr < o &

From (4.16) and (4.17) we get

e CI(Vaut, ) + |D2uct, ) + [Diudt, )PP

2

< 2ot G0 |(Vate, )P + D2tz )P+ D3z, o '

2—p

5 20k T IG, I(f2 + [V P + DI + 081 + G, )| 1P

+

Integrating this inequality in (s, ) and taking (4.16) and (4.18) into account, we get

1-— 6703'7’“78) 2 2 2 3 2.L
(4.19) e (IV2G@, $)f|” + |DEG(E, )f | + DG, 9)f )
P

< T pult — G, (2 + |V + DX + 0)]

p2

oK,

2_n .
el 0%t — ) + ¢ — G )f ) + 5 Lo,
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where

p oz e’ — 1 2—p 2 pe”"—1
T = oz | 1+ K + ol
p,s(’l") 2[!:1 &eroL ( 2p o2y D) er-2qy

02p

Letting 6 tend to 0% in (4.19) and estimating G(,s)|f|’ < G(t,s)(f% + |Vf|* +
D2V yield

1 — g~ 03.p(=5) 3 £
L ()
h=1

03,p
)
2

2
< LA pult - 8) + (t — 9IGE, 9) ( 3 |th|2)
h=0

Estimate (1.7) follows, with

. » 1-2
 0p3 o er2" — 1\ |2/ e —1\" 2
I'pas(r) = m{ [171 <1 + Kp2 P P +7roe,

by minimizing over ¢ > 0. The previous formula holds also in the case when at least
one between ¢, > and o, 3 vanishes, provided one replaces the ratio (¢’" — 1)/a by 7.

To obtain (1.7) for p > 2 it suffices to write |D3G(t, s)f|” = (|D3G(¢, s)f|2)§, apply
(1.7) with p = 2 and then use (2.8). O

Corollary 4.1. Under the hypotheses of Theorem 4.4, estimate (1.7) holds
true for any h < k — 1.

Proof. The proof follows from applying repeatedly estimate (1.7) with & =
k — 1. For the reader’s convenience, we provide the proof in the case k = 3. For this
purpose, we fixt > s € I, p € (1, + o), set t; = (t + s)/2 and observe that

ID3G(t, )f [P = |D3G(t, t1)G(t, )f |V

t—s 2 5
< T <T>G(t, m(z IDIG(, s)f|2>

J=0

t—s t—s 1 CON\E
< F592,>2,3(T>Fﬁ)1,2(7>(;(t7 tl)G(thS)(; |Djf|2)
t—s () t—s 1 2 'Z)
p,2,3< B )Fp,1,2<2>G(t, S)(;D]ﬂ

and (1.7) follows with & = 1, k = 3 and 1"} ;) = I'%) ;(r/2)7) ,(r/2).
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Finally, to prove (1.7), with h =0 and k =3, we fix t > s €I, p € (1, + ), set
to = s+ (t + s)/3 and observe that

ID3G(, )" = [DXG(t, t)Glt, )|

t—s 2 ' :
< 12 (5 o ( S ipices o)

J=0

p

t— 2 X 2
=g (—3 S)G(t,tz)( IDIG(ts, )Gt s)f|2>
j=0

t—s t—s ! ; :
=2 ( T)Fﬁfiz (T)G(t’ ) ( > IDiG, s)f|2>

Jj=0
t—s t—s t—s
1 2 2
< F;;,)z.s(T)FL,;,2<T)F;,%,1<T>G(tv sIfIP

and (1.7) follows with "%} () = I} (/3T D) (/)% 1 (/3). O

P23

Remark 4.2. Even if in this paper we confine ourselves to the study of the
operator scalar operator .Z with coefficients defined in the whole I x RY, we
mention that elliptic operators with unbounded coefficients have been considered
also in unbounded domains. In this case, uniform and pointwise estimates for the
derivatives of the solution of associated Cauchy problem, with Dirichlet, Neumann
and more general homogeneous boundary conditions, have been proved (see e.g.,
[6, 7,12, 13, 14, 17, 24, 27]). Also in some situations where the elliptic operator (1.1)
is replaced by a system of elliptic operators some gradient estimates are available
(see e.g, [2, 23, 34]).

5 - Some consequences of the pointwise estimates of Section 4

If not otherwise specified, throughout this section we assume that ¢ = 0.

The following example, due to J. Priiss, A. Rhandi and R. Schnaubelt, shows that
the LP-spaces related to the Lebesgue measure do not represent a good setting
where to study the evolution operator G(t, s).

ExaMpLE 5.1 (Section 2 of [39]). Let .7 be the one-dimensional elliptic
operator defined by (Zw)(z) =y (z)— z|z|[y'(x) for any z € R and smooth
enough functions w : R — R. Let us show that for any p € [1,+ o), 4 > 0 and any
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nonnegative and not identically vanishing functions fe C°(R) the equation
Au — 2w = f does not admit solutions in LP(R). Indeed, fix p, / and f as above and,
by contradiction, let us assume that the equation Au —.Zu = f admits a solution
u € LP(R). By elliptic regularity u belongs to C*(R). Let us prove that  is bounded
in R. For this purpose, we take advantage of the one-dimensional Feller theory
(see [20]) as in Remark 2.1(iii). In this case, the function @ and R are given by

® ®
_ mx+2 mx+2 ‘x‘a+2 _ Mx-Z
Qx) = e 2 e~z dt, R(x) =¢= e~ =z dt, x e R.
0 0

A straightforward computation reveals that lim,_ .. x'*%?Q(x) =0. Hence,
Q € LY(R). On the other hand, the function R does not belong to L!(R). This implies
that the equation Au — . Zu = 0 admits a decreasing solution u; which tends to 1 at
+ oo and an increasing solution us which tends to 1 at —oco (see [33, Chapter 2]).
Clearly, u; and ug are linearly independent. Moreover «; and ug diverge to + oo at
—oo and at + oo, respectively. Since the equation lu —. Zu = f admits a bounded
solution u;, € Cy(R) N C*(R) and any other solution is given by ciu; + cous + uy for
some real constants c¢; and ce, if (cy, ¢2) # (0, 0) then the function u;, + c1uq + coug does
not belong to LP(R). Consequently u = uy, i.e., u is bounded and positive since u; is.

We now introduce the functions V: R — R and W : R\ {0} — R, defined by
Vix) = 2% and W(x) = e2) " + || for x € R and x # 0, respectively, which satisfy
the differential inequalities AV — 2V > 0and AW — ZW < 0in R\ (—»,7) if ris
properly chosen. Since u is bounded and positive, we can fix f > 0 such that
u(r) > fW(r). For any ¢ > 0the function w = u — fW + 6V satisfies the differential
inequality Aw — . Zw > 0in R \ ( — 7, ) and diverges to + oo as x tends to co. Hence,
it admits a nonnegative minimum in R\ (—7,7). Thus, w — W +6V >0 in
R\ (—7r,7) foranyd > 0and letting d tend to 0" yields u > SW. Since W ¢ LP(R) the
function % does not belong to LP(R) as well and the contradiction follows.

Remark 5.1. Sufficient conditions for the evolution G(¢, s) to preserve LP (Rd)
are obtained in [4] and, in the case when ¢ = 0 (as we are assuming in this section),
they require, besides Hypothesis 2.1(i)-(ii), that one of the following set of conditions
is satisfied:

(a) the coefficients ¢; and b; (1,7 = 1,...,d) are differentiable in I x R? with
respect to the spatial variables, the weak derivatives D;;q;; exist in I x RY
for any 4,j as above and the function f:1 x R? — R? defined by pi=
b; — Z;i:lDijqU for any i = 1,...,d is such that div,f > — Ky in I x R? for
some positive constant Kj;
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(b) the coefficients g;; are differentiable in I x RY with respect to the spatial vari-
ables, the function v(¢, -) in Hypothesis 2.1(i) is measurable for any ¢ € I, and the
function |f|* is controlled from above by a constant K; times the function v.

In the first case, G(t,s) preserves LP(Rd) for any t >s €l and p € [1,4 o0),
whereas the second set of conditions guarantee that LP(RY) is preserved by the
action of the evolution operator if p € (1, + oc0).

On the other hand, the evolution operator G(¢, s) enjoys good properties in the LP-
spaces related to the tight® evolution system of measures. The existence of such
measures can be proved under the following set of hypotheses, which we assume
throughout this section, if not otherwise mentioned.

Hypotheses 5.1. Hypotheses 2.1(1)-(12) are satisfied and there exists a
nonnegative function ¢ € C2(RY), which blows up as |x| — + oo, such that .Z¢ <
a; — agp m [ty, + 00) X R for some positive constants ay,az and ty € I.

Under Hypothesis 5.1 in [28] it has been proved that there exists a tight evolution
system of measures {y, : t € I} associated to the evolution operator G(t,s). The in-
variance property (1.4) and formula (2.8) show that

[ 6eorran < [ ceoiran = [ i,
R¢ ] R¢

Rd

for any f € Cb(Rd), p € (1,4+00) and I s < t. The density of CgO(Rd) (and, hence,
Cb(Rd)) in LP(Rd, 1), allows us to extend each operator G(¢,s) with a contraction
from LP(RY, 1) into LP(R?, 11,).

Remark 5.2. Note that the operator considered in Example 5.1 satisfies the
previous hypothesis. Indeed, if one takes as ¢ the function defined by p(x) = a2 for
any x € IR, one easily realizes that. Zp(x) = 2 — 20> for any « € IR and it is easy to
check that there exist two positive constants a; and ag such that . Z¢ < a; — agp in
IR. Hence, Hypothesis 5.1 are weaker than those in [4], which guarantee that G(t, s)
preserves LP(Rd).

In this section, we illustrate remarkable properties enjoyed by the evolution
operator G(t, s) in the LP-spaces related to evolution systems of measures, which are
consequences of the pointwise estimates of the previous section. To begin with, we
consider the following result.

5 A set of Borel measures {1, : t € I} in R? is tight if for every & > 0 there exists p > 0
such that 4, (R?\ B,) < ¢, for every ¢ € I.
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Proposition 5.1.  Under the same hypotheses as in Theorems 4.1 and 4.4 the
Jollowing assertions hold true.

() If the operator G(t,s) is bounded® in L'(R?) for any t > s € I, then it is
bounded from WOP(R?) to WeP(RY), for any 0 < 0; < 0, <k, p € (1, + 00),
t>seland ||G(t,s)||L(W(,1‘,,(Rd%Wﬂz,p(]Rd)) < Cp, 0, p(8,0) for any 01,02, p, k.t and
s as above and some positive function Cy, g, ,, explicitly determined in the
proof;

(i) each operator G(t,s) is bounded from WhP(R?, u.) to WoP(R?; 1), for any
pe,+o0) 61,02 €{0,....k}, with 0; < b, t >s el and

||G(t7 8)||L(W’)1'p(][{d,/13),W“2'p(:[‘3\d‘/lt)) < C()l.(/g,p(t - S)a t>se 17

for any p, 01,02 as above and some positive function 6'911;24, 1 (0,4 00) — (0, + 0)
which can be explicitly computed (see the proof).

Proof. (i) We set c,p4(s,t) = ||G(t,S)||L(W1,q('ad)~Wﬂ,q(]Rd)) for any I>s <t, 0 <
o < fand q € [1,+ co). By assumptions ¢ 1(s, ?) is finite for any s and ¢ as above. By
interpolation, from (2.1) we deduce that also ¢y ,(s,?) is finite for any ¢ > s € I,
p € (1,+00) and co,p(s, 1) < (cooa(s, )"

Now, fix k as in the statement of Theorem 4.4. Integrating estimate (1.7) (with
h = 0) in R? with respect to the Lebesgue measure and using the density of Cg"(Rd)
in WEP(RY), we get

k
Cop(5,1) < [co01(s, DI {Z (It — 9y + 1}
J=1

foranyt>sel,p e (d,+ o). Moreover, even from (1.7) it follows that

IDLGE, $)f | ey

h 5 1;7
<(rjii,,h@_s))%(co,o,l(t_s»%( / (ZlD]ﬂz) dx)
Jj=0

R¢

b :
< (I'®) (t — ) (eooa(t — )y max {267, 1} ( / > D-"fl”dw)
j=0

g 7T

< (%)t — ) (eo01(t — 9 max {270 1| f ey

5 Which is the case under conditions (a) in Remark 5.1
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forany h € {1,... k},t >s e l,p e (1,4 c0). Hence,
k
1 11 1
Chkp(s,) < |co01(s, £)] max {2277, 1} [Z (e =9y +1|.
h=1

The claim is thus proved for (01, 02) = (0, k) and (01, 02) = (k, k). The remaining cases
follow by interpolation, taking into account that for any 6 € (0,1) and p € [1, + ),
WA-00+00:p(RY) = (WhP(RT), WPP(R),, with equivalence of the respective
norms (see [40, Theorem 2.4.1(a)]). More precisely, since G(t,s) belongs to
L(LP(RY), WEP(RY) N LWEP(R?), it follows that G(t,s) € LIWh2(RY), Wr»(R))
for any 0, € (0,k) and cp, 1.,(5,8) < (Coxp(s, )"/ F(cr s (s, )"/ for any I35 < t.
Moreover, since G(t,s) € L(LP(R") N LIWEP(RY) for any t > s € I, G(t, s) is boun-
ded from W% ?(R%) into itself and

0 0-
Co,.01.0(5,8) < (€00,p(8, ) T (Chogop(s, D)7, I>s<t.

Finally, using the fact that G(t,s) € L(W?(R%) n L(W?2(RY), WrEr(R)), we con-
clude that G(t,5) € LIW"2(R?), W(R")) for any 0 < 6; < Oy < kand cg, g, (s, 1) <
(co,.0,p(3, D) E0 (e, (s, 8) P /E0) for any t > s € 1. The claim follows.

(ii) The proof is obtained immediately integrating the pointwise estimates (1.7),
taking the invariance property of the evolution system {y;, : t € I} into account and
arguing as in (i). We get Cy o ,(*) =1,

-~ 1.1 h 1
Chnp@) =max {272, 1} > I@ )y +1,  h>1;
j=1

Crip) =max {275, 1)" S" (G @y +1, =01
=0

N 3
Ca3(r) = C11,(r) + max {2%_%, 1} Z (Ff,)z,z("”))% +1.
= 0

Remark 5.3. Under conditions (a) in Remark 5.1, the functions ¢y, (s, ?),
p >1 in the proof of Proposition 5.1, are explicit. More precisely cop ,(s,?) =

eKot=s)/p_
Whenever the uniform estimate
.1 IVeGEf e < e fllpgs,  t>s €L fe CRY,
holds true for some negative constant o, the tight evolution system of measures is

unique, as the following Proposition 5.2 shows. Note that Theorem 4.1 provides us
with a sufficient condition for (5.1) to hold.
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In the rest of this section we denote by f the average of f with respect to the
measure /i, i.e.,

fs:/fdﬂs, sel

RY

Proposition 5.2. If (5.1) holds true, then the tight evolution system of
measures associated to G(t, s) is unique.

Proof. We fix s € I, f € CH(RY), set 1, = eo~!/, for any ¢ > s, and observe
that, for any t > s and € RY,

(G, 9))@) — fi] = ‘ / (G, ) ) @) — G, $)f 1dp,
Rd

IN

/ (G, 9)f)@) — Gt 5)f d

B

T

+ [ G @ - G

RAB,,

IN

V.G, 9] / & — yldg, + 2[R\ By,)

B,

< e"”(”)IVflloo(lﬂcl + / |y|dﬂt> + 2| fll oo (RT\ Br).

"t

Hence, ||G(,s)f —fillc,my < ¢"R|Vfl,, +H(s,t.f) for any t>s, where
H(s,t,f) := e“o<"292|Vf|| _ +2||f||l.i,(R*\ By,). The tightness of the measures
{u, :t €I} shows that x,(R%\ B,) tends to 0 as t — +oo and, consequently,
|G, 9)f *J?chb(BR) vanishes as t — + oo for any R > 0.

Using this result, we can conclude the proof. Indeed, assume by contradiction
that there exists another tight evolution system of measures {v; : s € I} associated
to G(t,s). Then, for any f € CgC(Rd), the average of f with respect to yx, and to v,
coincide for every s. Since the characteristic function of a Borel set A is the almost
everywhere limit of a sequence of functions in CgO(Rd), by the dominated con-
vergence theorem, we conclude that i (A) = vs(A) for every s € I and, thus, the two
evolution systems of measures actually coincide. O
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Remark 5.4. By the results in [16] each measure g, is absolutely continuous
with respect to the Lebesgue measure. More precisely, there exists a continuous
function p : I x R% — R such that dyy = p(t, )dex.

5.1 - Logarithmic Sobolev inequalities and summability improving properties

The so-called logarithmic Sobolev inequality (1.8) is crucial in the study of the
evolution operator G(t, s) in the LP-spaces related to the tight evolution system of
measures {y :t € I}. These estimates, proved firstly in 1975 by Gross for the
Gaussian measures, represent the counterpart of the Sobolev embedding theorems
which fail in general when the measure is not the Lebesgue measure.

ExAMPLE 5.2 — Let 1 be the one-dimensional Gaussian measure, whose density
with respect to the Lebesgue measure is the function y: R — R, defined by

(2) = —
) = \/—2—7[
to W'2(R, ) but it does not belong to L2*¢/2(R). Hence, no embeddings of
WHL(R, u) into LY(R, u) exist if ¢ > 2. We note that x is the invariant measure of the
semigroup associated with the Ornstein-Uhlenbeck operator .72 = D,, — zD,.

e /% for any x € R. For any ¢ > 0, the function f.(z) = ¢*"/“9 belongs

The logarithmie Sobolev inequality (1.8) yields some relevant results as the next
proposition shows.

Proposition 5.3. Assume that (1.8) is satisfied. Then, the following asser-
tions hold true:

6)) WL?’(Rd, 1) is compactly embedded in Lp(Rd, us) for any p € [2,400) and
sel;

(i) for any t > s and p € (1, + o), G(t,s) is a compact operator from L”(Rd, )
into LP(RY, j1,);

(i) the Poincaré inequality || f — fs|| LRI S 271Gy || VF| 2R, Polds true for
any f e WH2R?, 1) and s € I.

Proof. (@) Fix p > 2. The logarithmic Sobolev inequality implies that, for any
sel, |fll Lo(R™\ By e, VaNIshes as B — + oo, uniformly with respect to f in the closed
unit ball of WL2(R?, 1,). Indeed, for any f € WHP(R?, u,) and k € N, introduce the
set B, = {x € R? : |f(x)| < k} and observe that the logarithmic Sobolev inequality
(1.8) (which can be extended by density to any function in W? (Rd, 1)) and Holder
inequality show that



460 LUCIANA ANGIULI and LUCA LORENZI [40]

gy = | WP [ IfPan,

Eyn(R\Bg) Rd\<BRuEk>

< R\ By) 4 o / FPlog (i,

(k)

< kad \ Bg)

+ 10 |V T T )+ 2 U s
Hence, ||f||Lp(j[{d\BR’lts) < kp,us(Rd \ Bgr) —kM(log(k))’1 for any R,k >0 and some
positive constant M, if || f|| 1 e, y < 1. Letting first B and, then, & tend to + oo, the
claim follows.

To conclude the proof, it suffices to show that, for any R >0, the set
{fiBz :f € WEP(RY, 1), I T wrnre ) < 1} is totally bounded in LP(Bg, ), but this
follows straightforwardly, from observing that the measure y, is absolutely con-

) —

tinuous with respect to the Lebesgue measure and its density is a positive continuous
functions. This shows that LP(Bg) = LP(Bg, 1,), with equivalence of the corre-
sponding norms, and the Rellich-Kondrakov theorem shows that Wh?(Bpg) is com-
pactly embedded into LP(Bpg).

(ii) The proof follows from (i), if p > 2, recalling that each operator G(t,s) is
bounded from L”(Rd,,us) into lep(Rd,ﬂs) (see Proposition 5.1) To prove it for
p € (1,2) it suffices to apply Stein interpolation theorem (see [18, Theorem 1.6.1])
taking into account that G(t, s) is bounded from L'(R, x,) into L1(R, ), for any
t>sel

(iii) By the density of C}(R?) in W'2(RY, ), it suffices to prove the Poincaré in-
equality for functions in C;(Rd). Moreover it is not restrictive to assume that f, = 0.
Indeed, once the Poincaré inequality is proved for functions with zero average with
respect to u,, applying it to the function f — f, we get it in the general case.

The proof of the Poincaré inequality for functions f € Cg(Rd) with f, = 0 follows
from applying the logarithmic Sobolev inequality (with p = 2) to the function 1 + ¢f
(& > 0), then dividing both sides by ¢ and letting ¢ — 0. O

Remark 5.5. The Poincaré inequality can be proved also for p > 2 and some
positive constant 6p. A classical proof can be found for example in [19, Theorem
5.8.1] and is based on the compact embedding of W1=p(Rd,us) into LP(RY, ) for
p > 2. On the other hand, another approach relies on an iterative procedure which
starts from the case p = 2. Differently from the first approach, the second one,
adopted in [8], allows to control how C’p depends on s.
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A sufficient condition for the logarithmic Sobolev inequality to hold is proved in
[8]. The main tool of the proof is the pointwise gradient estimate

(5.2) (VaG(t, ) )@)| < e TIGE, )|V @), t>s,2eR?, feCiR,

for some o1 < 0. Whenever (5.2) holds, estimate (5.1) is satisfied with ¢, = o7.
Hence, there exists a unique tight evolution system of measures. In the rest of the
section, we always deal with such an evolution system of measures.

Theorem 5.1 (Theorem 3.3 of [8]). Suppose that the diffusion coefficients of
the operator .7 are independent of x and bounded. Further, suppose that
(Jac,b(t, x)E, &) < 1”0\£|2 for any tel, x,¢e R? and some negative constant ry.
Then, estimate (5.2) holds true for any f € Wl‘f”(Rd, U, p € (1,+00), s €l, with
o1 =719, estimate (1.8) holds true with C, = (2\7"0|)_1p2/10, where Ay denotes the
supremum over I of the maximum eigenvalue of the matrix Q(1).

Under the assumptions of Theorem 5.1, which we assume as standing as-
sumptions in the rest of this subsection, it can be proved a first summability im-
proving result of the evolution operator G(t, s).

Theorem 5.2 (Theorem 4.1 of [8]). Under the assumptions of Theorem 5.1 the
evolution operator G(t,s) is hypercontractive, i.e., for any p,q € (1,4 o00), with
p < q, the operator G(t,s) is a contraction from LP(RY, 1) nto L(RY, W)

Ay q—l)
t>s+ lo ( .
2V0|7"0| g p—l

Itis also interesting to study some stronger summability improving properties of
the evolution operator G(t, s). These stronger summability improving properties are:

o supercontractivity: G(t,s) is bounded from LP(Rd, 1) into L"(Rd, 1) for any
q>p>landt>sel,

e ultraboundedness: G(t,s) is bounded from L”(Rd,,us) into Cb(Rd) for any
ped,+o0)andt > s €[

e ultracontractivity: G(,s) is bounded from Ll(Rd,,us) into Cb(Rd) for any
t>sel;

The following theorem shows that the supercontractivity is equivalent to the
occurrence of a one-parameter family of logarithmic Sobolev inequalities and to an
integrability property of the Gaussian functions ¢, : R? — R, defined by ¢,(x) :=
¢/ for any x € R? and 1 > 0 with respect to the measures z, (s € I).
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Theorem 5.3 (Theorems 3.1 & 3.7 of [5]). The following facts are equivalent.
() The evolution operator G(t,s) is supercontractive.

(i) The inequality

/ \f1"log (|f Dy, — ”f”ip(ﬁd’ﬂs)10g(”f”[,p(j{gd,ﬂs))
R

2f()
p

<o [ 1rv 2w, +

R?

p
||fHLp(Rd,ﬂs)

holds true for every f € Wl*p(Rd,,us), sel, p>1 ¢>0 and some positive
decreasing function ff : (0, + co) — (0, + oo) which blows up as & — 0*.

(iii) The function ¢, belongs to Ll(Rd,us) Jor any 2 >0 and s € I. Moreover,
sup{||(ol||L1(Rd%) :s€l} < 4ooforany 4> 0.

On the other hand, the ultraboundedness can be characterized as follows.

Theorem 5.4 (Theorem 4.5 of [5]). The evolution operator G(t,s) is ultra-
bounded, if and only if for every A > 0 and t > s the function G(t,s)p, belongs to
Cb(Rd) and, for any J,4 >0, there exists a positive constant Ks; such that
IGQ, 9)0; || < K5, foranyt>sel

Remark 5.6. (i) A sufficient condition for the supercontractivity of the evo-
lution operator G(t,s) is the existence of a positive constant K such that
(b(t, %), ) < —K|x|*log x| for any t € I and 2 large enough. This condition is
quite sharper. Indeed, the autonomous operator (.2{)(x) = AL(x) — (x, V{(x))
does not satisfy it and it is well known that the associated Ornstein-
Uhlenbeck semigroup is not supercontractive with respect to the Gaussian
invariant measure du(x) = 1) %212y as proved in [38].

(ii) In order to prove that the evolution operator G(t, s) is ultrabounded it suffices
to assume that there exist K3 >0 and « >1 such that (bt x),x) <
— Ki|xP(log|x|)* for any t € I and 2 large enough. Also this condition is rather
sharp. Indeed in [25], the authors show that the semigroup associated with the
operator.Z = A — (V®, V) is not ultrabounded in the L’-spaces related to the
invariant measure du = ||e~?||; ‘e~ ?dz, if d(x) ~ |2|*log|z| as |¥] — + occ.

An equivalent characterization of the ultracontractivity is not available in the
literature, at the best of our knowledge. On the other hand a sufficient condition is
given by the following theorem.
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Theorem 5.5. Suppose that (b(t,x),x) < — Ksl|x|" for any t € I, |x| > R and
some positive constants Ko, R and y > 2. Then, the evolution operator G(t,s) is
ultracontractive.

5.2 - Long-time behaviour of G(t,s)f

This last subsection is devoted to present some result on the asymptotic be-
haviour of G(t,s)f as t — +oco. As the proof of Proposition 5.2 shows, G(,s)f
converges to f, locally uniformly in R? as t — + 0o for any f € C;(Rd), provided
that the gradient estimate (5.1) is satisfied. In such a case, one can also infer that
G, 8)f —fS”LI,(Rd’ﬂg) vanishes as t — + oo for any f € L?(R?, y,) and s € I, using
the above local uniform convergence, the density of C;(Rd) into LP(Rd, u,) and the
uniform boundedness with respect to s and ¢ of [|G(, $)||,;,xe and of the
operator f+—f, from LP(RY, 1) into R.

Actually we can be more precise on the decay rate to 0 of the previous norm when
some additional conditions are satisfied. For any p € [1, 4+ o0), we introduce the sets
U, and B, defined as follows:

4, LP(R? )

e 2, is the set of all w € R such that
|G, s)f — ms(f)||Lz>(de7ﬂt) < Mp.wew(tis)||f||Lp(]Rd#s)
for any f € LT’(Rd, Uy), any I > s < t and some positive constant M), .;

e B, is the set of all ® € R such that

VoG S oy < Npwot™ 2 o )

J4)

for any f € LP(RY, u,), any I >s < t, such that t —s > 1, and some positive
constant N, ,.

Theorem 5.6 (Theorem 5.3 of [8]). The following facts are true:

() suppose that G(t,s) is bounded from LPO(Rd,,uS) nto Wl*?’O(Rd,,ut) and
VoG oty < Crlt = DN Fll o, Jor amy f € LR, ), ¢ > s €1,
some py € (1,4 00) and a positive function Cy : (0,+oco) — (0,+ co). Then,
Ay, C Bp,.

(ii) if the evolution operator G(t,s) is hypercontractive, then the sets U, is in-
dependent of p € (1, + co);

(iii) ¢f the evolution operator G(t,s) s hypercontractive and G(t,s) 1is
bounded from LP(R?,p) into WP(R?, 1) and |[VeG(t Of || iy <
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Cat — )G, )V [l oere for™ any fe LP(RY, 1), any p € (1,+oc) and
some positive and locally bounded function Cs :(0,+occ) — (0,+ co0),
then the sets B, are independent of p € (1,4 co);

(iv) if the assumptions i (1) are satisfied for any p € (1, + oo) as well as the as-
sumptions i (111) and, 1 addition, the Poincaré inequality holds true, then
A, =B, for any p € (1,4 o).

Proof. (i) Let pg be as in the statement, fix w € 2, s,t € I witht —s > 1, and
fe LPO(Rd, 1,) with ]7,,, = 0. Splitting G(¢t,s)f = G(t,t — 1)G(t — 1, s)f and using the
estimate in the statement, we get

VoGt |y = [VaGltt— DGE— 1,8)f | g

M) T

< GiD[|GE — 173)f||Lﬂo(]R‘i,ﬂt71)
< CYOMypy o™ (| f 1l o

C )

If f, # 0 then the previous estimate follows with C;(1) being replaced by 2C;(1), just
applying the above estimate to f— f and noting that ||/ = f [l sz, ) < 21f 1 0 re -
Hence, o € *B,,, so that U, C B,,.

(ii) We fix p1,p2 € (1,4 00), such that 1 < p; < pg, and w € A,,. Moreover, we
take t > 0 such that ps = €201 '*(p; — 1) + 1. If ¢ > 7 + s, then, from Theorem 5.2
it follows that G(t,t — ) is a contraction from L (Rd, 1) to LP= (Rd, 1) Thus, using
the evolution law, the hypercontractivity of the evolution operator and recalling that
Gt —1,9)1 =1, we get

1GE9)f = Full et i = Gt = DGCE =2, 9)f = Fllpagre
< |Gt — z,8)f _szLPl(Rd‘/q,,)

< Mplwe—wrew(t—S) Hf”Lpl(Rdeﬂs)

for any f € LP2(RY, 1) C LP1(RY, Uy), t > s+ 1 and some positive constant M, .,
independent of f, where 7 is as above. Hence, we get ||G({,s)f — £, LRy <
My, we™ e | fll e, for any f € LP2(R?, i) and any t > s + . This inequality
can be extended to any ¢ € (s,s + 1), up to possibly changing the constant M, .,
recalling that G(t,s) is a contraction from LP2(R? ) into L”(R? x) and
Ifsl < ||f\|Lp2(JRd‘ﬂs) foranyt>sel.

" In view of Theorem 4.2, this condition is satisfied if 7,07 diverges to —oc as |a| — 400,
uniformly with respect to ¢ € I.
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Viceversa, fix o € 2, and fe L" (Rd,,us). By the definition of the evolution
systems of measures it follows easily that (G(r, s)f), = f, for any » > s. Moreover,
since || - ||, R g S |- 1l Lra(rY, > USING the hypercontractivity of the evolution op-
erator G(t,s), we can estimate

G, $)f = Fill e o
< |Gt s + DG +7,8)f — (G + 7,9yl e
< My, o™ O)GGs + T, 8)f || e

< Mp27w60)(t—s—r) ||fHL”1 (Rd‘ﬂs),

2 1)

a/‘-s+r)

for some positive constant M, ., and any ¢ > s + 7. As above, this is enough to infer
that w € A, . Summing up, we have proved that 2, = 2, forany1l < p; < ps < + o0
and, consequently, that 2, is independent of p € (1, + 00).

(iii) Fix 1 < p1 < p2 < +00,w € B, andt > s + 7+ 1, where 7is as above. From

(5.2) we can estimate
HVxG(ta S)f”mz@af‘,ﬂt) = ||VxG(t7t -G — T, S)fHLm(Rd_ﬂt)
< Co(0)]|G(E, t — )| VLGt — 1, 9)f| ||L,,2<Hd7ﬂr)
< CZ(T)”V%G(t -1, S)f”L”l(]Rd.ﬂt,,)
< Npthg(r)ew(t_s_T)||f||LP1(1Rd,ﬂs)

< Ny, oCo(v)e e 1N e R 1)

for any f € Cg(Rd) and some positive constant N, .,, independent of f, s and ¢. The
density of C;(Rd) into LP2(RY, u,) allows to extend the previous estimate to any
fe LPZ(Rd, uy). Again, splitting V,G(t,s)f = V,G(t,t — 1)G({E — 1,s)f, using esti-
mate (5.2) and the contractivity of G(t — 1,s) from LPZ(R‘)Z7 us) to LPZ(Rd, 1) we
cover also the case t € (s +1,s +1 + 7). Hence, w € 'B,,.

Viceversa, suppose that o € 8, and ¢ > s + 7 + 1. Then,

VG2, S)f”Lm(Rd,,,t) < V.G, S)fHer(Rd,,lt)
= ||V.G(, s + 1)G(s + 1, s)f||L,,2(Rd7ﬂt)
< sz,we(l}(t_s_f) ||G(8 + 7, S)fHU’Z(Rd

< sz,ruefmew(tfs)Hf”Lm(Rd,,zs)

Msic)

for some positive constant N, ., independent of f € L™ (RY, 1), s and t. This is
enough to infer that w € *B,. We have so proved that B, =*8,, for any
1 < p1 < p2 < +o0 and this implies that 8, is independent of p € (1,4 co).
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(iv) In view of (i)-(iii), to prove that 2, =8, for any p € (1, + 00), it suffices to
show that By C Ws. Fix w € Vg, s,t € [, witht —s > 1and f € LZ(Rd,,uS). Applying
the Poincaré inequality (with z, and f replaced by 1, and G(t, s)f, respectively) and
observing that (G(t, s)f); :fs, we get

G, 9)f _fSHLZ(Rd#f) = [|G(, s)f _Wt”“(ﬁd:/‘t)
< 2710y | V.G, S)f”Lz(JRdM)

-1 )
é 2 CZNZ#) e(/)(t 9 Hf“LZ(Rd/la).

This is enough to infer that w € 2, and we are done. O

Remark 5.7. (i) Under the assumptions of Theorem 5.1, all the conditions
in Theorem 5.6 are satisfied and estimate (5.2) implies that 7, € *8),. From
the equality 2, =%, we deduce that, for any fe Cy(RY and p > 1,
|G, 8)f — [l Lore ) decays exponentially to zero, as t — +oo.

(ii) The equality 2, =B, fails when p =1, even in the autonomous case. For
instance, in the case of the Ornstein-Uhlenbeck operator (_Z{)(x) := {"(x) —
x{ () we have dy, = ©@2n) Y26 2dy for every t, and every A < 0 is an ei-
genvalue of the realization of . Z in L!(R, 1) as shown in [37]. This implies that
; cannot contain negative numbers, so that 2[; = [0, + co). On the other hand,
in this case r) = —1 € B; by ().

Under the assumptions of Theorem 5.2, Theorem 5.6 provides us with a very
strong result, since allows us to prove that ||G(t,s)f — f,]| Lo(RY, ) decays to zero as
t — 4 oo with an exponential rate. On the other hand the assumptions in Theorem
5.2 may sound rather restrictive since the diffusion coefficients are assumed to be
bounded and independent of . As we have already explained this condition is almost
necessary to prove the pointwise estimate (5.2) which is the crucial tool to prove
Theorem 5.2.

The results in [36], which deals with the case when the coefficients are periodic
with respect to the time variable, show that ||G(t,s)f — f|| LoR decays to zero
even without requiring the validity of (5.2). Motivated by that result, in [35], the
convergence of ||G(t, s)f — f|| Lo(r? ) b0 zero has been proved also in the nonperiodic
setting under the following conditions on the coefficients of the operator . Z:

Hypotheses 5.2. (i) The coefficients q; and b; (i,j =1,...,d) belong to
Ca/2.1+’1(l % Rd);

loc
(i) gij € Cy( x Br), Dyqy,b; € CyI; LP(Bg)) for any i,j,h € {1,...,d}, any
R > 0and somep > d+2;
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(iii) Hypothesis 2.1(12) is satisfied;

(iv) there exist a positive function ¢ : R? = R, blowing up as |x| — + oo and
positive constants ay and ag such that . Z¢ < a; — agp in I X Rd;

(v) there exist constants Cy > 0 and ro € R such that |V,q;j| < Cov in I x RY for
any i, =1,...,d;

(vi) there exists a constant M >0 such that either |q;(,x)] < M1 + |x|)p(x)
G,j=1,...,d) and (b, x),x) <CA+ \x|2)(p(90) for any (t,x) el x R? or
lgijt,)| <C (i,j=1,...,d) for any (t,x) € x RY,

The strategy used in [36] is different to that illustrated here (even if the gradient
estimate |V, G(t, s)f |’ < Komax{1, (t — s)7 P/ “1G(t, s)|f|" is still used) and is based on
argument from semigroup theory applied to the so-called evolution semigroup.” (t),
which is defined when I = R by8 (7 ®f)(s,x) = (G(s,s — t)f(s,)(x) for any ¢t > 0,
(s,x) € R and fe Cb(Rd“). This semigroup can be extended to the LP-spaces
related to the unique Borel measure u such that

WA x B) = / ,(B)dt
A

for any pair of Borel sets A ¢ Rand B C RRY. This follows from the invariance of the
evolution system of measures {z; : ¢ € I'} which implies that

| 7osin= [ g >0, pecxm,

R R?

Note that x is not a probability measure since ,u(Rd“) = + 0o. The arguments used
in [36] relies on the fact that, under quite general assumptions on the coefficients of
the operator . 7,

(5.3) (Vo7 OF [l 1y = 0, feLP(R™ ).

This result is proved using only tools from semigroup theory (for the case p = 2)
and an interpolation argument in the case p # 2. If one applies (5.3) to the functions

8 Throughout the section, whenever we consider the evolution operator, we assume that
the coefficients are defined in the whole R%*!, in such a way that the assumptions that we use
are satisfied with 7 = IR. This is not a restriction since the coefficients can be extended to
R without adding further conditions.
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S f, where f e Cgo(Rd) and J,, € C°(R) satisfies the condition Homam) < I <
Hi—m—1m-+1) for any m € N, one easily obtains that there exists a sequence (¢,) such
that

(5.4) lim s +ty, )| VeG(s + by, 8)f[Pde = 0

n— + o0
R

foranys € R? \ N, where N is a negligible set with respect to the Lebesgue measure
and p is the continuous function in Remark 5.4, which is the density of i with respect
to the Lebesgue measure. In the periodic case it is straightforward to infer that the
sequence (p(s.t,, -))is bounded from below by a positive constant in any ball of R In
the nonperiodic case, the proof of this property demands somehow more delicate
arguments and the use of Hypothesis 5.2(ii). In any case, from (5.4) we conclude that
the sequence (|V,G(s + t,, s)f|) vanishes in LP(B},) for any k € N as n — + oo. Since
the sequence (||G(s + t, s)f || LP(Rd‘#Ser)) is bounded and p is continuous in R the
sequence (G(s +t,,s)f) is bounded in WhP(B),) for any k € N. By the Rellich-
Kondrachov theorem it follows that, up to a subsequence, G(s + t,,, s)f converges in
Wllo(f’ (Rd) to a constant function g(s) and the convergence is also local uniform if we
take p > d. To identify g(s) with f;, it suffices to use the invariance property of
{1y : t € I} to write

fimgls) = / (f — g(s))dp, = / G5+ L, SXF — g8\,
-[%d Rd

I

and let » tend to + oc. Since the function t — ||G(t, s)f —f,| LoR% 1)
(s, + 00), from the above result we conclude that ||G(t, s)f — f,|| LoR% ) tends to 0 as
t— +oo for any s¢ N and f € CgC(Rd). By density, we can replace Cgc(Rd) with
LP(RY, ;) and the evolution law allows to remove the condition s ¢ .

To conclude this section, we stress that in the limit tliTm |G(t, s)f — fll LoRd ) =0

is decreasing in

also the LP-space varies with . It thus makes sense to (i) study the behaviour as
t — 4 oo of the measures 1, determining the point limit; (ii) establish whether the
convergence of G(t,s)f to f, may be guaranteed also in some fixed LP-space. In the
periodic case (i) it is easy since the function ¢ — g, is periodic. In the general case, the
previous points have been addressed in [8, 35]. Here, we state the (more general)
result proved in [35]. Under Hypotheses 5.2 and assuming that the coefficients g;;
and b; (i,j = 1,...,d) belong to CZ/Z'“([SO, +00) x Bg) for any R > 0 and some s € 1,
and they converge pointwise in R? as t — + oo, in [35, Proposition 4.3] it has been
proved that the density of 1, converges to a function p_, locally uniformly in R? and
in L1(RY). Po 1s the density (with respect to the Lebesgue measure) of the invariant
measure /., of the semigroup associated with the elliptic operator whose coefficients



[49]

ON THE ESTIMATES OF THE DERIVATIVES OF SOLUTIONS ETC. 469

are the limit as ¢ — + oo of the coefficients of the operator . Z(t). This result has been
used to answer point (ii). More precisely, in [35, Theorem 4.4] it has been proved that
for any f e Cy(RY), G(t,s)f converges to fs as t — 400, in LP(RY, Uy,) for any
p €[l,4+00) and any s € I.
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