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Ground state solutions for a system of
weakly coupled nonlinear fractional equations
in the entire space

Abstract. We show the existence of a nontrivial ground state solution for a class
of nonlinear pseudo—relativistic systems in the entire space.
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In this paper we consider a system of two massive particles in presence of a
pseudorelativistic kinetic energy moving in the whole N —dimensional space. More
precisely, we consider generalizations of the prototype system

. _ ) . N
iy =/~ A+ my — PPy — ¢ lwl" Py in RY,

g =/~ A+ mio— "o~ wlgl ¢ in RY,

1)

where y, ¢ : R x RY — C are the wave functions, m; > 0 denote the masses of the
two particles and p is a positive superlinear and subcritical exponent (see below for
the precise condition). The nonlinear terms appearing in the equations describe the
interaction between the two particles.

The Hamiltonian operator H,, = v/—4 + m2, which coincides with the so—called
half Laplacian (— 4)? when m = 0, describes the kinetic and rest energy of a
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relativistic particle of mass m > 0 (more precisely, the kinetic energy of a fermion
with mass m > 0 is described by the pseudo—differential operator v/ —4 + m? — m,
after some constant—renormalization). Such an operator can be defined, for example,
by associating to v/ —4 + m? its symbol V&2 + m? in Fourier spaces in the following
way: for any f € H'(RY) with Fourier transform Ff, set

F(V=a+mf)) = VI 2 50,

which is actually well defined in H/ 2(RN ), see [11] for a complete description of this
method. The fact that, from this point of view, the natural space where defining the
governing operator is H'/2(RY), forces to decrease the range of natural exponents in
the nonlinearities according to the Sobolev Embedding Theorem, see below.

This type of Hamiltonian has been used in several context, and it turns out that it
can be quite useful in Celestial Mechanics or general Physics, see, for instance, [5],
[6], [7], [9], [10], [12], [13]. Let us also note that, in case of non—massive particles, i.e.
when m = 0, the system could be be treated directly through the integral definition
of v/—4, namely

V= due) == — Cy /

RY

w(@e +y) + ulx — y) — 2u(x) d
|?/‘N+l Y

for some Cy > 0, as done, for instance, in [1], see also [18].

However, in place of using the Fourier approach, this Hamiltonian can be treated
through an extension to a higher dimensional Euclidean space by the “Dirichlet to
Neumann” procedure (see, for example, [3] and also [2] and [21] for related problems
in a bounded domain), which consists in realizing the nonlocal operator in RY into a
local one settled in Rﬂf” = RY x (0, 00). Let us briefly recall this method: for any
function U € .7’(RN ) there exists a unique function u € &”’(Rﬂ\: *1) such that

—Mu+mPu=0 in Rf“
2)

w(@,0) =U)  on IRY™ = RY x {0},

i.e. u is the generalized harmonic extension of U in Rﬂ\r’“. Now, consider the
operator 7' defined as

Tu(x) = —a—u(aﬁ,O).
oy
Then, the system
—Aw + mPw =0 in Rﬂ\r’“

v, 0) = —g—;” (x,00=TU() on dRY™ = RN x {0},
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admits the unique solution w(x,y) = — Z—Z (x, ), and thus, by (2),

T(TU)(x) = — a—w(ac, 0) = @(x, 0) = (— dyu + m>u)(x, 0),
oy oy
where we have denoted by 4, the Laplace operator in the x—variables. In conclusion,

T? = — A, +m?, i.e the operator T mapping the Dirichlet datum U to the Neumann
ou
A

We are interested in solitary wave solutions of (1), i.e. solutions of the form
w(e, t) = e " U(x), ¢ = etV (x) where w; € Rand U,V : RY — R;thus, since the
Fourier transform acts only on the x—variables, it is readily seen that the couple
(U, V) solves the system

\/—A+mEU = oy U+ |UPP2U + |[VP|\UP2U  in RY,

A+ mEV = eV 4 VP2V 4 [UPIVP2V in RY.

Actually, there is no reason to discard an x—dependence in the potential, or to neglect

datum — — (-, 0) is a square root of the operator —4 + m?in RY , see also [4] and [20].

(3)

more general nonlinearities; for this reason we shall consider the following nonlinear
system:

—A+m2U = o U + Gy, U,V) in RY,
(4)

—A+m2V =V + Gy, U, V) inRY,

where G : RY x R x R — R is a given function satisfying suitable assumptions
described below. Of course, coherently with system (3), our prototype will be

1 1
(5) G, U, V) = %(|U\2" + V) +2—9\UV|"’.

Using the approach with the operator 7' introduced above, we rewrite system
(4) as

— M+ mPu =0 in R,
— M +mv=0 in RY,
(6) ou

oy o+ Gy(@,u,v)  on RY = gRY ™,

_Z_Z = w0 + Gy, u,v)  on RY = RV
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where, with abuse of notation, we have set Gy = G, and Gy = G,. In this way,
U = truand V = trv will solve system (4), where “tr” stands for the usual boundary
trace operator in RY.

Hence, we shall look for solutions of system (6) in the Hilbert space
H= I-Iml(RZX“) x HmZ(R]X“), where, for any m € R, m # 0, we have written
HWL(R{\[“) =H 1(Rf+l), endowed with the inner product

(u,v),, = / Du - Dvdax + m? / uv de.

N+1 PN+
R R?

Definition 0.1. A couple (u,v) € H is said to be a (weak) solution of problem
(6) iff for any w € Hl(Rﬁ’H)

/ (Du - Dw + miuw) dady = / [w1u + Gy (e, w, v)|wdi
R+ RrRY
(7)
/ (Dv - Dw + mivw) daedy = / [wev + Gy, u, v)|wdew.

RYH RY

Before going on, we introduce some notations:

(¢, ) a point of RY ™ = RY x (0, 00),

(||| the norm of u in H'(RY™),

[[ull, the norm of u in LI(RY™),

|ul, the norm of the trace of u in LI(RY),
[[(w,v)]]  the norm of (u,v)in H,

[, v)]l, the norm of (u,v) in LIRY™) x LI(RY ™).

Indeed, we recall that any u € H 1(RZX“) admits trace (still denoted by u for sim-
plicity) on 9RY ™! = RY| so that we have

7o

/ lu(, 0)|de = — / dx/—\%(x,?/)|qd?/
0
RY !

RN 0
_ ou
— g / e ") 5 ) oy,
R

and by the Holder inequality

1-1 1
8) e, 0)], < g/, "5 1 D[y



[5] GROUND STATE SOLUTIONS FOR A SYSTEM OF WEAKLY COUPLED NONLINEAR ETC. 411

By interpolation and the Sobolev Embedding Theorem we get that
(9) (e, 0)|, < cqllull  for any uw € H'(RY™)

. 2(N+1) . 2N
< ) N <qg< .
provided that 2 < 2q — 2 < N1 ,thatlszquN_1

Applying the Cauchy inequality to (8) we get that

2 1 oul?
q < ﬂ 2q-2 — -
(10) |u(x,0)|q i / |u|™ " dxdy + - / ‘ " dxdy  for any &>0,

N+1 N+1
RY* RY*

and in particular, when g = 2,

1 2
(11) ulz, 0)]5 < & / luPdedy + . / dxdy  for any &> 0.
RYH RY*H

ou
oy

As usual, rigorous derivation of the inequalities above are obtained by starting from
smooth functions vanishing at infinity, and then by applying a density argument.
From now on, we will assume that the exponent p appearing in the problem

N .
N1 Indeed, if p =1

the term |u|* % is absorbed by the term wiu, while if p = NLI’ the fractional

satisfies the superlinear and suberitical relation 1 < p <

Sobolev critical exponent, we loose compactness in the embedding H 1(R]X“) —
L¥5(RY) also in the radial case and locally. Concerning the nonlinearity G, we
assume that it satisfies the following set of hypotheses
G:
i) G:RYxRxR— Risa C'—Carathéodory function, i.e. for a.e. x € RY the
map (u,v) — G(x,u,v) is of class C' and for every (u,v) € R? the maps
2 — GQe,u,v), Gy(x,u,v) and G,(x, u, v) are measurable;
(i) G(x,0,0) = G,(x,0,0) = G,(x,0,0) = 0 for a.e. x € RY and all (u,v) € R

N
(iii) there exist ¢ >0 and p € <l,m> such that for a.e. x € Rﬂ\:“ and all
(u,v) € R? we have

G (e, u,v)| < c(u? + [P [ulPh)
and

2p-1 -1
T4 PP

|Gy, u,v)| < c(|v|
(iv) there exists u > 2 such that for all (u,v) € Rz, u,v # 0, and for a.e. x € RY

0 < uGw,u,v) < Gy, u, v)u + Gyle, u, v)v;
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2N
(v) there exist v € <27 —

N 1) and a > 0 such that for all (u,v) € R? we have

G(x,u,v) > al|lul" + [v]" + |7w|"/2).

Remark 0.1. Of course, (G)(iv) is an obvious adaptation of the Ambrosetti—
Rabinowitz condition, and if G satisfied additional assumptions or were independent
of x, condition (G)(v) would be a consequence of (G)(iv), see [19]. Moreover, in
condition (G)(iv) we have p = 2p if G is as in (5).

Remark 0.2. By direct integration, from G(iii) we get that
(12) 0 < G, u,v) < e(uf? + [f* + jwvl’) ¥ (u,v) € R?,

for some ¢ > 0.

Remark 0.3. With usual standard technicalities, one can ask that G(iv) holds
only for large values of (u, v), but in order to maintain a light presentation, we prefer
to present a global condition.

In view of the previous considerations, the proof of the following result is
straightforward.

Proposition 0.1. Assume G(i)-(iii). Then, a couple (u,v) € H is a solution
of system (6) iff it is a critical point of the C' functional J : H — R defined as
w2 2

J(u,v):%H(u,v)HZ— / [%uz—i—?v +G(x,u,v)}dac.

RY

We are now ready to state our main result:

Theorem 0.1. Assume G(I)—-(v) and suppose that G(x,u,v) = G(|x|,u,v) for
a.e xRN and all (u,v) € RZ. Then, for every wy; < my and we < mg there exists a
couple of nontrivial functions (u,v) € H 1(R]X“) x H 1(]RIXH) which solve problem
(6) and whose energy level is minimal in the set of energy levels for radial solutions.

Moreover, if G is independent of x, problem (6) admits a nontrivial solution
whose energy level is minimal in the set of energy levels.

In accordance with the usual terminology, the last situation ensures the ex-
istence of a nontrivial ground state solution for system (6) when G is independent
of x.
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As it will be clear from the proofs, the first result is obtained by working a priori
in the set of radial Sobolev functions, while the second one is obtained directly by
working in the whole Sobolev space.

1 - Proof of Theorem 0.1

In this section we will prove Theorem 0.1, showing that we can apply the
Mountain Pass in the space H = H 1(]Rf+1) x H 1(]RZJ\:J“I). We start with the proof of
the second case, i.e. for G independent of x, the former one being easier and easily
deducible from the latter.

First, let us remark that we can assume w; > 0, ¢ = 1,2, otherwise the calcula-
tions are simpler, since the term —w; f (-)? could be included in the norm of
Hmi(RIXH). Next, we prove that J has a strict minimum point in (u,v) = (0, 0).
Indeed, taking alternatively ¢ = m; and ¢ = my in (11), by (12) and the Hélder in-
equality we have

1 o 9 1 w 2
J(u’v)2<22ml) / [Du| dmdy+<22m2> / |Dv|"dxdy

Ry RY
2 2
my o 2 My _ Mate 2
+<2 5 ) /udwdy+<2 5 > /vdxdy
RN+ Ry

2, 2]
= (Il + [0 + ulg o, )

for any (u,v) € H and some constant C' > 0. Recalling that w; < m; and we < mg,
by using (9) and the Cauchy—Schwartz inequality, we finally get the existence of
positive universal constants A, B > 0 such that

T(u,v) > A\, v)[[* = B, )3

for all (u,v) € H. Being p > 1, we can find p > 0 such that inf J(S,) > 0, where S,
denotes the sphere of radius p and center at the origin in H.
Moreover, if (u,v) € H are such that u(x,0) # 0 and v(x, 0) # 0, taken t > 0, by
G(v) we have
2

2
T(tu, tv) = 5 || o, )P f% / [ u? + wpv?] das — / G(tu, tv)dx

RY RY
<AL - Bt' - — x

as t — oo, A, B being positive constants.
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We have thus proved that the functional J has a geometrical structure of
mountain pass type. Now, we show that the mountain pass level is indeed a critical
level. For this, as usual, we set

¢:=inf sup f(y®)) >0,
7el’ te[0,1]

where I" := {y € C([0,1],H) : (0) =0, y(1) = (U,V)}, and (U, V) € H is such that
(T, V|| > pand J(U,V) < 0.

In order to conclude, we follow a usual strategy, for instance see [17]. Let (u,,, v,,),
in H be such that J(u,, v,) — ¢ and J' (4, v,,) — 0in H' as n — oo, i.e. (U, vy)y, is 2
Palais—Smale sequence for J at level c. Note that such a sequence exists by
Ekeland’s Variational Principle.

First, we prove that (u,,v,), is bounded. Indeed, by assumption there exist
A, B > 0 such that

1 (U, vy) — J/(unv V) Uy, vy) <A+ Bll(unv ’be)H

for every n € IN. On the other hand, by G(iv) and by (11) applied again with & = m,
and ¢ = mg, we get

,UJ(um Vy) — J/(una /Un)(u%; Vy) = (g - 1) ||(una /Un)llz

— (E — 1) / [a)lui + COQ?)%] dx

2
RY
+ / (Gt 0 )0, + Gy, 000 — G (1, )] it
u w1 2 w2 2
> (5_1) (1_%1) / \Du,, > + (1—%) / 1D, |

PN+ N+1
R RY*

+my(m; — wy) / ui + mao(meg — ws) / vi dxdy.

RYH RYH
In conclusion, there exists C > 0 such that
Cl, v)|* < A + Bl|(ut, v,
for every n € N, and thus (u,,, v,,),, is bounded, as claimed, and so we can assume that

(U, vy) — (u,v) in H, ie. u, — uin Hl(R]X“) and v, — v in Hl(RT’I).
By (9), (denoting as usual the trace of a function by the function itself) we get

2N
that (u,), and (v,), are bounded in LI(RN) for any q € {2,

m}, so that we may
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agsume without loss of generality that «,, — v and v,, — v in LI(RN). We now show
2N
in LYRY _ev
that u,, — » and v, — v in LY(R™) for any q € (Z’N— 1).
First we show that there exist (Y,,),, in Ri’ and R , ¢ > 0 and such that
(13) / U2 + %) dedy > e,
Br(Yy)

where we have set
Br(Y,) = {X eRN L X -Y,| < R}.

If not, both (u,), and (v,), make vanishing (see [15]), that is

lim  sup / uidwdy =0and lim sup / vidmdy =0,

N—00 >N+1 Nn—00 N+1
YeR YeR
* Br(Y) T Br()

2N
and by [16, Lemma I.1] we get that u,,v, — 0 in L‘?(Rﬂ\r’“) for all ¢ € (Z’H)'

From the limit J'(u, v,,)(4y, v,) — 0, using (11) in the usual way, we easily get

0 — / {Dui +m2u? + |Dv,|* + mgvﬂ dady

RN+
(14) - / (wlui + 6027)121 + Gu(una VY, + Gv(una vn)vn) dx
RY
> CH(umvn)Hz - / (Gu(unavn)un + G?}(unyvn)vn) dxd?/

RY

for some constant C' = C(my, mg, w1, w2) > 0. From G(iii) we also get

(Gu(um V) + Gy, vn)vn) dxdy

RY

< c( / [\un|2p + 2|uyv, [P + |vn\2p} dxdy).

RY
. 2N . . .
But, since 2p € | 2, N_1)’ by (8), recalling that (u,,v,), is bounded in H and

that u,,v, — 0 in LP(RY), from the previous inequality we get that

(Gu(una V)Un 4 Go(Uy, 'Un)vn) dxdy — 0,

RY
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and so from (14), we get that (u,,v,) — (0,0) in H. But 2¢ =2J(u,,v,) —
J (U, v) (U, vy,) + 0(1), where o(1) — 0 as # — oo, and then

2¢ = 2J (uy, vy) — J,(una V) Uy, V) + 0(1) — 0,

while ¢ > 0, and a contradiction arises. This means that (13) holds.

Now, let us set i, () = u, (@ + Y,,) and 9,(x) = v,(x + Y,,) for every x € RY . J
being invariant under translations (recall that we are assuming G independent of
x), we have that (u,,v,), is still a Palais—Smale sequence for J at level c. Of
course, also (y,?,), is bounded in H, so that there exists (u,?) € H such that
(%, V) — (@, 0) in H. From (13) we get that there exist R, ¢ > 0 such that

U2 +v2)dady > e.

BrO,11)

Since (i, v,) — (,?) in LZ(BR(ORAJA)), we find that (u,v) # (0,0). Moreover, if
w,z € CW(RN +1) from the fact that J (U, Dy )(w, 2) — 0, by the weak convergence in
'H and the strong convergence in the spaces L over bounded domains, we get that

(Dt - Dw + miaw) dady = / (12 + Gy, , )| w doe

RN+1 RN
(15) .
/ (Dv - Dz + m3v2) dedy = / [wov + Gy, %, V)] 2 dut.
I{i\j%»l RN

Since CgO(RT’l) is dense in HI(R]X“), (15) also holds for every w,z € Hl(RT’l),
which means that (u,v) is a nontrivial solution for problem (6).

Now, let us show that J(u, v) = c. Indeed, since (2, v,,) is a critical point for J, of
course we have that (i, 9,,) belongs to the Nehari manifold A, defined as usual by

N = {(,v) € H\ {0,00} : J'(u,)u,v) = 0}.
As it is well known, for instance see [23] (or [17]), we have

inf J = inf {J(u,v) - (u,v) # (0,0) and J'(u,v) = 0} —c.

Hence, since (u,v) is a critical point for J, we have J(u,v) > c.
On the other hand, we have

- . . S 1 NS
c= 71h—>H:>lc J Wy, vn) +0(1) = 71h—>Holc (J(um V) — B} J/(una V) (U, V) + 0(1))

1 S 1 SO S
= / (EGu(um V)b, + éGv(um V)V, — Gy, vn)) d.

RY
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Now, condition G(iv) ensures that we can apply the Fatou Lemma, and so the pre-
vious identity implies that

1 1 o
c> / (gGu(u,v)u + éGv(u, Y — G(u,v)) dx
RY

=J(u,v) — % J' (@, )@, ) = J (@, D).

As a consequence, J (4, v) = ¢ and (u, v) is a ground state solution for problem (6), as
claimed.

The proof of the first part of the theorem is now easier. Indeed, it is enough to
consider J constrained on the space of functions which are radially symmetric in the
first N variables

HT = {(uv 'U) eH: u,v € H%‘(RZ-\FUFI)}’
where
HY(RN*) = {v e H'(RY™) : v(Mu,y) = v(x,y) for any M € O(N)}

and O(N) denotes the orthogonal group in RY. Now, since the problem under
consideration is invariant by rotation around the y—axis, if (u,v) € H, is a critical
point of J constrained on H,, then (u,v) is also a critical point of J on the whole of
‘H by the Principle of Symmetric Criticality of Palais, see [22]. Hence, we are
reduced to look for critical points of J constrained on H,. In particular, we can re-
produce the proof above with a small technical change. In particular, we only need
to change the proof of the Palais—Smale condition: once showed that any Palais—
Smale sequence in H, at level ¢ is bounded, we use that functions in Hi(R]X“)
admit traces in

HY2RY) = {u e H'(RY) : u(x) = u(|x|)}

2N
and that H}./ 2(RN ) is compactly embedded in LU(RN) for any q € <2,m), see
[14], and the proof proceeds as before.
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