PATRICK MARTINEZ, JACQUES TORT and JUDITH VANCOSTENOBLE

Lipschitz stability for an inverse problem for the 2D-Sellers model on a manifold

Abstract. In this paper, we are interested in some inverse problem that consists in recovering the so-called insolation function in the 2-D Sellers model on a Riemannian manifold that materializes the Earth's surface. For this nonlinear problem, we obtain a Lipschitz stability result in the spirit of the result by Imanuvilov-Yamamoto in the case of the determination of the source term in the linear heat equation. The paper complements an analogous study by Tort-Vancostenoble in the case of the 1-D Sellers model.

Keywords. PDEs on manifolds, nonlinear parabolic equations, climate models, inverse problems, Carleman estimates.

Mathematics Subject Classification (2010): 58J35, 35K55.

Contents

1 - Introduction	352
1.1 - The Sellers model	352
1.2 - Assumptions and main results	353
1.2.1 - Geometrical and regularity assumptions	353
1.2.2 - Main results	354
1.3 - Relation to literature	355
1.4 - Contents of the paper	356

Received: February 11, 2016; accepted in revised form: January 24, 2017.

	37	251
2 -	Notations, computations and heat operator on manifolds	356
	2.1 - Notions on topological and Riemannian manifolds	356
	2.2 - Integration on a compact manifold and Sobolev spaces	360
	2.3 - The heat equation on a Riemannian manifold	361
3 -	Global Carleman estimates for the heat operator on a compact mani-	
	fold without boundary	363
	3.1 - Global Carleman estimate	363
	3.2 - The basic properties	36 4
	3.3 - The main steps to prove Theorem 3.1	365
	3.3.1 - The decomposition of the weighted heat operator	365
	3.3.2 - The expression of the scalar product	366
	3.3.3 - A bound from below of the zero order term of the	
	scalar product	366
	3.3.4 - A bound from below of the first order term of the	
	scalar product	367
	3.3.5 - A first Carleman estimate	369
	3.3.6 - End of the proof of Theorem 3.1	371
4 -	Proof of Proposition 1.1	371
	4.1 - The case of the sphere \mathbb{S}^2	371
	4.2 - The case of a simply connected oriented manifold of dimension $2\dots$	372
5 -	Preliminary study of the Sellers model on a manifold	373
	5.1 - Local existence of classical solutions	373
	5.2 - Weak maximum principle	376
	5.3 - Regularity of the time derivative of the solution of (1)	378
	5.4 - Global existence of the solutions of (1)	380
c	Ducaf of Theorem 1.1	901

1 - Introduction

1.1 - The Sellers model

In this paper, we are interested in some inverse problem that consists in recovering the so-called insolation function q in the nonlinear Sellers climate model. The case of the 1-D Sellers model has been considered in [39]. Here we focus on the 2-D

Sellers model on the Earth's surface:

(1)
$$\begin{cases} u_t - \Delta_{\mathcal{M}} u = \overbrace{r(t)q(x)\beta(u)}^{\mathcal{R}_a(t,x,u)} - \overbrace{\varepsilon(u)u|u|^3}^{\mathcal{R}_e(u)} & x \in \mathcal{M}, \ t > 0, \\ u(0,x) = u^0(x) & x \in \mathcal{M}. \end{cases}$$

The Earth's surface is materialized by a sub-manifold \mathcal{M} of \mathbb{R}^3 which is assumed to be of dimension 2, compact, connected, oriented, and without boundary. The function u represents the mean annual or seasonal temperature, and $\Delta_{\mathcal{M}}$ is the Laplace-Beltrami operator on \mathcal{M} . The right hand side of the equation corresponds to

- the mean radiation flux depending on the solar radiation \mathcal{R}_a ,
- and the radiation \mathcal{R}_e emitted by the Earth.

For more details on the model, we refer the reader to [14, 15] and the references therein.

1.2 - Assumptions and main results

1.2.1 - Geometrical and regularity assumptions

Consider a sub-manifold \mathcal{M} of \mathbb{R}^3 which is assumed to be of dimension 2, compact, connected, oriented, and without boundary.

Throughout this paper, we make the following assumptions (that are compatible with the applications, see [39]):

Assumption 1.1.

(2)
$$\beta \in \mathcal{C}^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R}), \ \beta' \in L^{\infty}(\mathbb{R}), \ \beta' \text{ is } k\text{-Lipschitz } (k > 0),$$

(3)
$$\exists \beta_{min} > 0, \forall u \in \mathbb{R}, \ \beta(u) \geq \beta_{min},$$

$$(4) q \in L^{\infty}(\mathcal{M}), \ q \ge 0,$$

(5)
$$r \in \mathcal{C}^1(\mathbb{R}) \text{ is } \tau\text{-periodic } (\tau > 0),$$

(6)
$$\exists r_{min} > 0, \ \forall t \in \mathbb{R}, \ r(t) > r_{min}$$

(7)
$$\varepsilon \in \mathcal{C}^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R}), \ \varepsilon' \ is \ K-Lipschitz \ (K > 0),$$

(8)
$$\exists \varepsilon_{min} > 0, \forall u \in \mathbb{R}, \ \varepsilon(u) > \varepsilon_{min}.$$

We also make the following geometrical assumption:

Assumption 1.2. Let ω be a non empty open subset of \mathcal{M} . We assume that there exists a weight function $\psi \in C^{\infty}(\mathcal{M})$ that satisfies:

(9)
$$\nabla \psi(m) = 0 \implies m \in \omega.$$

(Here ∇ stands for the usual gradient associated to the Riemannian structure, see Section 2.)

1.2.2 - Main results

As in [39], our aim is to prove some Lipschitz stability result for the inverse problem that consists in recovering the insolation function q in (1) from partial measurements. We introduce

• the set of admissible initial conditions: given A > 0, we consider \mathcal{U}_A :

(10)
$$\mathcal{U}_A := \{ u^0 \in D(\Delta_{\mathcal{M}}) \cap L^{\infty}(\mathcal{M}) : \Delta_{\mathcal{M}} u^0 \in L^{\infty}(\mathcal{M}),$$

$$||u_0||_{L^{\infty}(\mathcal{M})} + ||\mathcal{\Delta}_{\mathcal{M}} u_0||_{L^{\infty}(\mathcal{M})} \leq A\},$$

where $D(\Delta_{\mathcal{M}})$ is the domain of the Laplace-Beltrami operator in $L^2(\mathcal{M})$ (we will recall the definition of $\Delta_{\mathcal{M}}$ and $D(\Delta_{\mathcal{M}})$ in Section 2),

• and the set of admissible coefficients: given B > 0, we consider

(11)
$$Q_B := \{ q \in L^{\infty}(\mathcal{M}) : ||q||_{L^{\infty}(\mathcal{M})} \le B \}.$$

The main result of this paper is the following one:

Theorem 1.1. Consider

- $t_0 \in [0, T)$ and $T' \in (t_0, T)$,
- A > 0 and $u_1^0, u_2^0 \in \mathcal{U}_A$ (defined in (10)),
- B > 0 and $q_1, q_2 \in \mathcal{Q}_B$ (defined in (11)),
- u_1 the solution of (1) associated to q_1 and the initial condition u_1^0 , and u_2 the solution of (1) associated to q_2 and the initial condition u_2^0 ,
- $\omega \subset \mathcal{M}$ such that Assumption 1.2 holds.

Then there exists $C(t_0, T', T, A, B) > 0$ such that, for all $u_1^0, u_2^0 \in \mathcal{U}_A$, for all $q_1, q_2 \in \mathcal{Q}_B$, the corresponding solutions u_1, u_2 of problem (1) satisfy

We complete Theorem 1.1 by the following remarks:

• the geometrical assumption 1.2 is satisfied when \mathcal{M} is simply connected (hence in particular for the sphere \mathbb{S}^2):

Proposition 1.1. Additionnally, assume that \mathcal{M} is simply connected. Consider any ω non empty open set of \mathcal{M} . Then Assumption 1.2 is fullfilled: there exists some smooth function ψ that satisfies (9).

• as a consequence of the stability estimate (12) and of the Carleman estimate that we will prove in Theorem 3.1, we obtain a weighted stability estimate for the difference $u_1 - u_2$: there exists $C'(t_0, T', T, A, B) > 0$ such that,

$$(13) \|e^{-R\sigma}(u_1 - u_2)\|_{L^2((0,T)\times\mathcal{M})}^2 \le C' (\|u_1(T') - u_2(T')\|_{D(\mathcal{A}_{\mathcal{M}})}^2 + \|u_{1,t} - u_{2,t}\|_{L^2((t_0,T)\times\omega)}^2),$$

where σ is the weight function defined in (35).

The proof of Theorem 1.1 is based on

- global Carleman estimates for the heat equation (see Theorem 3.1),
- maximum principles, useful to study this nonlinear problem (see Theorem 5.2 and Corollary 5.1),
- and Riemannian geometry tools, since we are in the manifold setting.

The proof of Proposition 1.1 is based on

- a direct construction when $\mathcal M$ is the sphere $\mathbb S^2$, using the stereographic projection,
- the celebrated uniformisation theorem ([1, 40]) when \mathcal{M} is simply connected.

(Remark: we no not know if the result remains true if T' = T.)

1.3 - Relation to literature

A similar problem is considered in [39], where stability estimates for the insolation function are obtained combining Carleman estimates with maximum principles, the main difference with the present paper being that the problem in [39] is stated and studied in the interval (-1,1) and with a degenerate diffusion coefficient.

Global Carleman estimates have proved their usefulness in the context of null controllability, unique continuation properties, we refer in particular to [25] for the seminal paper on the null controllability of the heat equation on compact manifolds, to [18, 21] for Carleman estimates in a general setting, to [29] for unique continuation properties for the heat equation on non compact manifolds, to [31, 32] for uniqueness results for manifolds with poles, to [6] for stabilization results of the wave equation on manifolds.

Concerning inverse problems, Isakov [23] provided many results for elliptic, hyperbolic and parabolic problems. Imanuvilov-Yamamoto [22] developped a general method to solve some standard inverse source problem for the linear heat equation, using global Carleman estimates. In the context of semilinear parabolic equations in bounded domains of \mathbb{R}^n , we can also mention in particular [33, 34], where uniqueness results are obtained under analyticity assumptions, [11], that combines also Carleman estimates with maximum principles to obtain stability estimates (for two coefficients but under rather strong assumptions on the time interval of observation).

1.4 - Contents of the paper

Let us now precise the organization of the paper.

- First of all, since the equation is stated on a surface, the operators needed for the definitions and the computations (Laplacian, divergence, gradient) are defined through a Riemaniann metric associated to the surface. So, in order to fix the ideas, we begin in Section 2 by introducing all the notations and recalling all the definitions and the properties useful for computations on manifolds.
- Next, in Section 3, we state and prove some global Carleman estimate for the heat operator on a compact manifold without boundary. This will be a crucial tool in order to study our inverse problem.
- In Section 4, we prove Proposition 1.1, studying first the case of the sphere \mathbb{S}^2 , and then the general case of a simply connected manifold.
- In Section 5, we make some preliminary studies concerning the 2-D Sellers model on the manifold \mathcal{M} (well-posedness of course but also regularity results and maximum principles that will also be essential in the proof of the stability result for the inverse problem).
- Finally, in Section 6, we prove Theorem 1.1.

2 - Notations, computations and heat operator on manifolds

In this section, we fix the notations and recall some classical definitions and results on manifolds. We refer in particular to [9, 19].

2.1 - Notions on topological and Riemannian manifolds

Charts, atlas, smooth manifolds. A topological manifold \mathcal{M} of dimension n is a separated topological space such that every point $m \in \mathcal{M}$ has a neighbourhood U which is homeomorphic to some connected open subset of \mathbb{R}^n . For any neighbour-

hood U and any homeomorphism $\phi: U \to \phi(U) \subset \mathbb{R}^n$, we say that (U, ϕ) is a coordinate chart on U. A set $(U_i, \phi_i)_{i \in I}$ such that the set of neighbourhoods U_i covers \mathcal{M} is called an atlas on \mathcal{M} .

When two coordinate charts (U_1,ϕ_1) and (U_2,ϕ_2) have overlapping domains U_1 and U_2 , there is a transition function $\phi_2 \circ \phi_1^{-1} : \phi_1(U_1 \cap U_2) \to \phi_2(U_1 \cap U_2)$ which is a homeomorphism between two open subsets of \mathbb{R}^n . A smooth manifold (or a \mathcal{C}^{∞} -manifold) is a manifold for which all the transition maps are \mathcal{C}^{∞} -diffeomorphims. In the following, \mathcal{M} always denotes a smooth manifold.

Tangent vectors, tangent spaces, basis. A tangent vector at $m \in \mathcal{M}$ is an equivalence class [c] of differentiable curves $c: I \to \mathcal{M}$ with I sub-interval of \mathbb{R} such that $0 \in I$ and c(0) = m, modulo the equivalence relation of first order contact between curves i.e.

$$c_1 \equiv c_2 \Leftrightarrow c_1(0) = c_2(0) = m \text{ and } (\phi \circ c_1)'(0) = (\phi \circ c_2)'(0)$$

for every coordinate chart (U, ϕ) such that $m \in U$.

The tangent space to \mathcal{M} at m, denoted by $T_m \mathcal{M}$, is the collection of all tangent vectors at m. Let (U, ϕ) be a chart such that $m \in U$ and define the map θ_{ϕ} :

$$\theta_{\phi}: T_m \mathcal{M} \longrightarrow \mathbb{R}^n$$

$$[c] \longmapsto (\phi \circ c)'(0).$$

Then $\theta_{\phi}: T_m \mathcal{M} \to \mathbb{R}^n$ is a bijection (see [24, p. 64]). Therefore $T_m \mathcal{M}$ can be endowed with a structure of a vector space. It is possible to exhibit a basis $(\partial_i(m))_{1 \leq i \leq n}$ of $T_m \mathcal{M}$ in the following way. Let $m \in \mathcal{M}$ and (U, ϕ) be a chart of \mathcal{M} such that $m \in U$. In $\phi(U) \subset \mathbb{R}^n$, we have n coordinate fields:

$$\forall 1 \leq i \leq n, \qquad \frac{\partial}{\partial x_i} : \begin{cases} \phi(U) & \to \mathbb{R}^n \\ x & \mapsto (0, 0, \dots, 1, 0, \dots, 0) \end{cases}$$

where 1 is at position i. Then we set

$$\forall 1 \leq i \leq n, \qquad \partial_i(m) = \theta_{\phi}^{-1} \left(\frac{\partial}{\partial x_i} (\phi(m)) \right).$$

Regularity, derivatives. A continuous function $f: \mathcal{M} \longrightarrow \mathbb{R}$ is of class C^k if, for any $m \in \mathcal{M}$ and for any chart (U, ϕ) with $m \in U$, $f \circ \phi^{-1} : \phi(U) \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ is of class C^k .

Assume $f: \mathcal{M} \longrightarrow \mathbb{R}$ is of class C^1 and $m \in \mathcal{M}$. For any vector $\xi \in T_m \mathcal{M}$, the directional derivative of f at m along ξ , denoted by $\xi.f_m$ or $(\xi.f)(m)$, is:

$$\xi.f_m := (f \circ \omega)'(0),$$

where $\omega: I \longrightarrow \mathcal{M}$ satisfies $\omega(0) = m$ and $\omega'(0) = \xi$. For all $m \in \mathcal{M}$, the map $\alpha_m: \xi \longmapsto \xi. f_m$ is a linear form on $T_m \mathcal{M}$.

Let us explicit now the derivatives of f along each vector of the basis of the tangent space. Let $f: \mathcal{M} \longrightarrow \mathbb{R}$ be regular, $m \in \mathcal{M}$ and (U, ϕ) be a chart of \mathcal{M} containing m. Then $\partial_i(m).f_m = (f \circ \omega_i)'(0)$ where $\omega_i: t \longmapsto \phi^{-1}(\phi(m) + t(0, ..., 1, 0, ...0))$. Moreover $(f \circ \omega_i)(t) = (f \circ \phi^{-1})(\phi(m) + t(0, ..., 1, 0, ...0))$. Hence $\partial_i(m).f_m = \frac{\partial (f \circ \phi^{-1})}{\partial x_i}(\phi(m))$.

Tangent bundle, vector fields. The tangent bundle of a differentiable manifold \mathcal{M} is a manifold $T\mathcal{M}$, which assembles all the tangent vectors at \mathcal{M} , that is $T\mathcal{M} = \bigcup_{m \in \mathcal{M}} T_m \mathcal{M} = \bigcup_{m \in \mathcal{M}} \{m\} \times T_m \mathcal{M}$. We denote by $\Pi : (m, \xi) \in T\mathcal{M} \to m \in \mathcal{M}$ the canonical projection.

Vector fields, derivative along a vector field. A vector field X on a manifold \mathcal{M} is a regular map $X: \mathcal{M} \longrightarrow T\mathcal{M}$ such that $\Pi \circ X = Id_{\mathcal{M}}$ (i.e. $X(m) \in T_m \mathcal{M}$ for any $m \in \mathcal{M}$).

Let $X : \mathcal{M} \to T\mathcal{M}$ be a vector field on \mathcal{M} and $f : \mathcal{M} \to \mathbb{R}$ regular. We define $X.f : \mathcal{M} \to \mathbb{R}$ the derivative of f along X in the following way: for all $m \in \mathcal{M}$, for any chart (U, ϕ) with $m \in U$,

$$(X.f)(m) = (f \circ \omega)'(0),$$

where $\omega: I \longrightarrow \mathcal{M}$ satisfies $\omega(0) = m$ and $\omega'(0) = X(m)$.

Lie bracket of two vector fields. The Lie bracket of two vector fields X and Y is a third vector field [X,Y] defined by

$$\forall f: \mathcal{M} \longrightarrow \mathbb{R}, \qquad [X,Y].f := X.(Y.f) - Y.(X.f).$$

For the computations of Carleman inequalities, we will need the following result (see e.g. the proof in [38]): for all $1 \le i, j \le n$, then $[\partial_i, \partial_j] = 0$.

Riemannian manifolds. Let \mathcal{M} be a smooth manifold. A Riemannian metric on \mathcal{M} is a family $g = (g_m)_{m \in \mathcal{M}}$ of (positive definite) inner products $g_m := \langle , \rangle_m$ on $T_m \mathcal{M}$ for all $m \in \mathcal{M}$. Moreover the map $m \longmapsto g_m$ is assumed to be regular. Then we say that (\mathcal{M}, g) is a Riemannian manifold.

Let $m \in \mathcal{M}$ and (U, ϕ) be a chart containing m, the matrix $G = (g_{j,k}) \in \mathcal{M}(n, \mathbb{R})$ of the scalar product $g_m := \langle , \rangle_m$ in the basis of $T_m \mathcal{M}$ is given by:

$$(14) g_{i,k} := \langle \partial_i, \partial_k \rangle_m.$$

As \langle , \rangle_m is a scalar product, G is invertible. We also denote

(15)
$$g := \det(G) \neq 0 \text{ and } G^{-1} := (g^{i,l}).$$

Connexion on a manifold. A connexion on a manifold \mathcal{M} is an operator D which associates to any vectors fields X and Y a third vector field D_XY on \mathcal{M} such that, for all X, Y, Z vector fields and for all regular function $f: \mathcal{M} \longrightarrow \mathbb{R}$,

$$(16) D_X(Y+Z) = D_XY + D_XZ,$$

(17)
$$D_X(fY) = fD_XY + (X.f)Y,$$

(18)
$$\xi \longmapsto D_{\xi}Y$$
 is linear on $T_m \mathcal{M}$ for all $m \in \mathcal{M}$.

Levi-Civita connexion. From the fundamental theorem of Riemannian geometry, there is a unique connection Γ , called Levi-Civita connection, on the tangent bundle of a Riemannian manifold (\mathcal{M}, g) such that:

• Γ is torsion-free, i.e. for all vectors fields X and Y on \mathcal{M} , then

(19)
$$\Gamma_X Y - \Gamma_Y X = [X, Y];$$

• and Γ preserves the Riemannian metric g, i.e., for all vector fields X, Y, Z,

(20)
$$X.g(Y,Z) = g(\Gamma_X Y, Z) + g(Y, \Gamma_X Z).$$

Gradient. Let $f: \mathcal{M} \longrightarrow \mathbb{R}$ be a regular function. The gradient of f, denoted by grad (f) or ∇f , is the vector field on \mathcal{M} defined for any $m \in \mathcal{M}$ as the unique vector grad $(f)_m$ such that

$$\forall \xi \in T_m \mathcal{M}, \quad \langle \operatorname{grad}(f)_m, \xi \rangle_m = (\xi.f)(m),$$

where $(\xi.f)(m)$ is the derivative of f at m in the direction ξ .

Divergence. For X vector field on \mathcal{M} , we define the function div (X) on \mathcal{M} by $\forall m \in \mathcal{M}$, $\operatorname{div}(X)(m) := Tr(\xi \longmapsto \Gamma_{\xi}X)$, where ξ belongs to $T_m \mathcal{M}$.

Laplacian. Let $f: \mathcal{M} \longrightarrow \mathbb{R}$ be a regular function. The Laplacian of f is the function Δf defined by:

(21)
$$\forall m \in \mathcal{M}, \qquad \Delta f_m := \operatorname{div}(\operatorname{grad}(f)_m)(m).$$

Hessian. Let f be a regular function on \mathcal{M} . Then, for all $m \in \mathcal{M}$, the Hessian of f at m is the bilinear form defined by:

$$(22) \qquad \forall (\xi_1, \xi_2) \in (T_m \mathcal{M})^2, \qquad (\text{Hess}(f)_m)(\xi_1, \xi_2) := \langle \Gamma_{\xi_1} \nabla f_m, \xi_2 \rangle.$$

Rules for computations.

(23)
$$\operatorname{grad}(fh) = f \operatorname{grad}(h) + h \operatorname{grad}(f),$$

$$\operatorname{div}(X+Y) = \operatorname{div}(X) + \operatorname{div}(Y),$$

(25)
$$\operatorname{div}(fX) = f\operatorname{div}(X) + \langle \operatorname{grad}(f), X \rangle.$$

Expressions in local coordinates. It can be proved (see [9] p. 4-5), that for $f: \mathcal{M} \longrightarrow \mathbb{R}$ regular, X regular vector field on \mathcal{M} and for all $m \in \mathcal{M}$, then

(26)
$$\operatorname{grad}(f)_m := \sum_{k=1}^n \sum_{l=1}^n g^{k,l} \partial_l f \partial_k.$$

(27)
$$\operatorname{div}(X(m))_{m} = \frac{1}{\sqrt{g}} \sum_{i=1}^{n} \partial_{i} \cdot (\eta^{i} \sqrt{g}) \quad \text{if } X = \sum_{i=1}^{n} \eta^{i} \partial_{i}.$$

(28)
$$\Delta f = \frac{1}{\sqrt{g}} \sum_{i=1}^{n} \sum_{l=1}^{n} \partial_i \cdot (g^{i,l} \sqrt{g} \, \partial_l \cdot f).$$

2.2 - Integration on a compact manifold and Sobolev spaces

In the following, \mathcal{M} is a compact connected oriented Riemannian manifold without boundary. With the Riemann metric is associated an integration theory, the measure $d\mathcal{M}$ being defined globally on \mathcal{M} with the help of a partition of unity (see [9], p. 5-6).

Then we have ([9] p. 6):

Proposition 2.1.

(29)
$$\forall X: \mathcal{M} \to T\mathcal{M} \ regular \,, \quad \int_{\mathcal{M}} \operatorname{div}(X) d\mathcal{M} = 0,$$

and

$$(30) \qquad \forall h,f:\mathcal{M}\to\mathbb{R}\ regular\,,\quad \int\limits_{\mathcal{M}}h\varDelta f+\langle\operatorname{grad}(h),\operatorname{grad}(f)\rangle d\mathcal{M}=0.$$

 L^2 -spaces. A function $f: \mathcal{M} \longrightarrow \mathbb{R}$ is measurable if, for any chart $(U, \Phi), f \circ \Phi^{-1}$ is measurable. The space $L^2(\mathcal{M})$, constituted of the measurable functions $f: \mathcal{M} \longrightarrow \mathbb{R}$ such that $\int_{\mathcal{M}} |f|^2 d\mathcal{M}$ is finite, is a Hilbert space for the scalar product

$$(f,h)_{L^2(\mathcal{M})}=\int\limits_{\mathcal{M}}fhd\mathcal{M}.$$

Let X and Y be two regular vector fields. We define their scalar product by

(31)
$$(X,Y)_{L^2(T\mathcal{M})} := \int_{\mathcal{M}} \langle X,Y \rangle d\mathcal{M}.$$

Then $L^2(T\mathcal{M})$ is defined as the completion for the associated norm of the set of regular vector fields. It is a Hilbert space constituted of the vector fields whose

components in the local basis of the tangent space are measurable and such that the integral $\int\limits_{\mathcal{M}} |X|^2 d\mathcal{M}$ is finite.

Sobolev space $H^1(\mathcal{M})$. Let \mathcal{M} be a compact Riemannian manifold of dimension n without boundary. If $f \in C(\mathcal{M})$ then $f \in L^2(\mathcal{M})$. As \mathcal{M} is compact, the set of compactly supported C^{∞} -functions on \mathcal{M} is simply the set of C^{∞} -functions on \mathcal{M} and it is dense in $L^2(\mathcal{M})$ ([2] p. 79).

We define on $C^{\infty}(\mathcal{M})$ the scalar product $(.,.)_1$ in the following way:

$$\forall f, \tilde{f} \in C^{\infty}(\mathcal{M}), \qquad (f, \tilde{f})_1 := (f, \tilde{f})_{L^2(\mathcal{M})} + (\nabla f, \nabla \tilde{f})_{L^2(T\mathcal{M})}.$$

 $H^1(\mathcal{M})$ is defined as the completion of $C^{\infty}(\mathcal{M})$ for the norm associated to $(.,.)_1$.

Weak derivative. Let $f \in L^2(\mathcal{M})$ be given. f admits a weak derivative in $L^2(T\mathcal{M})$ if there exists a vector field $\varsigma \in L^2(T\mathcal{M})$ such that, for any regular vector field X,

(32)
$$\int_{\mathcal{M}} f \operatorname{div}(X) d\mathcal{M} = -\int_{\mathcal{M}} \langle \varsigma, X \rangle d\mathcal{M}.$$

Then we denote $\varsigma = \nabla f$. Of course, if $f \in C^1(\mathcal{M})$, then it coincides with the classical gradient of f. $H^1(\mathcal{M})$ is also the set of functions in $L^2(\mathcal{M})$ having a weak derivative in $L^2(T\mathcal{M})$. It is endowed with the scalar product $(.,.)_1$.

Let us end this subsection by a general result (see [35] for its proof), that will be useful for the proofs of maximum principles:

Proposition 2.2. Let $(U_i, \Phi_i)_{1 \le i \le N}$ be an atlas of \mathcal{M} . Then $f \in H^1(\mathcal{M})$ if and only if, for all $1 \le i \le N$, $f \circ \Phi_i^{-1} \in H^1(\Phi_i(U_i))$.

2.3 - The heat equation on a Riemannian manifold

The Laplace Beltrami operator in $L^2(\mathcal{M})$. $f \in L^2(\mathcal{M})$ admits a weak Laplacian in $L^2(\mathcal{M})$ if there exists $F \in L^2(\mathcal{M})$ such that, for any $\Phi \in C^{\infty}(\mathcal{M})$,

$$(F, \Phi)_{L^2(\mathcal{M})} = (f, \Delta \Phi)_{L^2(\mathcal{M})}.$$

Then we denote $F = \Delta f$. Of course, if $f \in C^2(\mathcal{M})$, the weak Laplacian of f coincides with the classical one.

Proposition 2.3. Let $f \in H^1(\mathcal{M})$ admitting a weak Laplacian in $L^2(\mathcal{M})$. Then, for all $\Phi \in H^1(\mathcal{M})$, $(\Delta f, \Phi)_{L^2(\mathcal{M})} = -(\nabla f, \nabla \Phi)_{L^2(T\mathcal{M})}$. The Laplace Beltrami operator is the unbounded operator in $L^2(\mathcal{M})$ defined by the domain $D(\Delta) := \{u \in H^1(\mathcal{M}) \text{ having a weak Laplacian in } L^2(\mathcal{M})\}$ and the weak Laplacian. Note that, as $C^{\infty}(\mathcal{M}) \subset D(\Delta)$, $D(\Delta)$ is dense in $L^2(\mathcal{M})$. For all $u, v \in H^1(\mathcal{M})$, we define $a(u, v) := \int\limits_{\mathcal{M}} \langle \nabla u, \nabla v \rangle d\mathcal{M}$. Then we define an unbounded operator in $L^2(\mathcal{M})$ by:

$$D(A) := \{ u \in H^1(\mathcal{M}) : w \in H^1(\mathcal{M}) \longmapsto a(u, w) \text{ is } \mathbb{C}^0 \text{ for the norm } \|.\|_{L^2(\mathcal{M})} \}$$

and for all $u \in D(A)$, $v \in H^1(\mathcal{M})$, $(Au, v)_{L^2(\mathcal{M})} = -a(u, v)$. The operator (A, D(A)) coincides with the Laplace-Beltrami operator (A, D(A)). Moreover, (A, D(A)) is the infinitesimal generator of an analytical semigroup.

The heat equation on a compact Riemannian manifold. We consider

(33)
$$\begin{cases} u_t - \Delta u = f & (0, T) \times \mathcal{M}, \\ u(0) = u_0 & \mathcal{M}. \end{cases}$$

The interpolation space $[D(\Delta), L^2(\mathcal{M})]_{\frac{1}{3}}$ is $H^1(\mathcal{M})$, (see [27, Prop. 21 p. 22]).

Theorem 2.1. If $u_0 \in D(\Delta)$ et $f \in H^1(0, T; L^2(\mathcal{M}))$, (33) has a unique classical solution $u \in C([0, T], D(\Delta)) \cap C^1([0, T]; L^2(\mathcal{M}))$.

If $u_0 \in H^1(\mathcal{M})$ et $f \in L^2(0, T; L^2(\mathcal{M}))$, (33) has a unique solution such that $u \in L^2(0, T, D(\Delta)) \cap H^1(0, T; L^2(\mathcal{M}))$.

If $u_0 \in L^2(\mathcal{M})$ et $f \in L^2(0, T; L^2(\mathcal{M}))$, (33) has a unique weak solution such that $u \in C([0, T]; L^2(\mathcal{M})) \cap L^2(0, T; H^1(\mathcal{M}))$, i.e. for any $v \in H^1(\mathcal{M})$,

(34)
$$\begin{cases} \frac{d}{dt} \left(u(t), v \right)_{L^2(\mathcal{M})} + \int\limits_{\mathcal{M}} \langle \nabla u(t), \nabla v \rangle d\mathcal{M} = \left(f(t), v \right)_{L^2(\mathcal{M})}, \\ u(0) = u_0. \end{cases}$$

Moreover, for all $\varepsilon > 0$, $u \in L^2(\varepsilon, T; D(\Delta)) \cap H^1(\varepsilon, T; L^2(\mathcal{M}))$.

In order to treat later the questions of inverse problems, we will need some more regularity results for the time derivative of the solution:

Proposition 2.4. Let $u_0 \in D(\Delta)$ and $f \in H^1(0,T;L^2(\mathcal{M}))$ be given. Let u be the classical solution of (33) associated to u_0 and f. Then $z := u_t \in L^2(0,T;H^1(\mathcal{M}))$ and z is the weak solution of

$$\begin{cases} z_t - \Delta z = f_t & (0, T) \times \mathcal{M}, \\ z(0) = \Delta u_0 + f(0) & \mathcal{M}. \end{cases}$$

For the proof, we refer for example to [38, Proposition 2.5]. Finally, we end this section with a result concerning regular solutions (see [10] p. 139):

Theorem 2.2. Let $u_0 \in C^{\infty}(\mathcal{M})$ and $f \in C^{\infty}((0,T) \times \mathcal{M})$ be given. Then (33) has a unique regular solution.

${\bf 3}$ - Global Carleman estimates for the heat operator on a compact manifold without boundary

In this section, we state and prove some global Carleman estimate for the heat operator on a compact Riemannian manifold without boundary \mathcal{M} with a locally distributed observation in some non empty open set ω of \mathcal{M} .

3.1 - Global Carleman estimate

We define the heat operator on \mathcal{M} :

$$\forall z \in C([0,T]; D(\Delta_{\mathcal{M}})) \cap C^{1}([0,T]; L^{2}(\mathcal{M})), \qquad Pz := z_{t} - \Delta_{\mathcal{M}}z.$$

We denote $Q^{0,T}_{\mathcal{M}} := (0,T) \times \mathcal{M}, \ Q^{0,T}_{\omega} := (0,T) \times \omega$ and we consider $R > 0, S > 0, \psi$ satisfying Assumption 1.2. Then we introduce first $0 < T_0 < T_1 < T$ and $\theta : (0,T) \to \mathbb{R}_+^*$ smooth, convex, such that

$$\theta(t) = \begin{cases} \frac{1}{t}, & t \in (0, T_0) \\ \frac{1}{T - t}, & t \in (T_1, T), \end{cases}$$

next

$$\forall (t,x) \in Q^{0,T}_{\mathcal{M}}, \quad p(x) := e^{2S\|\psi\|_{\infty}} - e^{S\psi(x)}, \quad \rho(t,x) := RS\theta e^{S\psi},$$

and finally

(35)
$$\forall (t, x) \in Q_M^{0,T}, \quad \sigma(t, x) := \theta(t)p(x).$$

And we prove the following

Theorem 3.1. Let ω be such that Assumption 1.2 holds. There exists constants $C = C(T, T_0, T_1, \omega) > 0$, $R_0 = R_0(T, T_0, T_1, \omega) > 0$, $S_0 = S_0(T, T_0, T_1, \omega) > 0$ such that, for all $S \geq S_0$ and all $R \geq R_0 e^{2S||\psi||_{\infty}}$, we have for all $z \in C([0, T]; D(\Delta_{\mathcal{M}})) \cap$

 $C^{1}([0,T];L^{2}(\mathcal{M}))$

$$(36) \quad \iint\limits_{Q_{\mathcal{M}}^{0,T}} \rho^{3} e^{-2R\sigma} z^{2} + \iint\limits_{Q_{\mathcal{M}}^{0,T}} \rho e^{-2R\sigma} |\nabla z|^{2} + \iint\limits_{Q_{\mathcal{M}}^{0,T}} \frac{1}{\rho} e^{-2R\sigma} z_{t}^{2}$$

$$\leq C \left(\left\| e^{-R\sigma} P z \right\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} + \iint\limits_{Q_{\omega}^{0,T}} \rho^{3} e^{-2R\sigma} z^{2} \right).$$

The proof of Theorem 3.1 is classical. It follows combining the proof of the Carleman estimate for the heat operator in a bounded domain of \mathbb{R}^n with the properties of the operators divergence, gradient, laplacian on the manifold \mathcal{M} . We refer to [38] for detailed proofs, and we mention here the main properties and steps:

3.2 - The basic properties

The following property are basic:

Lemma 3.1. For any regular function h on \mathcal{M} , one has:

(37)
$$\nabla(h^2) = 2h\nabla h,$$

$$(38) \nabla e^h = e^h \nabla h,$$

(39)
$$\Delta(h^2) = 2h\Delta h + 2|\nabla h|^2.$$

(40)
$$\langle \nabla(|\nabla h|^2), \nabla h \rangle = 2 \operatorname{Hess}(h)(\nabla h, \nabla h).$$

Lemma 3.2. For any $w \in C^{\infty}((0,T) \times \mathcal{M})$, one has:

$$(41) \qquad \qquad \nabla(w_t) = (\nabla w)_t.$$

(42)
$$\operatorname{Hess}(w)(\nabla w, \nabla p) = \operatorname{Hess}(w)(\nabla p, \nabla w).$$

Proof of Lemmas 3.1 and 3.2. The proofs are classical and derive from the basic material of Chavel [9], and can be found in [38], lemmas 3.3.4-3.3.7, p. 128-132. As an exercise, we prove (38): let $m \in \mathcal{M}$, (U,ϕ) be a chart such that $m \in U$ and $\xi \in T_m \mathcal{M}$. Consider $\omega : I \longrightarrow \mathcal{M}$ a smooth curve with $0 \in I$, $\omega(0) = m$ and $\omega'(0) = \xi$. Then, if we set $f = e^h$, we have (using the definition of the gradient):

$$\langle \nabla f(m), \xi \rangle_m = (\xi.f)(m) = (f \circ \omega)'(0) = (e^{h \circ \omega})'(0) = (e^{h \circ \omega})(0)(h \circ \omega)'(0) = e^{h(m)}(h \circ \omega)'(0)$$

and, on the other side, $\langle \nabla h(m), \xi \rangle_m = (\xi.h)(m) = (h \circ \omega)'(0)$. So, identifying the two expressions, we get $\nabla e^h = e^h \nabla h$, hence (38). The other proofs are in the same spirit.

3.3 - The main steps to prove Theorem 3.1

First we note that it is sufficient to prove (36) for regular functions. Indeed we have the following result (see the proof in [38]):

Lemma 3.3. Let $u \in C([0,T];D(\Delta)) \cap C^1([0,T];L^2(\mathcal{M}))$ be given. Consider $(f_n)_n \subset \mathcal{D}((0,T) \times \mathcal{M})$ converging to Pu in $L^2((0,T) \times \mathcal{M})$ and $(u_{0,n})_n \subset C^{\infty}(\mathcal{M})$ converging to $u_0 \in H^1(\mathcal{M})$. We denote by u_n the regular solution (given in Theorem 2.2) of (33) associated to $u_{0,n}$ and f_n . Then we have

$$u_n \longrightarrow u \ in \ L^2(0,T;L^2(\mathcal{M})), \qquad \nabla u_n \longrightarrow \nabla u \ in \ L^2(0,T;L^2(T\mathcal{M})),$$
 and $(u_n)_t \longrightarrow u_t \ in \ L^2(0,T;L^2(\mathcal{M})).$

3.3.1 - The decomposition of the weighted heat operator

So let $z \in C^{\infty}((0,T) \times \mathcal{M}) \cap C([0,T] \times \mathcal{M})$ be given and let us prove that z satisfies (36). We set $w := ze^{-R\sigma}$. Then we have

$$(43) (we^{R\sigma})_t - \Delta(we^{R\sigma}) = P(we^{R\sigma}) = Pz.$$

We have $(we^{R\sigma})_t = w_t e^{R\sigma} + R\theta_t pwe^{R\sigma}$ and

$$\Delta(we^{R\sigma}) = \operatorname{div}(\nabla(we^{R\sigma})) = \operatorname{div}(\nabla we^{R\sigma}) + \operatorname{div}(w\nabla(e^{R\sigma}))$$
$$= e^{R\sigma}\Delta w + 2\langle \nabla(w), Re^{R\sigma}\nabla\sigma \rangle + \Delta(e^{R\sigma})w.$$

Of course $\nabla \sigma = \theta(t) \nabla p$. And $\Delta(e^{R\sigma}) = \operatorname{div}(\nabla(e^{R\sigma})) = \operatorname{div}(R\theta \nabla p e^{R\sigma})$. Hence

$$\varDelta(e^{R\sigma}) = R\theta(e^{R\sigma}\varDelta p + \langle \nabla p, \nabla(e^{R\sigma}) \rangle) = R\theta\varDelta p e^{R\sigma} + R^2\theta^2 |\nabla p|^2 e^{R\sigma}.$$

This allows us to consider P_R^+ and P_R^- as follows:

$$(44) P_R^+ w = R\theta_t pw - R^2 \theta^2 |\nabla p|^2 w - \Delta w,$$

(45)
$$P_R^- w = w_t - R\theta \Delta pw - 2R\theta \langle \nabla w, \nabla p \rangle,$$

so that

$$P_R^+ w + P_R^- w = e^{-R\sigma} Pz.$$

This implies that

$$(46) \qquad \left\|P_{R}^{+}w\right\|_{L^{2}(Q_{M}^{0,T})}^{2} + \left\|P_{R}^{-}w\right\|_{L^{2}(Q_{M}^{0,T})}^{2} + 2\left\langle P_{R}^{+}w, P_{R}^{-}w\right\rangle_{L^{2}(Q_{M}^{0,T})} = \left\|e^{-R\sigma}Pz\right\|_{L^{2}(Q_{M}^{0,T})}^{2}.$$

3.3.2 - The expression of the scalar product

With some integrations by parts (see [38]), using Proposition 2.1 and the properties stated in Lemmas 3.1 and 3.2, we obtain

$$\begin{split} (47) \quad 2\langle P_R^+ w, P_R^- w \rangle_{L^2(Q^{0,T}_{\mathcal{M}})} \\ &= \iint\limits_{Q^{0,T}_{\mathcal{M}}} (4R^2\theta\theta_t |\nabla p|^2 + R\theta\varDelta(\varDelta p) - Rp\theta_{tt}) w^2 \\ &- 4\iint\limits_{Q^{0,T}_{t,T}} R^3\theta^3 \operatorname{Hess}(p)(\nabla p, \nabla p) w^2 - 4\iint\limits_{Q^{0,T}_{t,T}} R\theta \operatorname{Hess}(p)(\nabla w, \nabla w). \end{split}$$

The proof of Theorem 3.1 follows from suitable lower bounds of the terms appearing in (47).

3.3.3 - A bound from below of the zero order term of the scalar product The main property is the following:

Lemma 3.4. There exists C > 0 independent of R and S such that

$$(48) -4R^3\theta^3\operatorname{Hess}(p)(\nabla p, \nabla p) \ge -CR^3S^3\theta^3e^{3S\psi} + R^3S^4\theta^3e^{3S\psi}|\nabla \psi|^4.$$

Proof of Lemma 3.4. Since $\nabla p = -Se^{S\psi}\nabla\psi$, we have

$$\begin{split} -\operatorname{Hess}(p)(\nabla p, \nabla p) &= -\langle \varGamma_{\nabla p} \nabla p, \nabla p \rangle \\ &= -\langle \varGamma_{-Se^{S\psi} \nabla \psi} (-Se^{S\psi} \nabla \psi), -Se^{S\psi} \nabla \psi \rangle \\ &= -\langle -Se^{S\psi} \varGamma_{\nabla \psi} (-Se^{S\psi} \nabla \psi), -Se^{S\psi} \nabla \psi \rangle \\ &= -S^2 e^{2S\psi} \langle \varGamma_{\nabla \psi} (-Se^{S\psi} \nabla \psi), \nabla \psi \rangle \\ &= -S^2 e^{2S\psi} \langle -Se^{S\psi} \varGamma_{\nabla \psi} (\nabla \psi) + \nabla \psi. (-Se^{S\psi}) \nabla \psi, \nabla \psi \rangle \\ &= -S^2 e^{2S\psi} \Big(-Se^{S\psi} / \Gamma_{\nabla \psi} (\nabla \psi), \nabla \psi + \nabla \psi. (-Se^{S\psi}) \langle \nabla \psi, \nabla \psi \rangle \Big). \end{split}$$

Now choose $m \in \mathcal{M}$, ω a smooth curve such that $\omega(0) = m$, $\omega'(0) = \nabla \psi$. Then

$$\nabla \psi.(-Se^{S\psi}) = \frac{d}{dt_{/t=0}}(-Se^{S\psi(\omega(t))}) = -S^2 e^{S\psi(m)} \frac{d}{dt_{/t=0}}(\psi(\omega(t)))$$
$$= -S^2 e^{S\psi(m)} \nabla \psi. \psi = -S^2 e^{S\psi(m)} \langle \nabla \psi, \nabla \psi \rangle.$$

Hence

$$-\operatorname{Hess}(p)(\nabla p, \nabla p) = S^{2}e^{2S\psi} \Big(Se^{S\psi} \langle \Gamma_{\nabla \psi}(\nabla \psi), \nabla \psi \rangle + S^{2}e^{S\psi} |\nabla \psi|^{4} \Big).$$

Hence

$$-R^{3}\theta^{3}\operatorname{Hess}(p)(\nabla p, \nabla p) = R^{3}S^{3}\theta^{3}e^{3S\psi}(\langle \Gamma_{\nabla \psi}(\nabla \psi), \nabla \psi \rangle + S|\nabla \psi|^{4}).$$

Therefore, there exists C > 0 independent of R and S such that

$$-4R^3\theta^3\operatorname{Hess}(p)(\nabla p,\nabla p) \ge -CR^3S^3\theta^3e^{3S\psi} + R^3S^4\theta^3e^{3S\psi}|\nabla \psi|^4.$$

Hence (48) is proved.

3.3.4 - A bound from below of the first order term of the scalar product

Now we turn to the last term of (47), and we prove the following

Lemma 3.5. There exists C > 0 independent of R and S such that

$$(49) \quad -4 \iint\limits_{Q_{\mathcal{M}}^{0,T}} R\theta \operatorname{Hess}(p)(\nabla w, \nabla w) \geq \iint\limits_{Q_{\mathcal{M}}^{0,T}} RS\theta e^{S\psi} |\nabla w|^2 \\ -\frac{C}{S} \|P_R^+ w\|_{L^2(Q_{\mathcal{M}}^{0,T})}^2 - C \iint\limits_{Q_{\mathcal{M}}^{0,T}} R^3 S^3 \theta^3 e^{3S\psi} w^2.$$

Proof of Lemma 3.5. We have

$$\begin{split} \operatorname{Hess}(p)(\xi,\xi) &= \langle \varGamma_{\xi} \nabla p, \xi \rangle \\ &= \langle \varGamma_{\xi}(-Se^{S\psi} \nabla \psi), \xi \rangle = \langle -Se^{S\psi} \varGamma_{\xi}(\nabla \psi) + \xi.(-Se^{S\psi}) \nabla \psi, \xi \rangle \\ &= -Se^{S\psi} \langle \varGamma_{\xi}(\nabla \psi), \xi \rangle + \langle -S^2 e^{S\psi} \langle \nabla \psi, \xi \rangle \nabla \psi, \xi \rangle \\ &= -Se^{S\psi} \langle \varGamma_{\xi}(\nabla \psi), \xi \rangle - S^2 e^{S\psi} \langle \nabla \psi, \xi \rangle^2. \end{split}$$

Hence, there exists c_1 such that

$$-R\theta \operatorname{Hess}(p)(\nabla w, \nabla w) = RS\theta e^{S\psi} \langle \Gamma_{\nabla w}(\nabla \psi), \nabla w \rangle + RS^2 \theta e^{S\psi} \langle \nabla \psi, \nabla w \rangle^2$$
$$\geq -c_1 RS\theta e^{S\psi} |\nabla w|^2 + RS^2 \theta e^{S\psi} \langle \nabla \psi, \nabla w \rangle^2,$$

hence

(50)
$$-R\theta \operatorname{Hess}(p)(\nabla w, \nabla w) \ge -c_1 RS\theta e^{S\psi} |\nabla w|^2.$$

On the other hand,

$$\begin{split} \langle RS\theta e^{S\psi}w, P_R^+w\rangle &= \langle RS\theta e^{S\psi}w, R\theta_t pw - R^2\theta^2|\nabla p|^2w - \varDelta w\rangle \\ &= \iint\limits_{Q_M^{0,T}} RS\theta e^{S\psi}(R\theta_t p - R^2S^2\theta^2e^{2S\psi}|\nabla\psi|^2)w^2 + \iint\limits_{Q_M^{0,T}} \langle \nabla (RS\theta e^{S\psi}w), \nabla w\rangle \\ &= \iint\limits_{Q_M^{0,T}} RS\theta e^{S\psi}(R\theta_t p - R^2S^2\theta^2e^{2S\psi}|\nabla\psi|^2)w^2 \\ &+ \iint\limits_{Q_M^{0,T}} RS\theta e^{S\psi}|\nabla w|^2 + RS\theta e^{S\psi}w\langle \nabla \psi, \nabla w\rangle, \end{split}$$

hence

$$\begin{split} \iint\limits_{Q^{0,T}_{\mathcal{M}}} RS\theta e^{S\psi} |\nabla w|^2 &= \langle RS\theta e^{S\psi} w, P^+_R w \rangle \\ &- \iint\limits_{Q^{0,T}_{\mathcal{M}}} RS\theta e^{S\psi} (R\theta_t p - R^2 S^2 \theta^2 e^{2S\psi} |\nabla \psi|^2) w^2 \\ &- \iint\limits_{Q^{0,T}_{\mathcal{M}}} RS\theta e^{S\psi} w \langle \nabla \psi, \nabla w \rangle \\ &\leq \frac{1}{2S} \|P^+_R w\|^2_{L^2(Q^{0,T}_{\mathcal{M}})} + C \iint\limits_{Q^{0,T}_{\mathcal{M}}} R^3 S^3 \theta^3 e^{3S\psi} w^2 + \iint\limits_{Q^{0,T}_{\mathcal{M}}} \frac{1}{2} RS\theta e^{S\psi} |\nabla w|^2. \end{split}$$

Hence

(51)
$$\iint\limits_{Q_{\mathcal{M}}^{0,T}} RS\theta e^{S\psi} |\nabla w|^2 \leq \frac{1}{S} \|P_R^+ w\|_{L^2(Q_{\mathcal{M}}^{0,T})}^2 + 2C \iint\limits_{Q_{\mathcal{M}}^{0,T}} R^3 S^3 \theta^3 e^{3S\psi} w^2.$$

From (50) and (51), we deduce that

$$\begin{split} -\iint\limits_{Q^{0,T}_{\mathcal{M}}} R\theta \operatorname{Hess}(p) (\nabla w, \nabla w) &\geq \frac{-c_1}{S} \|P_R^+ w\|_{L^2(Q^{0,T}_{\mathcal{M}})}^2 - 2Cc_1 \iint\limits_{Q^{0,T}_{\mathcal{M}}} R^3 S^3 \theta^3 e^{3S\psi} w^2 \\ &\geq \iint\limits_{Q^{0,T}_{\mathcal{M}}} RS\theta e^{S\psi} |\nabla w|^2 - \frac{1+c_1}{S} \|P_R^+ w\|_{L^2(Q^{0,T}_{\mathcal{M}})}^2 \\ &\qquad -2C(1+c_1) \iint\limits_{Q^{0,T}_{\mathcal{M}}} R^3 S^3 \theta^3 e^{3S\psi} w^2, \end{split}$$

hence (49) is proved.

3.3.5 - A first Carleman estimate

Now we are in position to obtain a first Carleman estimate: using (46), (47), (48), (49), and classical estimates of the type $|\theta_t| \le C\theta^2$, $|\theta_{tt}| \le C\theta^3$, we obtain that

$$\begin{split} &\|e^{-R\sigma}Pz\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} = \|P_{R}^{+}w\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} + \|P_{R}^{-}w\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} + 2\langle P_{R}^{+}w, P_{R}^{-}w\rangle_{L^{2}(Q_{\mathcal{M}}^{0,T})} \\ &\geq \|P_{R}^{+}w\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} + \|P_{R}^{-}w\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} \\ &+ \iint\limits_{Q_{\mathcal{M}}^{0,T}} (4R^{2}\theta\theta_{t}|\nabla p|^{2} + R\theta\varDelta(\varDelta p) - Rp\theta_{tt})w^{2} \\ &- 4\iint\limits_{Q_{\mathcal{M}}^{0,T}} R^{3}\theta^{3}\operatorname{Hess}(p)(\nabla p, \nabla p)w^{2} \\ &- 4\iint\limits_{Q_{\mathcal{M}}^{0,T}} R\theta\operatorname{Hess}(p)(\nabla w, \nabla w) \\ &\geq \|P_{R}^{+}w\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} + \|P_{R}^{-}w\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} \\ &+ \iint\limits_{Q_{\mathcal{M}}^{0,T}} (4R^{2}\theta\theta_{t}|\nabla p|^{2} + R\theta\varDelta(\varDelta p) - Rp\theta_{tt})w^{2} \\ &+ \iint\limits_{Q_{\mathcal{M}}^{0,T}} \left(-CR^{3}S^{3}\theta^{3}e^{3S\psi} + R^{3}S^{4}\theta^{3}e^{3S\psi}|\nabla\psi|^{4}\right)w^{2} \\ &+ \iint\limits_{Q_{\mathcal{M}}^{0,T}} \left(-SR^{3}S^{3}\theta^{3}e^{3S\psi} + R^{3}S^{4}\theta^{3}e^{3S\psi}|\nabla\psi|^{4}\right)w^{2} \\ &+ \iint\limits_{Q_{\mathcal{M}}^{0,T}} RS\theta e^{S\psi}|\nabla w|^{2} - \frac{C}{S}\|P_{R}^{+}w\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} - C\iint\limits_{Q_{\mathcal{M}}^{0,T}} R^{3}S^{3}\theta^{3}e^{3S\psi}w^{2}. \end{split}$$

Hence, for S large enough,

$$\begin{split} \iint\limits_{Q^{0,T}_{\mathcal{M}}} R^3 S^4 \theta^3 e^{3S\psi} |\nabla \psi|^4 w^2 + \iint\limits_{Q^{0,T}_{\mathcal{M}}} RS \theta e^{S\psi} |\nabla w|^2 \\ + \frac{1}{2} \left\| P_R^+ w \right\|_{L^2(Q^{0,T}_{\mathcal{M}})}^2 + \left\| P_R^- w \right\|_{L^2(Q^{0,T}_{\mathcal{M}})}^2 \\ + \iint\limits_{Q^{0,T}_{\mathcal{M}}} (4R^2 \theta \theta_t |\nabla p|^2 + R\theta \mathcal{A}(\mathcal{A}p) - Rp\theta_{tt}) w^2 - C \int\limits_{0}^{T} \int\limits_{\mathcal{M} \setminus \omega} R^3 S^3 \theta^3 e^{3S\psi} w^2 \\ \leq \left\| e^{-R\sigma} Pz \right\|_{L^2(Q^{0,T}_{\mathcal{M}})}^2 + C \int\limits_{Q^{0,T}_{\omega}} R^3 S^3 \theta^3 e^{3S\psi} w^2. \end{split}$$

Moreover, assuming that Assumption 1.2 is satisfied, there exists $C_0 > 0$ such that $|\nabla(m)\psi| > C_0$ for all $m \in \mathcal{M} \setminus \omega$. Thus

$$\int\limits_0^T\int\limits_{\mathcal{M}\setminus\omega}\,R^3S^3\theta^3e^{3S\psi}w^2\leq \frac{C}{S}\int\limits_{Q^{0,T}_{\scriptscriptstyle M}}R^3S^4\theta^3e^{3S\psi}|\nabla\psi|^4w^2.$$

We deduce, for S large enough,

$$\begin{split} \iint\limits_{Q^{0,T}_{\mathcal{M}}} R^3 S^3 \theta^3 e^{3S\psi} \Big(1 + \frac{S}{2} |\nabla \psi|^4 \Big) w^2 + \iint\limits_{Q^{0,T}_{\mathcal{M}}} RS \theta e^{S\psi} |\nabla w|^2 \\ + \frac{1}{2} \left\| P_R^+ w \right\|_{L^2(Q^{0,T}_{\mathcal{M}})}^2 + \left\| P_R^- w \right\|_{L^2(Q^{0,T}_{\mathcal{M}})}^2 \\ + \iint\limits_{Q^{0,T}_{\mathcal{M}}} (4R^2 \theta \theta_t |\nabla p|^2 + R\theta \Delta (\Delta p) - Rp \theta_{tt}) w^2 \\ \leq \left\| e^{-R\sigma} Pz \right\|_{L^2(Q^{0,T}_{\mathcal{M}})}^2 + C \iint\limits_{Q^{0,T}_{w}} R^3 S^3 \theta^3 e^{3S\psi} w^2. \end{split}$$

Finally, using the properties of the function θ and $R \geq R_0 e^{2S\|\psi\|_{\infty}}$, we get

$$(52) \quad \iint\limits_{Q_{\mathcal{M}}^{0,T}} R^{3}S^{3}\theta^{3}e^{3S\psi} \left(1 + \frac{S}{4}|\nabla\psi|^{4}\right)w^{2} + \iint\limits_{Q_{\mathcal{M}}^{0,T}} RS\theta e^{S\psi}|\nabla w|^{2}$$

$$+ \frac{1}{2} \left\|P_{R}^{+}w\right\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} + \left\|P_{R}^{-}w\right\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2}$$

$$\leq \left\|e^{-R\sigma}Pz\right\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} + C\iint\limits_{Q^{0,T}} R^{3}S^{3}\theta^{3}e^{3S\psi}w^{2}.$$

Going back to $z = e^{R\sigma}w$, we have

$$\begin{split} (53) \quad & \iint\limits_{Q_{\mathcal{M}}^{0,T}} R^{3}S^{3}\theta^{3}e^{3S\psi}\Big(1+\frac{S}{4}|\nabla\psi|^{4}\Big)e^{-2R\sigma}z^{2} + \iint\limits_{Q_{\mathcal{M}}^{0,T}} RS\theta e^{S\psi}e^{-2R\sigma}|\nabla z|^{2} \\ & \quad + \frac{1}{2}\left\|P_{R}^{+}w\right\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} + \left\|P_{R}^{-}w\right\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} \\ & \leq C'\left\|e^{-R\sigma}Pz\right\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} + C'\iint\limits_{Q_{\omega}^{0,T}} R^{3}S^{3}\theta^{3}e^{3S\psi}e^{-2R\sigma}z^{2}. \end{split}$$

3.3.6 - End of the proof of Theorem 3.1

To complete the proof of Theorem 3.1, we only need to estimate z_t . First we estimate w_t , using P_R^-w : we have

$$w_t = P_R^- w + R\theta \Delta p w + 2R\theta \langle \nabla w, \nabla p \rangle = P_R^- w - \rho (\varDelta \psi + S |\nabla \psi|^2) w - 2\rho \langle \nabla w, \nabla \psi \rangle,$$

Hence

$$\left\|\frac{w_t}{\sqrt{\rho}}\right\| \le C \left\|\frac{P_{\overline{R}}w}{\sqrt{\rho}}\right\| + CS\left\|\sqrt{\rho}w\right\| + C\left\|\sqrt{\rho}\nabla w\right\|.$$

Using (52), we obtain that

$$(54) \quad \iint\limits_{Q_{\mathcal{M}}^{0,T}} \left(1 + \frac{S}{4} |\nabla \psi|^{4}\right) \rho^{3} w^{2} + \iint\limits_{Q_{\mathcal{M}}^{0,T}} \rho |\nabla w|^{2} + \iint\limits_{Q_{\mathcal{M}}^{0,T}} \frac{1}{\rho} w_{t}^{2} \\ + \frac{1}{2} \left\| P_{R}^{+} w \right\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} + \frac{1}{2} \left\| P_{R}^{-} w \right\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} \\ \leq C \left\| e^{-R\sigma} Pz \right\|_{L^{2}(Q_{\mathcal{M}}^{0,T})}^{2} + C \iint\limits_{Q_{\mathcal{M}}^{0,T}} R^{3} S^{3} \theta^{3} e^{3S\psi} w^{2}.$$

Finally, going back to $z = e^{R\sigma}w$, we have

$$(55) \quad \iint\limits_{Q_{\mathcal{M}}^{0,T}} \left(1 + \frac{S}{4} |\nabla \psi|^4\right) e^{-2R\sigma} \rho^3 z^2 + \iint\limits_{Q_{\mathcal{M}}^{0,T}} e^{-2R\sigma} \rho |\nabla z|^2 + \iint\limits_{Q_{\mathcal{M}}^{0,T}} e^{-2R\sigma} \frac{1}{\rho} z_t^2 + \frac{1}{2} \|P_R^+ w\|_{L^2(Q_{\mathcal{M}}^{0,T})}^2 + \frac{1}{2} \|P_R^- w\|_{L^2(Q_{\mathcal{M}}^{0,T})}^2 + \frac{1}{2} \|P_R^- w\|_{L^2(Q_{\mathcal{M}}^{0,T})}^2 + C \iint\limits_{Q_{\mathcal{M}}^{0,T}} R^3 S^3 \theta^3 e^{3S\psi} e^{-2R\sigma} z^2.$$

This gives (36) and completes the proof of Theorem 3.1.

4 - Proof of Proposition 1.1

In this section, we study the validity of the geometrical Assumption 1.2.

4.1 - The case of the sphere \mathbb{S}^2

Let us prove that Assumption 1.2 is satisfied in the case of the sphere \mathbb{S}^2 . Consider $\omega_{\mathbb{S}^2}$ a non-empty open domain of the sphere. Choose $N \in \omega_{\mathbb{S}^2}$, that will

play the role of the North pole. Choose $S \in \omega_{\mathbb{S}^2}, S \neq N$. Consider a small neighborhood ω_N of N included in $\omega_{\mathbb{S}^2}$, and a small neighborhood ω_S of S included in $\omega_{\mathbb{S}^2}$ such that $\omega_N \cap \omega_S = \emptyset$.

Now consider π the stereographic projection of pole N:

$$\pi: \mathbb{S}^2 \setminus \{N\} \to \mathbb{R}^2$$
.

Then $\Omega_{\pi} := \pi(\mathbb{S}^2 \setminus \omega_N)$ is a bounded domain of \mathbb{R}^2 , $\pi(\omega_S)$ is an open subdomain of Ω_{π} . The classical geometrical lemma of Fursikov-Imanuvilov [18] (see also [7]) ensures that there exists

$$\psi_{\pi}: \Omega_T \to \mathbb{R}, \quad y \mapsto \psi_{\pi}(y)$$

smooth such that

$$\nabla \psi_{\pi}(y) = 0 \implies y \in \pi(\omega_S).$$

Then consider

$$\psi_{\mathbb{S}^2}: \mathbb{S}^2 \setminus \omega_N \to \mathbb{R}, \quad \psi_{\mathbb{S}^2}(x) := \psi_{\pi}(\pi(x)).$$

Let us prove that

$$\nabla \psi_{\mathbb{S}^2}(x) = 0 \implies x \in \omega_S.$$

Indeed, fix $x \in \mathbb{S}^2 \setminus \omega_N$ and consider any $\xi \in T_x \mathbb{S}^2$, and take a smooth curve $\gamma : I \to \mathbb{S}^2$, $\gamma(0) = x$, $\gamma'(0) = \xi$. Then

$$\langle \nabla \psi_{\mathbb{S}^2}(x), \xi \rangle = (\xi.\psi_{\mathbb{S}^2})(x) = \frac{d}{dt_{/t=0}}(\psi_{\mathbb{S}^2}(\gamma(t))) = \frac{d}{dt_{/t=0}}(\psi_{\pi}(\pi(\gamma(t)))).$$

Denote

$$\gamma_{\pi}: I \to \mathbb{R}^2, \quad \gamma_{\pi}(t) := \pi(\gamma(t)).$$

Then

$$\langle \nabla \psi_{\mathbb{S}^2}(x), \xi \rangle = \frac{d}{dt}_{/t-0} \left(\psi_{\pi}(\gamma_{\pi}(t)) = \nabla \psi_{\pi}(\pi(x)) \cdot \gamma_{\pi}'(0) \right).$$

Since $\gamma_{\pi}'(0)$ can be taken arbitrary in \mathbb{R}^2 , we obtain that

$$\nabla \psi_{\mathbb{S}^2}(x) = 0 \implies \nabla \psi_{\pi}(\pi(x)) = 0,$$

which implies $\pi(x) \in \pi(\omega_S)$, hence $x \in \omega_S$. Then it is sufficient to extend $\psi_{\mathbb{S}^2}$ to \mathbb{S}^2 . This can be done, it can bring new zeros of $\nabla \psi_{\mathbb{S}^2}$, but inside ω_N , hence inside $\omega_{\mathbb{S}^2}$. This proves that Assumption 1.2 is satisfied in the case of the sphere \mathbb{S}^2 .

4.2 - The case of a simply connected oriented manifold of dimension 2

Assume that \mathcal{M} is simply connected, and still compact, oriented, of dimension 2 and without boundary. Then the celebrated theorem of uniformisation of

Riemann [1, 40] implies that there exists a C^1 -diffeomorphism between \mathcal{M} and the sphere \mathbb{S}^2 . We denote it

$$\Phi: \mathcal{M} \to \mathbb{S}^2$$
, $m \mapsto \Phi(m)$.

Consider also a (small) non-empty open subdomain $\omega_{\mathcal{M}}$ of \mathcal{M} , and denote

$$\omega_{\mathbb{S}^2} := \Phi(\omega_{\mathcal{M}}).$$

Then consider ψ_{S^2} constructed in the previous section, that satisfies

$$\nabla \psi_{\mathbb{S}^2}(x) = 0 \implies x \in \omega_{\mathbb{S}^2},$$

and

$$\psi_{\mathcal{M}}: \mathcal{M} \to \mathbb{R}, \quad \psi_{\mathcal{M}}(m) := \psi_{\mathbb{S}^2}(\Phi(m)).$$

Then let us prove that

$$\nabla \psi_{\mathcal{M}}(m) = 0 \implies m \in \omega_{\mathcal{M}}.$$

Indeed, fix $m \in \mathcal{M}$ and consider any $\xi \in T_m \mathcal{M}$, $\gamma : I \to \mathcal{M}$ such that $\gamma(0) = m$, $\gamma'(0) = \xi$. Then

$$\langle \nabla \psi_{\mathcal{M}}(m), \xi \rangle_{\mathcal{M}} = (\xi.\psi_{\mathcal{M}})(m) = \frac{d}{dt}_{/t=0} (\psi_{\mathcal{M}}(\gamma(t))) = \frac{d}{dt}_{/t=0} (\psi_{\mathbb{S}^2}(\Phi(\gamma(t)))).$$

Denote

$$\gamma_{\mathbb{S}^2}: I \to \mathbb{S}^2, \quad \gamma_{\mathbb{S}^2}(t) := \Phi(\gamma(t)).$$

Then

$$\langle \nabla \psi_{\mathcal{M}}(m), \xi \rangle_{\mathcal{M}} = \frac{d}{dt}_{/t=0} \left(\psi_{\mathbb{S}^2}(\gamma_{\mathbb{S}^2}(t)) \right) = \langle \nabla \psi_{\mathbb{S}^2}(\varPhi(m)), \gamma_{\mathbb{S}^2}'(0) \rangle_{\mathbb{S}^2}.$$

Since $\gamma'_{S^2}(0)$ may describe all the tangent directions at $\Phi(m)$, we obtain that

$$\nabla \psi_{\mathcal{M}}(m) = 0 \implies \nabla \psi_{\mathbb{S}^2}(\Phi(m)) = 0,$$

which implies $\Phi(m) \in \omega_{\mathbb{S}^2} = \Phi(\omega_{\mathcal{M}})$, hence $m \in \omega_{\mathcal{M}}$. This completes the proof of Proposition 1.1.

5 - Preliminary study of the Sellers model on a manifold

5.1 - Local existence of classical solutions

In order to apply the theory in [28], we need to rewrite (1) as an evolution equation in $L^2(\mathcal{M})$. We recall that $(\Delta, D(\Delta)) = (A, D(A))$ defined in subsection 2.3. The natural energy space is $H^1(\mathcal{M})$ and the bilinear form a is $H^1(\mathcal{M})$ - $L^2(\mathcal{M})$ coercive, i.e.

$$\exists \alpha > 0, \exists \beta \in \mathbb{R}, \forall v \in H^1(\mathcal{M}), \quad a(v, v) + \beta \|v\|_{L^2(\mathcal{M})}^2 \ge \alpha \|v\|_{H^1(\mathcal{M})}^2.$$

To rewrite (1) as an evolution equation in $L^2(\mathcal{M})$, it remains to check that the second member of the equation takes its values in $L^2(\mathcal{M})$. So we define G by

$$G: \left\{ egin{array}{ll} [0,T] imes H^1(\mathcal{M}) & \longrightarrow L^2(\mathcal{M}) \ (t,u) & \longmapsto r(t)qeta(u) - arepsilon(u)u|u|^3. \end{array}
ight.$$

If G is well-defined, then problem (1) on [0, T] is equivalent to the evolution equation in $L^2(\mathcal{M})$

(56)
$$\begin{cases} u_t(t) + Au(t) = G(t, u(t)), & t \in [0, T], \\ u(0) = u_0. \end{cases}$$

We prove

Lemma 5.1. G is well defined on $[0,T] \times H^1(\mathcal{M})$ with values in $L^2(\mathcal{M})$. Moreover, G satisfies

• $\forall t \in [0, T], \forall R > 0, \exists C > 0, \forall u_1, u_2 \in B_{H^1(M)}(0, R),$

(57)
$$||G(t, u_1) - G(t, u_2)||_{L^2(\mathcal{M})} \le C||u_1 - u_2||_{H^1(\mathcal{M})}.$$

 $\bullet \ \, \forall R>0, \exists \, \theta \in (0,1), \exists C>0, \forall u \in B_{H^1(\mathcal{M})}(0,R), \forall s,t \in [0,T],$

(58)
$$||G(t,u) - G(s,u)||_{L^{2}(\mathcal{M})} \le C|t-s|^{\theta}.$$

Proof. For the proof, we will need the following result (see [37, p. 14]):

Lemma 5.2. For all $q \in [1, +\infty)$, $H^1(\mathcal{M}) \subset L^q(\mathcal{M})$ with continuous embedding.

Let us first prove that G is well defined on $[0,T] \times H^1(\mathcal{M})$, with values in $L^2(\mathcal{M})$. We set Q = rq and $Q_1 = \|Q\|_{L^{\infty}(\mathbb{R} \times I)}$. For $t \in [0,T]$, $u \in H^1(\mathcal{M})$, we write

$$\begin{aligned} \|G(t,u)\|_{L^{2}(\mathcal{M})}^{2} &= \int\limits_{I} |\mathcal{R}_{a}(t,u) - \mathcal{R}_{e}(u)|^{2} \leq 2 \int\limits_{\mathcal{M}} Q(t,x)^{2} \beta(u)^{2} + 2 \int\limits_{\mathcal{M}} \varepsilon(u)^{2} u^{8} \\ &\leq 2Q_{1}^{2} \|\beta\|_{L^{\infty}(\mathbb{R})}^{2} + 2\|\varepsilon\|_{L^{\infty}(\mathbb{R})}^{2} \int\limits_{\mathcal{M}} u^{8} \leq 2Q_{1}^{2} \bar{C} \|\beta\|_{L^{\infty}(\mathbb{R})}^{2} + C\|u\|_{H^{1}(\mathcal{M})}^{8}, \end{aligned}$$

where we used Lemma 5.2 (with $\bar{C}=\int\limits_{\mathcal{M}}1d\mathcal{M}<+\infty$).

Next, we prove that (57) is satisfied. Let $t\in[0,T],\ R>0$ and $u_1,\ u_2$ in $B_{H^1(\mathcal{M})}(0,R).$ Then

$$\begin{aligned} \|G(t, u_1) - G(t, u_2)\|_{L^2(\mathcal{M})}^2 &= \int_{\mathcal{M}} \left| Q(t, x) (\beta(u_1) - \beta(u_2)) + \mathcal{R}_e(u_1) - \mathcal{R}_e(u_2) \right|^2 \\ &\leq 2Q_1^2 \|\beta'\|_{L^{\infty}(\mathbb{R})}^2 \int_{\mathcal{M}} |u_1 - u_2|^2 + 2 \int_{\mathcal{M}} |\mathcal{R}_e(u_1) - \mathcal{R}_e(u_2)|^2 \\ &\leq 2Q_1^2 \|\beta'\|_{L^{\infty}(\mathbb{R})}^2 \|u_1 - u_2\|_V^2 + 2 \int_{\mathcal{M}} |\mathcal{R}_e(u_1) - \mathcal{R}_e(u_2)|^2. \end{aligned}$$

To conclude the proof of (57), it remains to show

(59)
$$\int_{\mathcal{M}} |\mathcal{R}_e(u_1) - \mathcal{R}_e(u_2)|^2 d\mathcal{M} \le C ||u_1 - u_2||_{H^1(\mathcal{M})}^2,$$

for some C > 0. We compute

(60)
$$\int_{\mathcal{M}} |\mathcal{R}_{e}(u_{1}) - \mathcal{R}_{e}(u_{2})|^{2} \leq 3 \int_{\mathcal{M}} |\varepsilon(u_{1}) - \varepsilon(u_{2})|^{2} |u_{1}|^{8}$$

$$+ 3 \int_{\mathcal{M}} \varepsilon(u_{2})^{2} |u_{1} - u_{2}|^{2} |u_{1}|^{6} + 3 \int_{\mathcal{M}} \varepsilon(u_{2})^{2} |u_{2}|^{2} (|u_{1}|^{3} - |u_{2}|^{3})^{2}.$$

So it remains to estimate the three terms in the right hand side of the above inequality. From the assumptions on ε (Assumption 1.1), we have:

$$\int_{\mathcal{M}} |\varepsilon(u_1) - \varepsilon(u_2)|^2 |u_1|^8 \le \|\varepsilon'\|_{L^{\infty}(\mathbb{R})}^2 \|u_1 - u_2\|_{L^4(\mathcal{M})}^2 \|u_1\|_{L^{16}(\mathcal{M})}^8,$$

$$\int_{\mathcal{M}} |\varepsilon(u_2)|^2 |u_1 - u_2|^2 |u_1|^6 \le \|\varepsilon\|_{L^{\infty}(\mathbb{R})}^2 \|u_1 - u_2\|_{L^4(\mathcal{M})}^2 \|u_1\|_{L^{12}(\mathcal{M})}^6,$$

and

$$\begin{split} &\int\limits_{\mathcal{M}} \varepsilon(u_2)^2 |u_2|^2 \big(|u_1|^3 - |u_2|^3 \big)^2 \\ &\leq \|\varepsilon\|_{L^{\infty}(\mathbb{R})}^2 \int\limits_{\mathcal{M}} |u_2|^2 \big(|u_1| - |u_2| \big)^2 \big(|u_1|^2 + |u_1| |u_2| + |u_2|^2 \big)^2 \\ &\leq \|\varepsilon\|_{L^{\infty}(\mathbb{R})}^2 \|u_1 - u_2\|_{L^4(\mathcal{M})}^2 \bigg(\int\limits_{\mathcal{M}} |u_2|^4 \big(|u_1|^2 + |u_1| |u_2| + |u_2|^2 \big)^4 \bigg)^{1/2}. \end{split}$$

Using Lemma 5.2 and $u_1, u_2 \in B_{H^1(\mathcal{M})}(0, R)$, we end the proof of (57).

Finally, we prove condition (58): for all $t, s \in [0, T]$,

$$\begin{aligned} \|G(t,u) - G(s,u)\|_{L^2(\mathcal{M})}^2 &= \int\limits_{\mathcal{M}} |r(t) - r(s)|^2 q(x)^2 \beta(u(x))^2 \\ &\leq \bar{C} \|r'\|_{L^{\infty}(\mathbb{R})}^2 \|q\|_{L^{\infty}(\mathcal{M})}^2 \|\beta\|_{L^{\infty}(\mathbb{R})}^2 |t - s|^2, \end{aligned}$$

where
$$\bar{C} = \int_{\mathcal{M}} 1d\mathcal{M} < +\infty$$
. This implies (58).

We are now ready to deduce a result of local existence:

Theorem 5.1. For all $u^0 \in D(\Delta)$, there exists $T^*(u^0) \in (0, +\infty]$ such that, for all $0 < T < T^*(u^0)$, problem (56) has a unique solution $u \in \mathcal{C}([0, T], D(\Delta)) \cap \mathcal{C}^1([0, T], L^2(\mathcal{M}))$. Moreover, if $T^*(u^0) < +\infty$, then $||u(t)||_{H^1(\mathcal{M})} \to +\infty$ as $t \to T^*(u^0)$.

Proof. Since $(\varDelta,D(\varDelta))$ generates an analytical semigroup and since the interpolation space $[D(\varDelta),L^2(\mathcal{M})]_{1/2}$ is $H^1(\mathcal{M})$, Lemma 5.1 allows to apply [28, Theorem 7.1.2] to (56). So there exists a unique weak solution defined until a maximal time $T^\star(u^0)$. Then [28, Proposition 7.1.8] implies that, if $T^\star(u^0) < +\infty$ then $\|u(t)\|_{H^1(\mathcal{M})} \to +\infty$ as $t \to T^\star(u^0)$. Moreover, since $Au^0 + G(0,u^0) \in L^2(\mathcal{M})$, [28, Proposition 7.1.10] ensures that, for all $T < T^\star(u^0)$, $u \in \mathcal{C}([0,T],D(\varDelta)) \cap \mathcal{C}^1([0,T],L^2(\mathcal{M}))$.

5.2 - Weak maximum principle

First we prove

Lemma 5.3. Let $v \in H^1(\mathcal{M})$ and $M \ge 0$. Then $(u - M)^+ := \sup(u - M, 0) \in H^1(\mathcal{M})$ and $(u + M)^- := \sup(-(u + M), 0) \in H^1(\mathcal{M})$. Moreover

(61)
$$\operatorname{grad}(u-M)^{+}(m) = \begin{cases} \operatorname{grad}(u)(m) & \text{if } u(m) \ge M \\ 0 & \text{otherwise} \end{cases}$$

(62)
$$\operatorname{grad}(u+M)^{-}(m) = \begin{cases} -\operatorname{grad}(u)(m) & \text{if } u(m) \leq -M \\ 0 & \text{otherwise} \end{cases}$$

Proof. In the context of a manifold, Lemma 5.3 replaces [39, Lemma 6.1] that is the classical result when working in an open subset of \mathbb{R}^n . Consider $(U_i, \Phi_i)_{1 \leq i \leq N}$ an atlas of \mathcal{M} . Let us first prove that: $\forall 1 \leq i \leq N, \forall f \in L^2(\mathcal{M})$,

(63)
$$\sup (f,0) \circ \Phi_i^{-1} = \sup (f \circ \Phi_i^{-1}, 0) \text{ on } \Phi_i(U_i).$$

Indeed, let $y \in \Phi_i(U_i)$ be such that $(f \circ \Phi_i^{-1})(y) \ge 0$. Then $f(x) \ge 0$ with $x = \Phi_i^{-1}(y) \in U_i$. Consequently,

$$\sup (f \circ \Phi_i^{-1}, 0)(y) = (f \circ \Phi_i^{-1})(y) = f(x) = (\sup (f, 0) \circ \Phi_i^{-1})(y).$$

The reasoning is similar when $(f \circ \Phi_i^{-1})(y) \leq 0$. This proves (63).

Let us now prove Lemma 5.3. From Proposition 2.2, it suffices to show that, for all $1 \le i \le N$, $(u-M)^+ \circ \Phi_i^{-1} \in H^1(\Phi_i(U_i))$. But $u-M \in H^1(\mathcal{M})$, so, for all $1 \le i \le N$, $(u-M) \circ \Phi_i^{-1} \in H^1(\Phi_i(U_i))$. Using [12, Proposition 6 p. 934], $((u-M) \circ \Phi_i^{-1})^+ \in H^1(\Phi_i(U_i))$. But, from (63),

$$(u - M)^+ \circ \Phi_i^{-1} = ((u - M) \circ \Phi_i^{-1})^+.$$

So we proved that $(u-M)^+ := \sup(u-M,0) \in H^1(\mathcal{M})$. Moreover, from [12, Prop. 6, p. 934], we know that

$$\nabla((u-M)^+ \circ \Phi_i^{-1})(y) = \begin{cases} \nabla(u \circ \Phi_i^{-1})(y) & \text{if } u(\Phi_i^{-1}(y)) \ge M, \\ 0 & \text{otherwise.} \end{cases}$$

From the local definition of the weak gradient (see the proof of Proposition 2.2),

$$\operatorname{grad}(u-M)^+(m) = \begin{cases} \sum_{l=1}^n \sum_{j=1}^n g^{lj} \frac{\partial}{\partial x_j} (((u-M) \circ \boldsymbol{\varPhi}_i^{-1}) \circ \boldsymbol{\varPhi}_i) \partial_l & \text{if } u(m) \geq M, \\ 0 & \text{otherwise.} \end{cases}$$

We immediately deduce (61). The proof of (62) is similar.

Then we prove the following maximum principle:

Theorem 5.2. Let $u^0 \in D(\Delta) \cap L^{\infty}(\mathcal{M})$ and $T^{\star}(u^0)$ defined by Theorem 5.1. We denote

$$(64) M:=\max \bigg\{\|u^0\|_{L^{\infty}(\mathcal{M})}, \left(\frac{\|q\|_{L^{\infty}(\mathcal{M})}\|r\|_{L^{\infty}(\mathbb{R})}\|\beta\|_{L^{\infty}(\mathbb{R})}}{\varepsilon_{min}}\right)^{1/4}\bigg\}.$$

Then the solution u of problem (1) satisfies $||u||_{L^{\infty}((0,T^{\star}(u^0))\times\mathcal{M})}\leq M$.

Proof. Theorem 5.2 replaces [39, theorem 3.3] obtained in case of the 1-dimensional Sellers model. The proof (based on Lemma 5.3) is similar so we omit it here. It can also be found in [38].

From Theorem 5.2, we deduce that, for all $u^0 \in D(\Delta) \cap L^{\infty}(\mathcal{M})$, $||u||_{L^2(\mathcal{M})}$ does not blow up as $t \to T^*(u^0)$. However, this is not sufficient to ensure the existence of a *global* classical solution since we did not prove that $||u||_{H^1(\mathcal{M})}$ does not blow up. Before

showing this, we begin by proving some regularity result on the time derivative of the solution.

5.3 - Regularity of the time derivative of the solution of (1)

We work with initial conditions defined in

(65)
$$\mathcal{U} := \{ u^0 \in D(\Delta_{\mathcal{M}}) \cap L^{\infty}(\mathcal{M}) : Au^0 \in L^{\infty}(\mathcal{M}) \}.$$

We denote:

$$W(0,T;H^1(\mathcal{M}),(H^1(\mathcal{M}))'):=\{v\in L^2(0,T;H^1(\mathcal{M})):v_t\in L^2(0,T;(H^1(\mathcal{M}))')\}.$$

Then we prove

Theorem 5.3. Let $u^0 \in \mathcal{U}$ and u the corresponding solution of (1). Let T be such that $0 < T < T^*(u^0)$ (where $T^*(u^0)$ is defined in Theorem 5.1). Then $z := u_t$ belongs to $L^2(0,T;H^1(\mathcal{M}))$ and is solution of the following variational problem:

(66)
$$\begin{cases} z \in W(0, T; H^1(\mathcal{M}), (H^1(\mathcal{M}))'), \\ \forall w \in H^1(\mathcal{M}), \quad \langle z_t(t), w \rangle + b(t, z(t), w) = \left(r'(t)q\beta(u(t)), w\right)_{L^2(\mathcal{M})}, \\ z(0) = -Au^0 + G(0, u^0), \end{cases}$$

where $b:[0,T]\times H^1(\mathcal{M})\times H^1(\mathcal{M})\longrightarrow \mathbb{R}$ is the time-dependent bilinear form:

$$b(t, v, w) = \int\limits_{\mathcal{M}} \langle \operatorname{grad}(v), \operatorname{grad}(w) \rangle d\mathcal{M} + \int\limits_{\mathcal{M}} \tilde{\pi}(t, x) vw d\mathcal{M},$$

with $\tilde{\pi}(t,x) := \mathcal{R}'_e(u(t,x)) - r(t)q(x)\beta'(u(t,x)).$

Proof. Consider $u^0 \in \mathcal{U}$. Multiplying the equation satisfied by u by $w \in H^1(\mathcal{M})$, we obtain, thanks to Proposition 2.3 : $\forall t \in [0, T]$,

$$\left(z(t),w\right)_{L^2(\mathcal{M})} + \left(\nabla u(t),\nabla w\right)_{L^2(T\mathcal{M})} = \left(r(t)q\beta(u(t)) - \varepsilon(u(t))u(t)|u(t)|^3,w\right)_{L^2(\mathcal{M})}.$$

In order to prove that $z \in L^2(0,T;H^1(\mathcal{M}))$, we use the method of differential quotients (see e.g. [26]). Let $0 < \delta < \frac{T}{2}$, $t \in (\delta,T-\delta)$ and $-\delta < s < \delta$. We observe that

(67)
$$\begin{cases} u_t(t+s) - \Delta u(t+s) &= Q(t+s)\beta(u(t+s)) - \mathcal{R}_e(u(t+s)), \\ u_t(t) - \Delta u(t) &= Q(t)\beta(u(t)) - \mathcal{R}_e(u(t)). \end{cases}$$

Then we define, for all $t \in (\delta, T - \delta)$,

$$u^{(s)}(t) := \frac{u(t+s) - u(t)}{s}.$$

For all $t \in (\delta, T - \delta)$, $u^s(t) \in H^1(\mathcal{M})$ and (67) implies

(68)
$$\frac{\partial u^{(s)}}{\partial t}(t) - \Delta u^{(s)}(t) = \frac{Q(t+s)\beta(u(t+s)) - Q(t)\beta(u(t))}{s} + \frac{\mathcal{R}_e(u(t)) - \mathcal{R}_e(u(t+s))}{s}.$$

Multiplying (68) by $u^{(s)}(t)$, using Proposition 2.3 and integrating over $(\delta, T - \delta)$, we get

(69)
$$\frac{1}{2} \|u^{(s)}(T-\delta)\|_{L^{2}(\mathcal{M})}^{2} + \int_{\delta}^{T-\delta} \left(\nabla u^{(s)}(t), \nabla u^{(s)}(t)\right)_{L^{2}(T\mathcal{M})} dt = \frac{1}{2} \|u^{(s)}(\delta)\|_{L^{2}(\mathcal{M})}^{2} + \int_{s}^{T-\delta} \int_{\mathcal{M}} \left[\frac{Q(t+s)\beta(u(t+s)) - Q(t)\beta(u(t))}{s} + \frac{\mathcal{R}_{e}(u(t)) - \mathcal{R}_{e}(u(t+s))}{s} \right] u^{s}(t).$$

With computations identical to [39, equations (6.11) and (6.12), p. 697], we have

(70)
$$\int_{\delta}^{T-\delta} \int_{\mathcal{M}} \frac{Q(t+s)\beta(u(t+s)) - Q(t)\beta(u(t))}{s} u^{s}(t)$$

$$\leq \bar{C}T \|\beta\|_{L^{\infty}(\mathbb{R})} \|q\|_{L^{\infty}(\mathcal{M})}^{2} \|r'\|_{L^{\infty}(\mathbb{R})}^{2}$$

$$+ \left(\frac{1}{2} \|\beta\|_{L^{\infty}(\mathbb{R})} + \|Q\|_{L^{\infty}(\mathbb{R}\times\mathcal{M})} \|\beta'\|_{L^{\infty}(\mathbb{R})}\right) \int_{s}^{T-\delta} \int_{\mathbb{R}} |u^{(s)}(t)|^{2}$$

where $ar{C}=\int\limits_{\mathcal{M}}1d\mathcal{M}$ and

(71)
$$\int_{\delta}^{T-\delta} \int_{\mathcal{M}} \frac{\mathcal{R}_e(u(t,x)) - \mathcal{R}_e(u(t+s,x))}{s} u^s(t) \le C \int_{\delta}^{T-\delta} \int_{\mathcal{M}} |u^{(s)}(t,x)|^2.$$

Thanks to (70) and (71), (69) becomes

$$\int\limits_{\delta}^{T-\delta} \|\nabla u^{(s)}(t)\|_{L^{2}(T\mathcal{M})}^{2} dt \leq \frac{1}{2} \|u^{(s)}(\delta)\|_{L^{2}(\mathcal{M})}^{2} + C + C \int\limits_{\delta}^{T-\delta} \int\limits_{\mathcal{M}} |u^{(s)}(t,x)|^{2} d\mathcal{M} dt.$$

As $u \in C^1([0,T];L^2(\mathcal{M}))$, we obtain

$$\int\limits_{s}^{T-\delta}\|\nabla u^{(s)}(t)\|_{L^{2}(T\mathcal{M})}^{2}dt\leq \frac{1}{2}\sup_{t\in[0,T]}\|u_{t}\|_{L^{2}(\mathcal{M})}^{2}+C+CT\sup_{t\in[0,T]}\|u_{t}\|_{L^{2}(\mathcal{M})}^{2}.$$

Consequently, the quantity $\int\limits_{\delta}^{T-\delta}\|\nabla u^{(s)}(t)\|_{L^2(T\mathcal{M})}^2dt$ is bounded by a constant independent of s. So, there exists a sub-sequence, still denoted by $(u^{(s)})_s$, that weakly converges to some $v\in L^2(\delta,T-\delta;H^1(\mathcal{M}))$ as $s\to 0$. But $L^2(\delta,T-\delta;H^1(\mathcal{M}))$ is continuously embedded in $L^2(\delta,T-\delta;L^2(\mathcal{M}))$. So the sub-sequence $(u^{(s)})_s$ weakly converges to v in $L^2(\delta,T-\delta;L^2(\mathcal{M}))$, (see e.g. [5, Theorem III.9, p. 39]). But, from [8, Corollary 1.4.39, p. 15], $(u^{(s)})_s$ strongly converges to u_t in $L^2(\delta,T-\delta;L^2(\mathcal{M}))$. Hence $u_t=v\in L^2(\delta,T-\delta;H^1(\mathcal{M}))$. Moreover,

$$\begin{split} \|u_t\|_{L^2(\delta,T-\delta;H^1(\mathcal{M}))} & \leq \lim\sup_{s\to 0} \|u^{(s)}\|_{L^2(\delta,T-\delta;H^1(\mathcal{M}))} \\ & \leq \frac{1}{2} \sup_{t\in[0,T]} \|u_t\|_{L^2(\mathcal{M})}^2 + C + CT \sup_{t\in[0,T]} \|u_t\|_{L^2(\mathcal{M})}^2. \end{split}$$

As the right hand side above does not depend on δ , we may let δ tends to 0 and we obtain that $z \in L^2(0, T; H^1(\mathcal{M}))$.

Corollary 5.1. Let $u^0 \in \mathcal{U}$ and $0 < T < T^*(u^0)$ with $T^*(u^0)$ defined by Theorem 5.1. Then the solution z of (66) satisfies

$$||z||_{L^{\infty}((0,T)\times\mathcal{M})} \leq e^{(||\tilde{\pi}||_{L^{\infty}((0,T)\times\mathcal{M})}+1)T}N,$$

$$with \ N := \max \big\{ \| -Au^0 + G(0,u^0) \|_{L^{\infty}(\mathcal{M})}, \|r'\|_{L^{\infty}(\mathbb{R})} \|q\|_{L^{\infty}(\mathcal{M})} \|\beta\|_{L^{\infty}(\mathbb{R})} \big\}.$$

Proof. This result replaces [39, Corollary 3.1] obtained in the case of the 1-dimensional Sellers model. The proof (that uses Lemma 5.3) is similar to the proof of [39, Corollary 3.1] for dimension 1. The main difficulty in the proof relies on the lack of coercivity of the bilinear form b so one has to introduce some auxiliary variational problem associated to some coercive bilinear form b_1 . We omit the proof here. It can also be found in [38].

5.4 - Global existence of the solutions of (1)

Theorem 5.4. Let $u^0 \in \mathcal{U}$. Then the solution u of (1) is defined on $[0, +\infty)$, i.e. $T^*(u^0) = +\infty$. Consequently, Theorem 5.2 and Corollary 5.1 hold true with $T^*(u^0) = +\infty$.

Proof. Theorem 5.4 replaces [39, Theorem 3.5] obtained in the 1-dimensional case and it can be proved in a similar way (except the fact that computations are now on a manifold). So the proof (that can be found in [38]) is omitted. \Box

6 - Proof of Theorem 1.1

STEP 1: Reduction to some non standard linear inverse source problem.

Let T > 0, $u_1, u_2 \in \mathcal{C}([0,T];D(\Delta)) \cap \mathcal{C}^1([0,T];L^2(\mathcal{M}))$ be the solutions of (1) corresponding respectively to q_1 with the initial condition u_1^0 , and to q_2 with the initial condition u_2^0 . We introduce $w := u_1 - u_2$. Then one can prove that $w \in \mathcal{C}([0,T];D(\Delta)) \cap \mathcal{C}^1([0,T];L^2(\mathcal{M}))$ solves

(72)
$$\begin{cases} w_t - \Delta w = H^* + H + \tilde{H} & (t, x) \in (0, T) \times \mathcal{M}, \\ w(0, x) = u_1^0 - u_2^0 & x \in \mathcal{M}, \end{cases}$$

with

(73)
$$H^* := r(q_1 - q_2)\beta(u_1),$$

(74)
$$H := rq_2(\beta(u_1) - \beta(u_2)),$$

(75)
$$\tilde{H} := \varepsilon(u_2)u_2|u_2|^3 - \varepsilon(u_1)u_1|u_1|^3.$$

As r and β are bounded from below (see Assumption 1.1), it suffices to estimate H^* to deduce an estimate of $q_1 - q_2$ in $L^2(\mathcal{M})$. So we reduced the problem to the determination of H^* in the above *linear* problem (72).

STEP 2: Condition satisfied by h_1 . Let us recall that in inverse source problems, the source term has to satisfy some condition otherwise uniqueness may be false. Motivated by [22], we introduce the following condition: given $C_0 > 0$, we consider the condition

$$\left|\frac{\partial h}{\partial t}(t,x)\right| \leq C_0 |h(T',x)| \text{ for almost all } (t,x) \in (0,T) \times \mathcal{M},$$

and we define the set of C_0 -admissible source terms:

$$\mathcal{G}(C_0):=\big\{h\in H^1(0,T;L^2(\mathcal{M}))| \text{h satisfies (76)}\}.$$

Coming back to (72), we prove that the part H^* defined in (73) (and which is the part we wish to identify) is admissible (with some explicit C_0):

Lemma 6.1. The function $H^*=r(q_1-q_2)\beta(u_1)$ belongs to $\mathcal{G}(C_0)$ with $C_0>0$ defined by

$$C_0 := \frac{\|r'\|_{L^{\infty}(\mathbb{R})} \|\beta\|_{L^{\infty}(\mathbb{R})} + \|r\|_{L^{\infty}(\mathbb{R})} \|\beta'\|_{L^{\infty}(\mathbb{R})} e^{(\|\tilde{\pi}_1\|_{L^{\infty}((0,T)\times\mathcal{M}} + 1)T} N_1}{\beta_{min} r(T')},$$

where $\tilde{\pi}_1$ is given in Theorem 5.3 with $u^0 = u_1^0$ and N_1 is given in Corollary 5.1 with $u^0 = u_1^0$.

Proof. The proof is based on Corollary 5.1. As it is identical to the similar result established in [39, Lemma 7.1], we omit it. □

STEP 3: Application of global Carleman estimates and link with some more standard inverse source problem. In the following computations, C stands for generic constant depending on T, t_0 , T', B, ω and the parameters in Assumption 1.1. Let us introduce $Z := w_t = u_{1,t} - u_{2,t}$ where w solves (72). Using Proposition 2.4, $Z \in L^2(t_0, T; D(\Delta)) \cap H^1(t_0, T; L^2(\mathcal{M}))$ and satisfies

(77)
$$Z_t - \Delta Z = H_t^* + H_t + \tilde{H}_t \quad (t, x) \in (t_0, T) \times \mathcal{M}.$$

Then we apply the Carleman estimate (36) to Z on the time interval (t_0, T) , with $\theta: (t_0, T) \to \mathbb{R}_+^*$ smooth, convex, such that

$$\theta(t) = \begin{cases} \frac{1}{t - t_0} & t \in \left(t_0, \frac{t_0 + T'}{2}\right), \\ \\ \frac{1}{T - t} & t \in \left(\frac{T' + T}{2}, T\right), \end{cases}$$

and θ attains its global minimum at T'. And we obtain

(78)
$$I_{0} := \int_{t_{0}}^{T} \int_{\mathcal{M}} \rho^{3} Z^{2} e^{-2R\sigma} + \int_{t_{0}}^{T} \int_{\mathcal{M}} \rho |\nabla Z|^{2} e^{-2R\sigma} + \int_{t_{0}}^{T} \int_{\mathcal{M}} \frac{1}{\rho} Z_{t}^{2} e^{-2R\sigma}$$

$$\leq C \left(\left\| e^{-R\sigma} P Z \right\|_{L^{2}((t_{0},T)\times\mathcal{M})}^{2} + \int_{t_{0}}^{T} \int_{\omega} \rho^{3} Z^{2} e^{-2R\sigma} \right).$$

Inequality (78) is the first step when dealing with standard inverse source problem, see [22]. Here the problem consists is retrieving only the part H^* in the source term $H^* + H + \tilde{H}$. First we estimate $\int\limits_{t_0}^T \int\limits_{\mathcal{M}} (H_t^2 + \tilde{H}_t^2) e^{-2R\sigma} d\mathcal{M} dt$ in the left hand side of (78):

Lemma 6.2. There exists a constant C > 0 such that

(79)
$$\int_{t_0}^{T} \int_{\mathcal{M}} (H_t^2 + \tilde{H}_t^2) e^{-2R\sigma} \le C \left(\int_{t_0}^{T} \int_{\mathcal{M}} Z^2 e^{-2R\sigma} + \int_{\mathcal{M}} w(T')^2 \right).$$

Proof. The proof is similar to the proof of [39, lemma 5.2] (using Theorem 5.2 and Corollary 5.1 instead of their analogous 1-dimensional forms) and can also be found in [38]. \Box

Coming back to (78), we deduce:

$$(80) I_0 \le C \left(\int_{t_0}^T \int_{\mathcal{M}} (H_t^*)^2 e^{-2R\sigma} + \int_{t_0}^T \int_{\mathcal{M}} Z^2 e^{-2R\sigma} + \int_{\mathcal{M}} w(T')^2 + \int_{t_0}^T \int_{\omega} \rho^3 Z^2 e^{-2R\sigma} \right).$$

For all $t \in (t_0, T)$, $1 \le C\theta(t)$, so that, for R large,

$$C\int\limits_{t_0}^T\int\limits_{M}Z^2e^{-2R\sigma}\leqrac{1}{2}\int\limits_{t_0}^T\int\limits_{M}
ho^3Z^2e^{-2R\sigma}.$$

Hence, there exists $R_1 > 0$ and C > 0 such that: $\forall R \geq R_1$,

(81)
$$I_{0} \leq C \left(\int_{t_{0}}^{T} \int_{\mathcal{M}} (H_{t}^{*})^{2} e^{-2R\sigma} + \int_{\mathcal{M}} w(T')^{2} + \int_{t_{0}}^{T} \int_{\omega} \rho^{3} Z^{2} e^{-2R\sigma} \right).$$

Let us note that, without the term $\int_{\mathcal{M}} w(T')^2 d\mathcal{M}$, inequality (81) would be the kind of inequality that one would obtain when dealing with the standard inverse source problem that consists in retrieving H^* in the equation $w_t - \Delta w = H^*$. Let us observe that this extra term satisfies

$$\int_{M} w(T')^{2} = \|(u_{1} - u_{2})(T', \cdot)\|_{L^{2}(\mathcal{M})}^{2} \le \|(u_{1} - u_{2})(T', \cdot)\|_{D(\Delta)}^{2}.$$

Consequently, it can easily be estimated by the right hand side of (12).

STEP 4: Estimate from above of I_1 . Let us prove that there exists C > 0 such that

(82)
$$I_1 \leq C \left[\frac{1}{\sqrt{R}} \int_{\mathcal{M}} (H^*(T'))^2 e^{-2R\sigma(T')} + \|w(T')\|_{L^2(\mathcal{M})}^2 + \|w_t\|_{L^2((t_0,T)\times\omega)}^2 \right].$$

Indeed, there exists $p_{min}>0$ such that $p(x)\geq p_{min}$ for all $x\in\mathcal{M}$, hence $\rho^3e^{-2R\sigma(t,x)}\leq R^3S^3e^{3S\|\psi\|_\infty}\theta(t)^3e^{-2Rp_{min}\theta(t)}$, and since $\theta(t)^3e^{-2Rp_{min}\theta(t)}\to 0$ as $t\to t_0$ and as $t\to T$, there exists C such that

$$\int_{t_0}^{T} \int_{\omega} \rho^3 Z^2 e^{-2R\sigma} \le C \|Z\|_{L^2((t_0,T)\times\omega)}^2 = C \|w_t\|_{L^2((t_0,T)\times\omega)}^2.$$

Finally, the proof of (82) follows from

Lemma 6.3. There exists C > 0 such that

(83)
$$\int_{t_0}^T \int_{\mathcal{M}} (H_t^*)^2 e^{-2R\sigma} d\mathcal{M} dt \le C \frac{1}{\sqrt{R}} \int_{\mathcal{M}} (H^*(T'))^2 e^{-2R\sigma(T')} d\mathcal{M}.$$

Proof. Lemma 6.3 is classical in inverse source problems. We refer to [22] for its proof. Indeed, the fact that one works on a manifold does not change the reasoning. The key point is the form of the weight function θ .

STEP 5: Estimate from below of I_0 . Let us show that there exists $C = C(t_0, T) > 0$ such that

(84)
$$\int_{M} Z(T')^{2} e^{-2R\sigma(T')} \leq CI_{0}.$$

Indeed, since $Z(t,x)^2e^{-2R\sigma(t,x)}\to 0$ as $t\to t_0$ for a.a. $x\in\mathcal{M}$, we can write

(85)
$$\int_{\mathcal{M}} Z(T')^2 e^{-2R\sigma(T')} = \int_{t_0}^{T'} \frac{\partial}{\partial t} \left(\int_{\mathcal{M}} Z(t, x)^2 e^{-2R\sigma(t, x)} \right)$$
$$= \int_{t_0}^{T'} \int_{\mathcal{M}} \left[2ZZ_t - 2R\sigma_t Z^2 \right] e^{-2R\sigma}.$$

First, we estimate

$$(86) \int_{t_0}^{T'} \int_{\mathcal{M}} 2ZZ_t e^{-2R\sigma} = \int_{t_0}^{T'} \int_{\mathcal{M}} 2\sqrt{\rho} Z e^{-R\sigma} \frac{Z_t e^{-R\sigma}}{\sqrt{\rho}}$$

$$\leq \int_{t_0}^{T'} \int_{\mathcal{M}} \left(\rho Z^2 e^{-2R\sigma} + \frac{Z_t^2 e^{-2R\sigma}}{\rho}\right) \leq CI_0.$$

Next we estimate the other term of (85): since $|\theta_t(t)| \leq C\theta(t)^3$, we have

(87)
$$\int\limits_{t_0}^{T'}\int\limits_{M}2R|\sigma_t|Z^2e^{-2R\sigma}\leq C\int\limits_{t_0}^{T'}\int\limits_{M}\rho^3Z^2e^{-2R\sigma}\leq CI_0.$$

Finally, (85), (86) and (87) imply (84).

STEP 6: Conclusion. Using (84), (81) and next (82), there exists C > 0 such that

(88)
$$\int_{\mathcal{M}} Z(T')^{2} e^{-2R\sigma(T')} \leq \frac{C}{\sqrt{R}} \int_{\mathcal{M}} H^{*}(T')^{2} e^{-2R\sigma(T')} + C\|w(T')\|_{L^{2}(\mathcal{M})}^{2} + C\|w_{t}\|_{L^{2}((t_{0},T)\times\omega)}^{2}.$$

Let us recall that

$$Z(T') = w_t(T') = \Delta w(T') + H^*(T') + H(T') + \tilde{H}(T'),$$

hence

$$\begin{split} \int_{\mathcal{M}} H^*(T')^2 e^{-2R\sigma(T')} &\leq C \Biggl(\int_{\mathcal{M}} Z(T')^2 e^{-2R\sigma(T')} + \int_{\mathcal{M}} |\varDelta w(T')|^2 e^{-2R\sigma(T')} \\ &+ \int_{\mathcal{M}} H(T')^2 e^{-2R\sigma(T')} + \int_{\mathcal{M}} \tilde{H}(T')^2 e^{-2R\sigma(T')} \Biggr) \end{split}$$

Applying (88), we get

$$\int_{\mathcal{M}} H^*(T')^2 e^{-2R\sigma(T')} \le C \left(\frac{1}{\sqrt{R}} \int_{\mathcal{M}} H^*(T')^2 e^{-2R\sigma(T')} + \|w_t\|_{L^2((t_0,T)\times\omega)}^2 + \|w(T')\|_{D(A)}^2 + \int_{\mathcal{M}} H(T')^2 e^{-2R\sigma(T')} + \int_{\mathcal{M}} \tilde{H}(T')^2 e^{-2R\sigma(T')} \right).$$

Choosing R large enough so that $C/\sqrt{R} = 1/2$, we get

(89)
$$\frac{1}{2} \int_{\mathcal{M}} H^*(T')^2 e^{-2R\sigma(T')} \le C \Big(\|w_t\|_{L^2((t_0,T)\times\omega)}^2 + \|w(T')\|_{D(\mathcal{A})}^2 + \int_{\mathcal{M}} H(T')^2 e^{-2R\sigma(T')} + \int_{\mathcal{M}} \tilde{H}(T')^2 e^{-2R\sigma(T')} \Big).$$

Let us now estimate the two last terms of the right hand side of (89). First, we recall that $|H| = |rq_2(\beta(u_1) - \beta(u_2))| \le ||r||_{L^{\infty}(\mathbb{R})} B||\beta'||_{L^{\infty}(\mathbb{R})} |u_1 - u_2|$. Therefore

(90)
$$\int_{\mathcal{M}} H(T')^{2} e^{-2R\sigma(T')} \le C \int_{\mathcal{M}} w(T')^{2} e^{-2R\sigma(T')} \le C \|w(T')\|_{L^{2}(\mathcal{M})}^{2}.$$

Next, we write

$$\begin{split} |\tilde{H}| &= \left| \left(\varepsilon(u_2) - \varepsilon(u_1) \right) u_2 |u_2|^3 + \varepsilon(u_1) (u_2 - u_1) |u_2|^3 + \varepsilon(u_1) u_1 \left(|u_2|^3 - |u_1|^3 \right) \right| \\ &\leq \|\varepsilon'\|_{L^{\infty}(\mathbb{R})} |u_2 - u_1| |u_2|^4 + \|\varepsilon\|_{L^{\infty}(\mathbb{R})} |u_2 - u_1| |u_2|^3 \\ &+ \|\varepsilon\|_{L^{\infty}(\mathbb{R})} |u_1| \big| |u_2| - |u_1| \big| \left(|u_2|^2 + |u_2 u_1| + |u_1|^2 \right). \end{split}$$

By Theorem 5.2, for i = 1, 2, $||u_i||_{L^{\infty}((0,T)\times\mathcal{M})} \leq C$. Hence,

$$|\tilde{H}| \le C|u_2 - u_1| + C||u_2| - |u_1|| \le C|u_2 - u_1|.$$

We deduce

(91)
$$\int_{\mathcal{M}} \tilde{H}(T')^{2} e^{-2R\sigma(T')} \le C \|w(T')\|_{L^{2}(\mathcal{M})}^{2}.$$

Finally, putting (90) and (91) into (89), we get

$$\int\limits_{\mathcal{M}} H^*(T')^2 e^{-2R\sigma(T')} \le C \Big[\|w_t\|_{L^2((t_0,T)\times\omega)}^2 + \|w(T')\|_{D(\varDelta)}^2 \Big].$$

On the other hand, R being now fixed, there exists some $C_{min} > 0$ such that $e^{-2R\sigma(T')} \ge C_{min} > 0$. Hence

$$\int_{\mathcal{M}} H^*(T')^2 e^{-2R\sigma(T')} d\mathcal{M} = \int_{\mathcal{M}} r(t)^2 |q_1(x) - q_2(x)|^2 \beta (u_1(T'))^2 e^{-2R\sigma(T')} d\mathcal{M}
\geq C_{min} r_{min}^2 \beta_{min}^2 ||q_1 - q_2||_{L^2(\mathcal{M})}^2.$$

It follows

$$\|q_1 - q_2\|_{L^2(\mathcal{M})}^2 \le C \Big[\|w_t\|_{L^2((t_0,T)\times\omega)}^2 + \|w(T')\|_{D(\Delta)}^2 \Big].$$

This concludes the proof of Theorem 1.1.

And (13) follows then immediately from the Carleman estimate of Theorem 3.1 and the stability estimate (12).

Acknowledgments. The authors would like to thank the anonymous referee for his/her suggestions, that helped us to improve the paper.

References

- [1] W. Abikoff, The uniformization theorem, Amer. Math. Monthly 88 (1981), no. 8, 574-592.
- [2] T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Springer-Verlag, New-York 1982.
- [3] A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and control of infinite-dimensional systems, Vol. 1, Systems & Control: Foundations & Applications, Birkhäuser Boston 1992.

- [4] R. Bermejo, J. Carpio, J. I. Diaz and L. Tello, Mathematical and numerical analysis of a nonlinear diffusive climate energy balance model, Math. Comput. Modelling 49 (2009), 1180-1210.
- [5] H. Brezis, Analyse Fonctionnelle, Dunod, Paris 1999.
- [6] M. M. CAVALCANTI, V. N. DOMINGOS CAVALCANTI, R. FUKUOKA and J. A. SORIANO, Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result, Arch. Ration. Mech. Anal. 197 (2010), no. 3, 925-964.
- [7] P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications, Mem. Amer. Math. Soc. 239 (2016), no. 1133, 209 pp.
- [8] T. CAZENAVE and A. HARAUX, An introduction to semilinear evolution equations, Oxford Lecture Ser. Math. Appl., 13, Oxford University Press, New York 1998.
- [9] I. Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, 115, Academic Press Inc., Orlando, FL 1984.
- [10] I. Chavel, *Isoperimetric inequalities*, Differential geometric and analytic perspectives, Cambridge Tracts in Mathematics, 145, Cambridge University Press, Cambridge 2001.
- [11] M. CRISTOFOL and L. ROQUES, Stable estimation of two coefficients in a non-linear Fisher-KPP equation, Inverse Problems 29 (2013), no. 9, 095007, 18 pp.
- [12] R. Dautray and J.-L. Lions, Analyse mathématiques et calcul numérique pour les sciences et les techniques, Tome 3, Masson, Paris 1985.
- [13] J. I. Diaz, Mathematical analysis of some diffusive energy balance models in climatology, Mathematics, climate and environment (Madrid, 1991), J. I. Diaz and J.-L. Lions, eds., RMA Res. Notes Appl. Math., 27, Masson, Paris 1993, 28-56.
- [14] J. I. DIAZ, On the mathematical treatment of energy balance climate models, NATO ASI Ser. Ser. I Glob. Environ. Change, 48, Springer, Berlin 1997, 217-251
- [15] J. I. Diaz, Diffusive energy balance models in climatology, Stud. Math. Appl., 31, North-Holland, Amsterdam 2002, 297-328.
- [16] J. I. DIAZ, G. HETZER and L. TELLO, An energy balance climate model with hysteresis, Nonlinear Anal. 64 (2006), 2053-2074.
- [17] H. Egger, H. W. Engl and M. V. Klibanov, Global uniqueness and Hölder stability for recovering a nonlinear source term in a parabolic equation, Inverse Problems 21 (2005), 271-290.
- [18] A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes Ser., 34, Seoul National University, Seoul, Korea 1996.
- [19] S. Gallot, D. Hulin and J. Lafontaine, *Riemannian geometry*, Third edition, Universitext, Springer-Verlag, Berlin 2004.
- [20] G. Hetzer, The number of stationary solutions for a one-dimensional Budykotype climate model, Nonlinear Anal. Real World Appl. 2 (2001), 259-272.
- [21] O. Yu. Imanuvilov, Controllability of parabolic equations (Russian), translated from Mat. Sb. 186 (1995), no. 6, 109-132, Sb. Math. 186 (1995), no. 6, 879-900.

- [22] O. Yu. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimates, Inverse Problems 14 (1998), no. 5, 1229-1245.
- [23] V. ISAKOV, Inverse Problems for Partial Differential Equations, Second edition, Appl. Math. Sci., 127, Springer, New York 2006.
- [24] J. LAFONTAINE, Introduction aux variétés différentielles (French), Presses Universitaires de Grenoble, Grenoble 1996, 299 pp.
- [25] G. LEBEAU and L. ROBBIANO, Contrôle exact de l'équation de la chaleur (French), Comm. Partial Differential Equations 20 (1995), 335-356.
- [26] J.-L. Lions, Equations différentielles opérationnelles et problèmes aux limites (French), Die Grundlehren des mathematischen Wissenschaften, 111, Springer-Verlag, Berlin-Göttingen-Heidelberg 1961.
- [27] J.-L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et applications, Vol. 1 (French), Travaux et Rech. Math., No. 17 Dunod, Paris 1968.
- [28] A. Lunardi, Analytic semigroups and optimal regularity results, Progress in Nonlinear Differential Equations and their Applications 16, Birkhäuser, Basel, 1995.
- [29] L. MILLER, Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds, Math. Res. Lett. 12 (2005), no. 1, 37-47.
- [30] G. R. NORTH, J. G. MENGEL and D. A. SHORT, Simple energy balance model resolving the season and continents: applications to astronomical theory of ice ages, J. Geophys. Res. Oceans 88 (1983), 6576-6586.
- [31] F. Punzo, Uniqueness for the heat equation in Riemannian manifolds, J. Math. Anal. Appl. 424 (2015), no. 1, 402-422.
- [32] F. Punzo, Global existence of solutions to the semilinear heat equation on Riemannian manifolds with negative sectional curvature, Riv. Mat. Univ. Parma (N.S.) 5 (2014), no. 1, 113-138.
- [33] L. Roques and M. Cristofol, On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation, Nonlinearity 23 (2010), no. 3, 675-686.
- [34] L. Roques, M. D. Checkroun, M. Cristofol, S. Soubeyrand and M. Ghil, Parameter estimation for energy balance models with memory, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014), no. 2169, 20140349, 20 pp.
- [35] M. E. TAYLOR, Partial Differential Equations I. Basic theory, Second edition, Applied Mathematical Sciences, 115, Springer, New York 2011.
- [36] M. E. TAYLOR, Partial Differential Equations II. Qualitative studies in linear equations, Second edition, Applied Mathematical Sciences, 116, Springer-Verlag, New York 2011.
- [37] M. E. TAYLOR, Partial Differential Equations III. Nonlinear equations, Second edition, Applied Mathematical Sciences, 117, Springer-Verlag, New York 2011.
- [38] J. Tort, Problèmes inverses pour des équations paraboliques issues de modèles de climat, Université Toulouse 3 Paul Sabatier, PhD Thesis, 29 Juin 2012.
- [39] J. TORT and J. VANCOSTENOBLE, Determination of the insolation function in the nonlinear climates Sellers model, Ann. Inst. H. Poincaré Anal. Non Linéaire 29 (2012), 683-713.

- [40] S. Weitkamp, A new proof of the uniformization theorem, Ann. Global Anal. Geom. 27 (2005), no. 2, 157-177.
- [41] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems 25 (2009), no. 12, 123013, 75 pp.
- [42] M. Yamamoto and J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems 17 (2001), no. 4, 1181-1202.

Patrick Martinez University of Toulouse 3 118 route de Narbonne 31062 Toulouse Cedex 9, France e-mail: martinez@math.univ-toulouse.fr

JACQUES TORT University of Toulouse 3 118 route de Narbonne 31062 Toulouse Cedex 9, France e-mail: jacques.tort@wanadoo.fr

JUDITH VANCOSTENOBLE
University of Toulouse 3
118 route de Narbonne
31062 Toulouse Cedex 9, France
e-mail: vancoste@math.univ-toulouse.fr