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Hidden regularity for wave
equations with memory

Abstract. Our goalis to show a “hidden regularity” result for integro-differential
equations, when the integral term is of convolution type. Under general assump-
tions on the integral kernel we are able to define the trace of the normal derivative of
a weak solution. In such a way we extend to integro-differential equations well-
known results available in the literature for wave equations without memory.
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1 - Introduction

Let @ ¢ RY (N > 1) a bounded open domain of class C2. Let us denote by v the
outward unit normal vector to the boundary I". By trace theory in Sobolev spaces it is
well known that for any function u € H?(Q2) one can define the normal derivative
(with respect to v).

More precisely, we have that (see e.g. [2])

u e HX(Q) = d,u € LA(I).

Giving a meaning to the normal derivative of functions belonging to H2(®Q) is a
basic step for extending Green’s formula to Sobolev spaces.
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On the other hand, several authors investigated the regularity of solutions of
PDEsS, looking for properties that do not necessarily follow from the classical theory of
Sobolev spaces. In the huge literature about this subject, it is worth to mention [6, 7],
where the authors found out a trace theory interpretation for solutions of hyperbolic
systems. In [6, 9] the authors studied the problem by means of pseudo-differential
operator techniques.

Now we briefly recall some well-known results for the Cauchy problem for the
wave equation with Dirichlet boundary conditions.

The hidden regularity property of the weak solutions means

o € L2 (R; LA(I)).

The expression “hidden regularity” has been introduced in [11] for the case of a
semilinear wave equation. Moreover, the hidden regularity of 9,u has been estab-
lished in [10], by using a direct PDEs method, see also [12] where that property has
been applied to solve exact controllability problems for distributed systems.

For another approach based on Fourier series see [13, 14], although it works for
special domains.

In this paper we will prove a hidden regularity result for weak solutions of
integro-differential equations.

Indeed, we will consider the Cauchy problem for wave equations with a general
integral term and Dirichlet boundary conditions:

uy(t, ) — Au(t,x) + / k(t —s)Au(s,x)ds =0, t>0, xe€Q,

w(t,x) =0, t>0, xel,

w(0,x) = up(x), u(0,2) = uy(x), x e Q.

We will assume that the integral kernel k : [0, 00) — [0, 00) is a locally absolutely

continuous function such that £(0) > 0, ¥/(¢) < 0 for a.e. ¢t > 0 and f k@)dt < 1.
The result we will establish is the following.

Theorem 1.1. Let T > 0. There is a constant ¢y > 0 depending on T and
Il 107y Such that for every uy € Hy(Q) and uy € L*(Q), denoted by u the weak
solution of (1), one can define 0,u in such a way that

T

@) [ [1oatardt < atluliye + ol
0
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Inequality (2) extends to integro-differential equations the inequality obtained
in [6, 7] for solutions of wave equations.

We will prove our result by showing first that inequality (2) holds true for strong
solutions by means of the multipliers method. In particular, we note that we have to
use a multiplier which depends on the integral kernel k, see below the proof of
Lemma 3.1.

In a forthcoming paper we will extend our hidden regularity result to weak so-
lutions of semilinear equations of the type

t
(3) uy(t, ) — Ault, x) + / k(t — s)Au(s,x)ds + F(u) = 0,
0

where the nonlinearity F' satisfies suitable assumptions, see [1] for an abstract
version of equation (3). It is noteworthy to mention that such problem for equation (3)
without memory has been investigated in [11, 15].

2 - Preliminaries

Throughout the paper, we will assume that the integral kernel satisfies the fol-
lowing conditions:

k : [0,00) — [0,00) is a locally absolutely continuous function,

k(0) >0 Kt <0 fora.e. t>0,
(4)

/ k@) dt < 1.
0

For reader’s convenience we begin with recalling some known notions and re-
sults.

Definition 2.1. For strong solution of equation

¢
(5) uy(t, ) — Ault, x) + / k(t — s)Au(s,x)ds =0 t>0, xeQ,
0

with Dirichlet boundary conditions

(6) w(t,x) =0 t>0, xel,
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we mean any function % belonging to C%([0, c0); L2(€2)) N C([0, 00); HA(Q) N H (L))
and satisfying the equation for all ¢ > 0.
We call weak solution of (5)-(6) a function u € C'([0,00); L?(©)) N C([0, co);
HL(©)) such that for any v € H{(Q), t — [uw dw € C'([0,00)) and
Q

(M) ;t/utv dx—/Vu Vo dm+//k(t—s)Vu(s)ds Vodr =0 Vi > 0.

Q

Clearly, a strong solution is a weak solution.
The following result states the existence of solutions and the dissipation of en-
ergy, see e.g. [1, 16].

Theorem 2.2. Let us assume (4). For any wy € H(l)(Q) and uy € L2(Q) there
exists a unique weak solution u of the Cauchy problem

uy(t, ) — Ault, x) + / k(t —s)Au(s,x)ds =0, t>0, x €,

w(t,x) =0, t>0, xel,

w(0,2) = up(x), (0, ) = uy (), x € Q.
In addition, if the initial data are move regular, that is uy € H*(Q) N H, é(Q) and

" € H(l](Q) the weak solution of (8) is a strong one.
Moreover, the energy of a weak solution u, defined by means of formula

¢
E@®) = % /|ut(t,gc)|2 dx +% (1 —/ k(s) ds) / |Vu(t, x)‘z dx
o) 0 el

t
+% //k(t —9)|Vu(s,x) — Vu(t,oﬁ)|2 ds dx t>0,

Q0

18 a decreasing function. In particular, we have

(10) E'(t) = // k't — s)|Vu(s, x) — Vult, 90)| ds dx — = k(t)/|Vu(t ac)\ dx t>0.
20
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A well-known result concerning integral equations (see e.g. [3, Theorem
2.3.5]), that we will use later to establish our hidden regularity finding, is the
following.

Lemma 2.3. LetkecLY0,T) (T >0) and X a Banach space with norm || - ||y.
t

Then, for any ¢ € L*(0,T;X) the function o(t) — f k(t — s)p(s)ds belongs to
0

L?(0,T;X) and vice versa. Moreover, theve exist two positive constants c; =
cillkll o) @ = 1,2, depending on the norm ||| 1), such that

T T t T
2
ay e / % dt < / [~ / Kt~ )peds| di < / o) dt.
0 0 0 0

Throughout the paper we will also use a standard notation for the integral con-
volution between two functions, that is

t
(12) kxu(t) = /k(t — s)u(s) ds.
0

We denote with the symbol - the Euclidean scalar product in RY.

3 - The hidden regularity result

For sake of completeness we prefer to give a complete proof of the results of this
section. We refer to [8] for the proof of the results for wave equations without
memory. We will follow the approach pursued in [4, 5]. First, we need to introduce a
technical lemma, that we will use in the proof of our main result.

Lemma3.1. Letu € HZ((0,00); HX(Q)) be a function satisfying the following
equation

t
(13) uy(t, ) — Au(t, x) + / kt — s)Au(s,x)ds =0, in (0,00) x Q.
0

Ifh: Q@ — RY is a vector field of class CY, then for any fixed S, T € [0,00), S < T,
the following identity holds true
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T
(14) / [20,(w —Fkxu)h-V(u—kxu) —h-v|V(u—kxu)+h-ve)]ddt
Sr
ror X
:2{/uth.v(u—k*u) dx}s+//z:ajhj (w)* da dt
Q 5 o /7t

T ¢
+2//ut h- /k (t — s)(Vals) — Vu(t))ds de dt
) 0

™=

T
+2/k(t)/uth-Vudacdt
Q
T
+2/ /&Lh]&(u—k*u)@(u—k*u) dx dt
g b=l g
T
S/Q/

Proof. To begin with, we multiply the equation (13) by

Mz

Ol |V (u — ke xu) [ da dt.

Il
—

J

2h - V(u(t) - / Kt — s)us) ds)

and integrate over [S, T'] x Q. For simplicity, here and in the following we often drop
the dependence on the variables.

First, we will handle the term with uy. Indeed, integrating by parts in the vari-
able ¢ gives

T t
(15) 2 hev(ud)— | k- syuls) ds) da dt
S/Q/?/Ltt (u 0/ S)u s S> X

:z[/uth-v(u(t)—/t ket — syus) ds) dmﬁ
0

Q

T T t
—2//uth-Vut dic dt+2//uth~v(/ Kt — s)uls) ds+k(0)u(t)) d dt.
S Q S Q 0
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Now, we note that, if we integrate by parts in the variable & then we obtain

N
(16) 2/ut h - Vu dx :/h . V(ut)2 dx :/h~v (ut)2 dl"f/zajhj (ut)zdx.
e T o =t

Q

In addition, we can write

¢ ¢ ¢
/ Kt — s)u(s) ds = / Kt — s)u(s) —ut)) ds + / K ()u(t) ds
0 0
(17)

= / Kt — s)u(s) —ut)) ds + k@®)u(t) — k(0)u(?).

Therefore, plugging (16) and (17) into (15) yields

T t
2//utth-V(u(t)—/k(t—s)u(s) ds) dee dt
S Q 0

T

[/uth V u(t)—/ k(t—s)u(s)ds dac / h-v(ut)2 drdt

Q
Ty T t
+//Z8]hj (u)? dacdt+2// uth-/k/(t—s)(Vu(s)—Vu(t)) dsdxdt
so /1 50 0
T
+2/k(t)/uth-Vudxdt.

Now, to manage the terms with Au, we set

t
(19) w(t) = u(t) — / k(t — s)u(s) ds,
0

s0, we have to evaluate the term

T
2//Awh-dexdt.
S @
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Integrating by parts in the variable x we get

T
2//Awh-dexdt
S Q
2
(20) ’ ’
:2//&,@0h-Vwdth—2//Vw-V(h-Vw)dacdt.
ST S o
We observe that
N
2 / V- V(h-Vw) de =2 / dw 9;(h;opw) de
ij=1
1) Q Q
N N
=2 Z /@h]@wajw de + 2 Z /h,alw aj(@w) dux,
=1} ij=1
and
N N N
2> / hidw 0,(0pw) dac =y / hj O; ( > (aq-,wf) dw
L=l 5 =1 i=1
(22)

N
:/h-v\vmz dr—/Zajhj Vaol? de.
T o /1

Therefore, by putting (21) and (22) into (20) we obtain

T

2//Awh-deacdt
Q

S

T T

(23) :2//6\,wh~Vw drdt—//h.v\wu\z dr dt
I

S S

r
Y
_2/ Z
ij=1

T
N

/Bihjaiwajwdacdt—i—//zajhj (V[ du dt.
5 o It

Q

Finally, by (18) and (23), taking into account (19) we have the identity (14). O

Theorem 3.2. Let T > 0. There is a constant cy = co(T) > 0 such that for
every uy € H*(Q) N HY(Q) and uy € HY(Q) the strong solution of
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t
uy(t, ) — Aul(t, x) +/ k@t — s)Au(s,x)ds =0, te(0,T), xeQ,
0

(24)
w(t,x) =0, te0,1), xel,

w(0,x) = up(x), u(0,2) = u(x), x e,

satisfies the inequality
T
(25) / / 9y — e Dyuf*drdt < eol ol + By
0T

Proof. To begin with we consider a vector field & € C1(Q; RY) such that
(26) h=v on I,

see e.g. [4] for the construction of such vector field, and we denote with ¢ a positive
constant such that

N
(27) h@)|<c¢ and > |Oik@)| <c, VueQ
1,j=1

We will apply the identity (14) with the vector field % satisfying (26) and with S = 0.
First, we observe that
(28) up = 0, Vu=©Ou)yv on (0,T)xT.

For a detailed proof of the second identity see e.g. [15, Lemma 2.1]. Therefore,
thanks to (28) the left-hand side of (14) becomes

T

/ / |0yu — ke + Oyu[*dIdt.
I

0

To prove (25) we will show that every term on the right-hand side of (14) can be
majorized by a positive constant depending on 7" multiplied by the initial energy
E(0). Indeed,

T
(29) 2{/% bV (u—k*u) dac}o
Q

:2/ut(T)h-V(u—k*u)(T)dac—Z/ul h - Vg de
) )

< c/|u,5(T)|2 dm+c/|V(u—k*u)(T)|2dx+c/|u1|2 dx+c/|Vuo|2dac.
Q Q Q Q
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We proceed to evaluate for all ¢ € [0, T] the term f Y (u —k u) (t)|2 dx, because that
Q

evaluation will be also useful later. Since for all ¢ € [0, T']
t ¢
V) — k « V) = (1- / k(s) ds ) Vut) - / k(t — 5)(Vuls) — Vu()) ds,
0 0
in view also of k(t) > 0 and 7 k(s)ds < 1 we have
0
¢
2
V(u—kxu) o) <2(1 —/k(s)ds) V)
0
¢
2
+2( / kit — )| Vus) - Vu(b)| ds )
0
¢
< 2(1 - / (s) ds) V)
0

t
+2 / k(t — )| Vals) — V)| ds,
0

whence, by means of formula (9) for the energy, we get

(30) /|V(u—k*u)(t)|2 dx

Q
4 t
< 2/((1—/k(s)ds)|Vu(t)|2+/ e 9|vuts) - Tuf ds) "
Q 0 0
< 4E@).

By putting (30) with ¢ = T  into (29) and using again (9), we obtain
T
2[/% bV (u—kvu) de < 6cE(T)+ 2B O)
Q

and hence, since the energy E(?) is decreasing, see Theorem 2.2, we have

2{/% bV (w—kx*u) dm}jg&:E’(O).
5
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Now, we estimate the second term on the right-hand side of (14) by using (27), the
expression of energy (9) and E(t) < E(0) for all t € (0,T), that is

T

/]

T
N
|9y wel? dac dit < 2¢ / E(t) dt < 2¢TE(0).
0 o It 0

In order to bound the term
T t
2// |y h-/ Kt — s)(Vuls) — Vu(t)) ds|dx di
0 Q 0

we note that, thanks also to (27), we have

T t

(31) 2 / / ] | / Kt — )(Vuls) - Vu(t))ds| dv dt
Q 0

0

T

T t
< C//|ut|2 d dt+6// ’/ k'(t—s)(Vu(s)—Vu(t))ds’zdxdt.
Q 0 Q 0

0

To evaluate the second term on the right-hand side of the previous formula, we
observe

t
2
Kt — 5)(Vuls) — Vu(t))d
’0/ S u\s u S‘

t
< ( / |k’(t—s)|1/2|k’(t—s)|1/2|Vu(s)—Vu(t)}ds)z
0

t t
< / K (s)| ds / K/t — 8)||Vals) — Vau®)|*ds
0 0
t
— — (k(0) — k(t)) / Kt — 8)|Vuls) — Vu(t)| ds.
0

Therefore, in view of k(t) > 0 and formula (10), giving the derivative of the energy,
from the above inequality we obtain
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T t
/ / ‘ / K (t — 5)(Vals) — V() ds‘ dae dt
0 Q 0

T
2
(32) < —k(0) Kt — )| Vuls) — Vu®)|” ds d dt
[1]

< —2k(0) / E'(t)dt < 2k(0)E(0).

Plugging (32) into (31) and using Theorem 2.2 yield

T t
2// |y h/ Kt — s)(Vu(s) — Vu(t)) ds|dedt
0 0
T
<c / / ue|? dae dt + 2ck(0)E(0)
0 Q

< ZC/E(t) dt + 2¢k(0)E(0) < 2¢(T + k(0))E(0).

Keeping in mind that k(t) < k(0) and by using again (27), we get

T
/k(t)/ g b - V| de dt
0 Q

T T
< ck(O)//|ut||Vu|docdt kT//|ut|2+|Vu|2dxdt.
0 2 0

[12]

In addition, thanks to k(t) > 0, f k(s)ds < 1 and the definition of energy (9), we

have

t
1-— f k(s)ds
Vu)ff < ———— |Vu®)® R

1— [ k(s)ds 1— [ k(s)ds
0 0

E®),



[13] HIDDEN REGULARITY FOR WAVE EQUATIONS WITH MEMORY 403

80, in view also of E(t) < E(0) for all t € (0, T), we deduce

T
/k(t)/ g b - V| de it
0 Q
1

< ck(0) (1 +> /E’(t) dt < ck(O)( OO) TE(0).
f k(s)ds 1— [ k(s)ds
0

Finally, to evaluate the last two terms on the right-hand side of (14) we will use the
estimate (30). Indeed, as regards the first one, by means of (27) we have that

/

M=

|0:h;0; (w — ko + u) O (u — k= u)| de dt
1

i.j

IN

O\s

T
2
c (u— k*u)|) dedt < 2N7lc // IV (u — k * u)|* de dt.
(e

/
[

Since, from (30) and E(t) < E(0), we obtain

(33) //|V(u—k*u)|2dmdt < 4/E‘(t)dt < 4TE(0),

thus it follows

'~
/Z/k’)h& w—koxu)0;(u—kxuw)|dedt
0 Q

i,j=1

2NTITE(0).

IN

In a similar way, thanks again to (27) and (33) we have

//Z|ah| IV (0~ kxw) Pdwdt < c// IV (u— k)P dudt < 4eTE(O).

0o /7t

In conclusion, the previous argumentations show that all terms on the right-hand
side of (14) can be majorized by a positive constant depending on 7' multiplied by
E(0). So, since

1 2 1 2
E0) = 5 Hu0||H(1)(Q) + 5 21|72

we have proved estimate (25) for a suitable constant ¢y > 0. O
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Corollary 3.3. There exists a unique continuous linear map

L HyQ) x LX(Q) — L2 (0, c0); LX(I')

loc

such that for any uy € H*(Q) N H, (1)(9) and u; € H (1)([2), called u the strong solution
of (24), we have
L(ug, u1) = ot.

Proof. Foruy € H3(Q) N H(Q) and uy € HL(Q), if we denote by u the strong
solution of problem (24) and apply Lemma 2.3 with X = L2(I'), then for any 7 > 0,
thanks to (25) and (11) there exists a constant ¢y = co(T', ||k|| Lior) >0 such that

T

2 2 2
[ [ 1oaaras < ululiye + o)
0

By density our claim follows. O

Remark 3.4. Corollary 3.3 allows us to introduce the notation 0,u instead of
L(ug,ur) forug € H (1)(9), u; € L2(Q) and u the weak solution of (24). Indeed, we have
the following trace theorem:

(uo, 1) € Hy(Q) x LX) = dyu € L, ((0,00); LA(I),

loc

and for any T > 0 there is a positive constant ¢y depending on 7' and [|k|| . o ) such that
T

(34) //la‘,u|2dfdt < CO(HMOH?—Ié(Q) + ||’I/L1Hiz(g)) V(’Mo,ul) € Hé(,Q) X LZ(Q)
0r

This result does not follow from the usual trace theorems of the Sobolev spaces. For
this reason it is called a hidden regularity result. The corresponding inequality (34) is
often called a direct inequality.
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