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1 - Introduction

1.1 - The Sellers model

In this paper, we are interested in some inverse problem that consists in re-
covering the so-called insolation function ¢ in the nonlinear Sellers climate model. The
case of the 1-D Sellers model has been considered in [39]. Here we focus on the 2-D
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Sellers model on the Earth’s surface:

Rt Re(u)
3
1) ut — Apu = r(O)qg@)u) — ewulul”  x € M, t >0,
(0, 2) = u’(@) re M.

The Earth’s surface is materialized by a sub-manifold M of R? which is assumed to
be of dimension 2, compact, connected, oriented, and without boundary. The function
u represents the mean annual or seasonal temperature, and 4,, is the Laplace-
Beltrami operator on M. The right hand side of the equation corresponds to

e the mean radiation flux depending on the solar radiation R,,

e and the radiation R, emitted by the Earth.

For more details on the model, we refer the reader to [14, 15] and the references
therein.

1.2 - Assumptions and main results

1.2.1 - Geometrical and regularity assumptions

Consider a sub-manifold M of R? which is assumed to be of dimension 2, compact,
connected, oriented, and without boundary.

Throughout this paper, we make the following assumptions (that are compatible
with the applications, see [39]):

Assumption 1.1.

2) B eCR)NLX(R), f e L*(R), f is k-Lipschitz (k > 0),
3) WBoin > 0,Vu € R, p) = Byin;,

(4) qeL>*WM), ¢=>0,

(5) r € CX(R) is t-periodic (t > 0),

(6) Wppin > 0, VE € R, 7(t) > i,

(7) e € CH(R)NLX(R), ¢ is K-Lipschitz (K > 0),

(8) Fepin > 0,Vu € R, e() > &pin -

We also make the following geometrical assumption:
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Assumption 1.2. Let w be a non empty open subset of M. We assume that
there exists a weight function y € C*(M) that satisfies:

9) Vy(m) =0 = me o.

(Here V stands for the usual gradient associated to the Riemannian structure, see
Section 2.)

1.2.2 - Main results

As in [39], our aim is to prove some Lipschitz stability result for the inverse
problem that consists in recovering the insolation function ¢ in (1) from partial
measurements. We introduce

e the set of admissible initial conditions: given A > 0, we consider U/ :
(10) Uy == {u’ € D(Up) NLZM) : dyu’ € L¥(M),
1ol L g + N[ Amtoll e rgy < A},

where D(4,,) is the domain of the Laplace-Beltrami operator in L2(M) (we will
recall the definition of 4, and D(4,,) in Section 2),

e and the set of admissible coefficients: given B > 0, we consider
(11) Qp = {q € L™M) : ||g|| . (1g < B}

The main result of this paper is the following one:

Theorem 1.1. Consider

e toc[0,T)and T' € (t,, T),

o A >0andul,ul € Ua (defined in (10)),
e B> 0and q1,q2 € Qp (defined in (11)),

e wu; the solution of (1) associated to q; and the initial condition u‘l), and us the

solution of (1) associated to qz and the initial condition ug,

e » C M such that Assumption 1.2 holds.

Then there exists C(ty, T',T,A,B) > 0 such that, for all u® ud € Uy, for all
Q1,92 € Qp, the corresponding solutions uy, ug of problem (1) satisfy

2 2 2
(12) g1 — Q2HL2<M) < C(HMI(T’) - uz(Tl)”D(AM) + [lua s — uZ-t”Lz((tO,T)xw))'

We complete Theorem 1.1 by the following remarks:
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e the geometrical assumption 1.2 is satisfied when M is simply connected (hence
in particular for the sphere S2):

Proposition 1.1. Additionnally, assume that M 1is simply connected.
Consider any o non empty open set of M. Then Assumption 1.2 is fullfilled:
there exists some smooth function w that satisfies (9).

e as a consequence of the stability estimate (12) and of the Carleman estimate
that we will prove in Theorem 3.1, we obtain a weighted stability estimate for
the difference u; — us: there exists C'(ty, 7", T, A, B) > 0 such that,

-R 2 2 2
(13) lle™™ (uy — MZ)HLZ((O,T)XM) < C/(HMI(T/) - MQ(T/)HD(AM) + [luae — “zt”LZ((tO,T)xw))v

where ¢ is the weight function defined in (35).
The proof of Theorem 1.1 is based on

e global Carleman estimates for the heat equation (see Theorem 3.1),

e maximum principles, useful to study this nonlinear problem (see Theorem 5.2
and Corollary 5.1),

e and Riemannian geometry tools, since we are in the manifold setting.

The proof of Proposition 1.1 is based on

e a direct construction when M is the sphere S% using the stereographic pro-
jection,
e the celebrated uniformisation theorem ([1, 40]) when M is simply connected.

(Remark: we no not know if the result remains true if 77 = 7'.)

1.3 - Relation to literature

A similar problem is considered in [39], where stability estimates for the in-
solation function are obtained combining Carleman estimates with maximum prin-
ciples, the main difference with the present paper being that the problem in [39] is
stated and studied in the interval (— 1, 1) and with a degenerate diffusion coefficient.

Global Carleman estimates have proved their usefulness in the context of null
controllability, unique continuation properties, we refer in particular to [25] for the
seminal paper on the null controllability of the heat equation on compact manifolds,
to[18, 21] for Carleman estimates in a general setting, to [29] for unique continuation
properties for the heat equation on non compact manifolds, to [31, 32] for uniqueness
results for manifolds with poles, to [6] for stabilization results of the wave equation on
manifolds.
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Concerning inverse problems, Isakov [23] provided many results for elliptic,
hyperbolic and parabolic problems. Imanuvilov-Yamamoto [22] developped a gen-
eral method to solve some standard inverse source problem for the linear heat
equation, using global Carleman estimates. In the context of semilinear parabolic
equations in bounded domains of R", we can also mention in particular [33, 34], where
uniqueness results are obtained under analyticity assumptions, [11], that combines
also Carleman estimates with maximum principles to obtain stability estimates (for
two coefficients but under rather strong assumptions on the time interval of ob-
servation).

1.4 - Contents of the paper

Let us now precise the organization of the paper.

e First of all, since the equation is stated on a surface, the operators needed for
the definitions and the computations (Laplacian, divergence, gradient) are
defined through a Riemaniann metric associated to the surface. So, in order to
fix the ideas, we begin in Section 2 by introducing all the notations and recalling
all the definitions and the properties useful for computations on manifolds.

e Next, in Section 3, we state and prove some global Carleman estimate for the
heat operator on a compact manifold without boundary. This will be a crucial
tool in order to study our inverse problem.

e In Section 4, we prove Proposition 1.1, studying first the case of the sphere S,
and then the general case of a simply connected manifold.

e In Section 5, we make some preliminary studies concerning the 2-D Sellers
model on the manifold M (well-posedness of course but also regularity results
and maximum principles that will also be essential in the proof of the stability
result for the inverse problem).

e Finally, in Section 6, we prove Theorem 1.1.

2 - Notations, computations and heat operator on manifolds

In this section, we fix the notations and recall some classical definitions and re-
sults on manifolds. We refer in particular to [9, 19].

2.1 - Notions on topological and Riemannian manifolds

Charts, atlas, smooth manifolds. A topological manifold M of dimension 7 is a
separated topological space such that every point m € M has a neighbourhood U
which is homeomorphic to some connected open subset of R”. For any neighbour-



[7] LIPSCHITZ STABILITY FOR AN INVERSE PROBLEM FOR THE 2D-SELLERS ETC. 357

hood U and any homeomorphism ¢ : U — ¢(U) C R", we say that (U,¢) is a co-
ordinate chart on U. A set (U, ¢,)ic; such that the set of neighbourhoods U; covers
M is called an atlas on M.

When two coordinate charts (Ui, ¢,) and (Uz, ¢,) have overlapping domains U
and Uy, there is a transition function ¢, o ¢1_1 1 ¢ (U N U2) — ¢,(Uy N Us) whichisa
homeomorphism between two open subsets of R”. A smooth manifold (or a C*-
manifold) is a manifold for which all the transition maps are C*°-diffeomorphims. In
the following, M always denotes a smooth manifold.

Tangent vectors, tangent spaces, basis. A tangent vector at m € M is an
equivalence class [c] of differentiable curves ¢ : I — M with I sub-interval of R such
that 0 € I and ¢(0) = m, modulo the equivalence relation of first order contact be-
tween curves i.e.

c1=c2 & c1(0) =c2(0) =m and ($oc1)(0) = ($oc2)(0)

for every coordinate chart (U, ¢) such that m € U.
The tangent space to M at m, denoted by 7', M, is the collection of all tangent
vectors at m. Let (U, ¢) be a chart such that m € U and define the map Oy

Og: TyM — R"
[c] +— ($00)(0).

Then 0y : Ty M — R"is a bijection (see [24, p. 64]). Therefore T, M can be endowed
with a structure of a vector space. It is possible to exhibit a basis (9;(m)); <<y, of T, M
in the following way. Let m € M and (U, ¢) be a chart of M such that m e U. In
&(U) c R", we have n coordinate fields:

i.{¢(U) — R"

vl <1i<mn, :
ox; | a —(0,0,...,1,0,...,0)

where 1 is at position 7. Then we set
0
. 1
V1l <i<n, 9i(m) = 0 (a—xi (¢(M))).

Regularity, derivatives. A continuous function f : M — R is of class C* if, for
any m e M and for any chart (U,¢) with me U, fog ' : $(U) c R" — R is of
class C*.

Assume f: M — R is of class C' and m € M. For any vector & € T, M, the
directional derivative of f at m along &, denoted by &.f,, or (¢.f)(m), is:

éf:m = (f © (1))/(0),
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where w: I — M satisfies w(0) =m and &'(0) =¢. For all m e M, the map
Oy : E— E.fyy 18 a linear form on 7', M.

Let us explicit now the derivatives of f along each vector of the basis of the tangent
space. Let f : M — R be regular, m € M and (U, ¢) be a chart of M containing .
Then 0;(m).f,, = (f o w;)'(0) where w; : t — ¢_1(q5(m) + 10, ...,1,0,...0)). }\/Ioreover
(fow®t) =(fo ¢_1)(¢(m) + 10, ...,1,0,...0)). Hence 0;,(m).f,, = %(cﬁ(w)).

Tangent bundle, vector fields. The tangent bundle of a differentiable manifold M
is a manifold 7M, which assembles all the tangent vectors at M, that is TM =
Umemt Ty M = Upep{m} x T, M. We denote by IT : (m,&) € TM — me M the
canonical projection.

Vector fields, derivative along a vector field. A vector field X on a manifold M
is a regular map X : M — T M such that 17 o X = Id, (i.e. X(m) € T,,, M for any
me M.

Let X : M — TM be a vector field on M and f : M — R regular. We define
X.f : M — R the derivative of f along X in the following way: for allm € M, for any
chart (U, ¢) with m € U,

X.f)m) = (f o w)(0),
where w : I — M satisfies w(0) = m and o'(0) = X(m).

Lie bracket of two vector fields. The Lie bracket of two vector fields X and Yis a
third vector field [X, Y] defined by

Vf: M—R, X, Y]L.f =X.(Y.f) - Y.(X./).
For the computations of Carleman inequalities, we will need the following result (see

e.g. the proof in [38]): for all 1 < ¢,j < n, then [0;,9;] = 0.

Riemannian manifolds. Let M be a smooth manifold. A Riemannian metric on
Mis afamily g = (9)mers of (positive definite) inner products g,, := (,),, on T’ M
for all m € M. Moreover the map m — g,, is assumed to be regular. Then we say
that (M, ¢) is a Riemannian manifold.

Letm € M and (U, ¢) be a chart containing m, the matrix G = (g;) € M(n, R) of
the scalar product ¢,, := (,),, in the basis of 7}, M is given by:

(14) ik = (0j; O -
As (,),, is a scalar product, G is invertible. We also denote

(15) g:=det(@)#£0 and G :=(¢g").
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Connexion on a manifold. A connexion on a manifold M is an operator D which
associates to any vectors fields X and Y a third vector field DxY on M such that, for
all X, Y, Z vector fields and for all regular function f : M — R,

(16) Dx(Y +Z)=DxY + DxZ,
(17) Dx(fY)=fDxY + X.)Y,
(18) ¢+— DY is linear on T, M for all m e M.

Levi-Civita connexion. From the fundamental theorem of Riemannian geo-
metry, there is a unique connection I, called Levi-Civita connection, on the tangent
bundle of a Riemannian manifold (M, ¢g) such that:

e [ is torsion-free, i.e. for all vectors fields X and Y on M, then

(19) I'sY —-I'yX =[X,Y];
e and /" preserves the Riemannian metric g, i.e., for all vector fields X, Y, Z,
(20) X9¥,2)=9I'xY,Z) +9(Y,'xZ).

Gradient. Let f : M — R be a regular function. The gradient of f, denoted by
grad (f) or Vf, is the vector field on M defined for any m € M as the unique vector
grad (f),, such that

Vée T M, (grad(f)n,<),, = E.Hm),
where (£.f)(m) is the derivative of f at m in the direction &.

Divergence. For X vector field on M, we define the function div (X) on M by
vme M, div(X)(m) .= Tr(— I':X), where & belongs to 7', M.

Laplacian. Let ' : M — R be a regular function. The Laplacian of f is the
function Af defined by:

(21) ¥me M,  Af, = divigrad(f),)m).

Hessian. Let f be a regular function on M. Then, for all m € M, the Hessian
of f at m is the bilinear form defined by:

(22) V&, &) € (T MP,  (Hess(f)n)(E1, &) == (I'e, Vi, &).

Rules for computations.
(23) grad(fh) = f grad(h) + h grad(f),
(24) div(X 4 Y) = div(X) + div(Y),
(25) div(fX) = fdiv(X) + (grad(f),X).
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Expressions in local coordinates. It can be proved (see [9] p. 4-5), that for
f: M — R regular, X regular vector field on M and for all m € M, then

(26) grad(f)m = Z gk"lﬁl fak
k=1 I=1
(27) div(X(m)),, = 1 Z 0. g)  if X = Z 7'0;.
\/g i=1 i=1
1 n n .
28 Af = — 0.(g" /g 8,.1).
(28) f 77 ; ; 9"V9o.f

2.2 - Integration on a compact manifold and Sobolev spaces

In the following, M is a compact connected oriented Riemannian manifold
without boundary. With the Riemann metric is associated an integration theory, the
measure d M being defined globally on M with the help of a partition of unity (see
[9], p. 5-6).

Then we have ([9] p. 6):

Proposition 2.1.

(29) VX : M — TM regqular, / div(X)dM = 0,
M

and

(30) Vh,f : M — R regular, / hAf + (grad(h), grad(f))dM = 0.
M

L?-spaces. A function f : M — Rismeasurable if, for any chart (U,®), f o & 'is
measurable. The space L?(M), constituted of the measurable functions f : M — R
such that [ |f *d M is finite, is a Hilbert space for the scalar product

M

(fs Wreomy = /fhdM~
M

Let X and Y be two regular vector fields. We define their scalar product by

(31) (X, Y)LZ(TM) = /(X, Y>dM
M

Then L*(TM) is defined as the completion for the associated norm of the set of
regular vector fields. It is a Hilbert space constituted of the vector fields whose
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components in the local basis of the tangent space are measurable and such that the
integral [ |X|*dM is finite.
M

Sobolev space H'(M). Let M be a compact Riemannian manifold of dimension 7
without boundary. If f € C(M) then f € L>(M). As M is compact, the set of com-
pactly supported C*°-functions on M is simply the set of C*°-functions on M and it is
dense in L2(M) ([2] p. 79).

We define on C*(M) the scalar product (.,.); in the following way:

Yf, f € C*(M), (f = (faf)LZ(M) + (Vf, Vf)LZ(TM)-

H'(M) is defined as the completion of C>(M) for the norm associated to (., .);.

Weak derivative. Let f € L?(M) be given. f admits a weak derivative in
L?(T M) if there exists a vector field ¢ € L?(T’M) such that, for any regular
vector field X,

(32) f diviX)dM = — [ (¢, X)dM.
/ f

M

Then we denote ¢ = Vf. Of course, if f € C1(M), then it coincides with the classical
gradient of f. H'(M) is also the set of functions in L2(M) having a weak derivative in
L?(T M). Tt is endowed with the scalar product (., .);.

Let us end this subsection by a general result (see [35] for its proof), that will be
useful for the proofs of maximum principles:

Proposition 2.2.  Let (U;, ®;)1<i<n be an atlas of M. Then f € H'(M) if and
only if, for all 1 <i < N, f o &;* € H{(®;(U))).

2.3 - The heat equation on a Riemannian manifold

The Laplace Beltrami operator in L2(M). f € L2(M) admits a weak Laplacian
in L2(M) if there exists ' € L*(M) such that, for any @ € C>®(M),

(F, ¢)L2(M) = (f, A@)Lz(M)

Then we denote F = Af. Of course, if f € C2(M), the weak Laplacian of f coincides
with the classical one.

Proposition 2.3. Let f € HY(M) admitting a weak Laplacian in L*(M).
Th@’n, fO’V all @ € Hl(M), (Af, ¢)L2(M) = —(Vf, v¢)L2(TM) .



362 PATRICK MARTINEZ, JACQUES TORT and JUDITH VANCOSTENOBLE [12]

The Laplace Beltrami operator is the unbounded operator in L?*(M) defined by
the domain D(4) := {u € H"(M) having a weak Laplacian in L*(M)} and the weak
Laplacian. Note that, as C*(M) C D(4), D(4) is dense in L?(M). For all
u,v € H{(M), we define a(u,v) := J (Vu,Vv)dM. Then we define an unbounded
operator in L2(M) by: M

D@A) = {u € H'(M) : w € H'(M)+— a(u,w) is C° for the norm ||.|| ;210 }

and for all u € D(A), v € HY(M), (Au, V)2 = —au, v). The operator (A, D(A))
coincides with the Laplace-Beltrami operator (4, D(A)). Moreover, (4, D(A)) is the
infinitesimal generator of an analytical semigroup.

The heat equation on a compact Riemannian manifold. We consider

{ut—Au—f 0,7) x M,

(33) wu(0) = ug M.

The interpolation space [D(A),LZ(M)]% is H'(M), (see [27, Prop. 21 p. 22]).

Theorem 2.1. Ifug € D(4) et f € HY(0,T; L*(M)), (33) has a unique classical
solution w € C([0, T1, D(A) N CL([0, T1; LA(M)).

If ug € H'(M) et f e L*0,T;L*(M)), (33) has a unique solution such that
w € L20,T,D(4)) N HY0, T; L2(M)).

Ifug € LAM) et f € L0, T; LA(M)), (33) has a unique weak solution such that
u € C([0,T]; L2(M)) N L0, T; HY(M)), i.e. for any v € H' (M),

d
" G(m0w) o+ A[ (Vuth, voyam = (fo.0) .
w(0) = ug.

Movreover, for all e > 0, u € L*(e, T; D(4)) N H(e, T; L2(M)).
Proof. Apply Prop. 3.3 p. 68, Thm. 3.1 p. 80 and Prop. 3.8 of [3]. O

In order to treat later the questions of inverse problems, we will need some more
regularity results for the time derivative of the solution:

Proposition 2.4. Let uy € D(A) and f € HY(0,T; L*(M)) be given. Let u be
the classical solution of (33) associated to uy and f. Then z := u; € L*(0, T; HY(M))
and z is the weak solution of

2t — A2 =f 0,7) x M,
2(0) = dug + £(0) M.
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For the proof, we refer for example to [38, Proposition 2.5]. Finally, we end this
section with a result concerning regular solutions (see [10] p. 139):

Theorem 2.2. Let uy € C°(M) and f € C*(0,T) x M) be given. Then (33)
has a unique reqular solution.

3 - Global Carleman estimates for the heat operator on a compact manifold without
boundary

In this section, we state and prove some global Carleman estimate for the heat
operator on a compact Riemannian manifold without boundary M with a locally
distributed observation in some non empty open set w of M.

3.1 - Global Carleman estimate
We define the heat operator on M:
vz € C([0, T1; D(Up) N CH([0, T, LA(M)), Pz :=z — Apz.

We denote Q% := (0,7) x M, Q%T :=(0,T) x w and we consider R >0, S > 0, y
satisfying Assumption 1.2. Then we introduce first 0 <7y <77 < T and
0:(0,T) — R, smooth, convex, such that

1
Z’ t S (Oa TO)
0t) = .
T—p te (T, D),
next
Vit,o) € Q% , p) =Wl —eV@  p(t 1) .= RSO,
and finally
(35) vit,2) € Q%L alt,x) = 0t)p(a).

And we prove the following

Theorem 3.1. Let w be such that Assumption 1.2 holds. There exists con-
stants C = C(T, To, Tl,w) > 0, R() = Ro(T, To, Tl,a)) > 0, S() = S()(T, To, Tl,co) >0
such that, for all S > Sy and all R > Rye*> V<, we have for all z € C([0, T1; D(4x0)) N
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C([0, TT; LA(M))
1
(36) //p?’e*zR”z2 + // pe 2Rz 4 //;e’ZR”zf
QO.T QOAT QO,T
M M M

<C He*R"PzHiZ(Qo_T)—k //pge’%"z2
M QS)T

The proof of Theorem 3.1 is classical. It follows combining the proof of the Carleman
estimate for the heat operator in a bounded domain of R" with the properties of the
operators divergence, gradient, laplacian on the manifold M. We refer to [38] for
detailed proofs, and we mention here the main properties and steps:

3.2 - The basic properties

The following property are basic:

Lemma 3.1. For any regular function h on M, one has:

(37) V(h?) = 2hVh,

(38) Ve = e"Vh,

(39) A(W?) = 2hAh + 2|V h]?.

(40) (V(|\VA[?), Vi) = 2Hess (h)(Vh, Vh).
Lemma 3.2. Forany w € C*(0,T) x M), one has:

(41) V(wy) = (Vw).

(42) Hess (w)(Vw, Vp) = Hess (w)(Vp, Vw).

Proof of Lemmas 3.1 and 3.2. The proofs are classical and derive from the
basic material of Chavel [9], and can be found in [38], lemmas 3.3.4-3.3.7, p. 128-132.
As an exercise, we prove (38): let m e M, (U, ¢) be a chart such that m € U and
&e T, M. Consider w : I — M a smooth curve with 0 € I, w(0) = m and «'(0) = ¢.
Then, if we set f = ¢, we have (using the definition of the gradient):

(Vf(m), &), = Em) = (f ow) (0) = (") (0) = ("*)(0)(h o ®)' (0) = "™ (h 0 ) (0)

and, on the other side, (Vi(m),¢&),, = (£.h)(m) = (h o ®)'(0). So, identifying the
two expressions, we get Ve = ¢"Vh, hence (38). The other proofs are in the
same spirit. O
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3.3 - The main steps to prove Theorem 3.1

First we note that it is sufficient to prove (36) for regular functions. Indeed we
have the following result (see the proof in [38]):

Lemma 3.3. Let u € C([0,T]; D(4)) N CY([0, T]; L?(M)) be given. Consider
(fi)n € DO, T) x M) converging to Pu in L*((0,T) x M) and (Uop)y C C*(M)
converging to ug € H'(M). We denote by u,, the regular solution (given in Theorem
2.2) of (33) associated to ug, and f,. Then we have

Uy —u in L0, T; LAM)), YV, — Vau in L20,T; LA(TM)),
and )y — e i L2(0, T; L2(M)).

3.3.1 - The decomposition of the weighted heat operator

So let z € C*°((0,T) x M)NC(0,T] x M) be given and let us prove that z sa-
tisfies (36). We set w := ze 7. Then we have

(43) (weRa)t — A(W@Rg) = P(weRU) = Pz.
We have (we”); = w;e™ + R0; pwe” and

Awe®?) = div(V(wel?)) = div(Vwe®?) + div(wV(e??))
= et + 2(V(w), ReR”Vo> + AR w.

Of course Vo = 0(t)Vp. And A(ef7) = div(V(e£)) = div(ROVper?). Hence
A(eR7) = RO Ap + (Vp, V(eR9))) = ROApe™ + R20%|Vp[*ef.

This allows us to consider P} and Py, as follows:

(44) Piw = ROpw — R**|Vp|*w — Mw,
(45) Prw = w; — ROApw — 2R0O(Vw, Vp),
so that

Prw+ Prw = e %Pz,
This implies that

- - _ 2
(46) ||PEWH22(Q%T)+ HPRw||iz(Q?\'AT)+2<P§w’ PRw>L2(Q?\}1T) = ||e RUPZHLZ(Q?\'AT)'
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3.3.2 - The expression of the scalar product

With some integrations by parts (see [38]), using Proposition 2.1 and the prop-
erties stated in Lemmas 3.1 and 3.2, we obtain

(47)  2(Pgw, Pruo) gy

= / (4R200,|Vp|* + ROAUp) — Rpby)uw?
QO.T
M

—4 / / R36®Hess (p)(Vp, Vp)u? — 4 / / ROHess (p)(Vw, V).

0,7 0.7
Qi Qi

The proof of Theorem 3.1 follows from suitable lower bounds of the terms appearing
in (47).

3.3.3 - A bound from below of the zero order term of the scalar product
The main property is the following:

Lemma 3.4. There exists C > 0 independent of R and S such that
(48) —4R%0° Hess (p)(Vp, Vp) > —CR3}S?Pe> 4+ R3S'0Pe*V |yt

Proof of Lemma 3.4. Since Vp = —SeS"Vy, we have
—Hess(p)(Vp, Vp) = —(I'vpVp, VD)
= —(I'_gpsvy, (— SV V), —SeS V)
= — (=8 I'y, (- Se¥Vy), —SeS V)
= — 826V (g, (— SeS'Vy), V)
= — S22V (—Se™ 'y, (Vy) + Vy.(— SeS)Vy, Vy)
= S2e2v (— SeS (g, (Vy), V) + Vip(— SeS)(Vy, w>).

Now choose m € M, w a smooth curve such that w(0) = m, «'(0) = V. Then

d d
_ Syy _ Sy(w®)y — _ Q2 ,Sy(m)
Vy.(— Se™) _dt/t:o( Se ) S°e o (w(w(?)))

= — S2SVITy .y = —SzeS"’(m)<Vl//, V).
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Hence
—Hess(p)(Vp, Vp) = S22V (Ses"’<FW(Vy/), V) + SzeSW|Vt//|4).

Hence
— R3*Hess (p)(Vp, Vp) = R3S30Pe>SV (v (Vy), V) + S|Vl//|4).

Therefore, there exists C > 0 independent of R and S such that
—4R*0PHess (p)(Vp, Vp) > — CR3S*03e®Y + R3S*0Pe>S |V,

Hence (48) is proved. O

3.3.4 - A bound from below of the first order term of the scalar product
Now we turn to the last term of (47), and we prove the following

Lemma 3.5. There exists C > 0 independent of R and S such that

(49) —4 / / ROHess (p)(Vw, V) > / / RS0eS |V
Qu e
_ gHPngiZ(Q% -C / / R3S30Pe3Sv 2.
Qi
Proof of Lemma 3.5. We have
Hess(p)(¢, &) = (IeVp, &)

= (=8¢ Vy), &) = (=Se™ T'«(Vy) + E.(~ Se™)Vy, &)
= —SeV (I':(Vy), &) + (—=S%V (Vy, &) Viy, &)
= —SeSV(I:(Vy), &) — S2eSV (Vy, &)

Hence, there exists ¢; such that
— ROHess (p)(Vw, V) = RS0 (I'v,(Vy), V) + RS20¢5” (Vy, Vaw)?

> — c1RSOS |Vw[® + RS?0e5 (Vy, Vw)?,

(50) —ROHess (p)(Vw, V) > — ¢; RS0 | V|,
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On the other hand,
(RSO w, Plw) = (RSO w, ROpw — R26%|Vp[*w — Aw)
= / / RS0 (ROp — R2S20Pe™V |y [P + / / V(RS0 w), V)
Qi Qi
_ / RS0 (ROp — RES2PeSY Wy P
Qi
+ / / RS0eS |Vw|* + RSOV w(Vy, Vi),
QA

hence

/ / RS0 |Vw|* = (RSO w, Pw)

Q
B / RS06™ (ROp — R*S* e |Vy [ y?
Qr
—/ RS0eS"w(Vy, V)
QA
1 1
<53 ||P,;w||§2<Q?.MT) +C / / R3S} PSS + / / éRseeSWWwF.
QOAT QOAT
M M
Hence
4 1 W
(51) // RS0 |Vw|2 < 3 ”PEwHiZ(Q?\}') +2C // R3SB30Pe3V 2.
Qi Q7

From (50) and (51), we deduce that

_ / / ROHess (p)(Veo, V) > | Pisl gur, — 2Ccr / / RIS
% @

1+c¢
S

> / RS0eS | Vw|* —

0,7
@u

2
HPEWHLZ(Q%T)

—20(1 + ¢1) / / R3S} PSvu?,
Q.

hence (49) is proved. O
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3.3.5 - A first Carleman estimate

Now we are in position to obtain a first Carleman estimate: using (46), (47), (48),
(49), and classical estimates of the type |6;| < Co?, [0y < C?, we obtain that

Rep2
e K PZHLZ(Q?"/IT)
= ||P§wHi2(Q?\’4T)+HPIEwHiZ(Q&‘AT)—i—2<P}+3w7 P§W>L2(Q‘}AT)
2 e
> HP?%W‘|L2(Q°A'4T>+HPRWHL2(Q?\~AT>
+ / (4R200,[Vp[2 + ROAAp) — RpOu?
o
—4 / / R30° Hess (p)(Vp, Vp)u?
QO‘\.AT
— 4// ROHess (p)(Vw, Vw)
QO‘\.AT

2 ||P$w|’iz(Q?\}')+||PI_Ew||iZ(Q%

+ / (4R200,|Vp|* + ROAAp) — Rplyw?

QA
+ / / (- CRIS*Pe + RIS PV vyt u?
Q5
y C 78
+ / RS0 [Vul? — < | Pola gor, — C / / RAS¥ P,
QO.T QO‘T
M M

Hence, for S large enough,
// R3840363S'/’|V1//|4w2 + // RSO@SV/|VU)|2
QO\i{' QO\,AT

1 2 — 112
+5 I1Prewllpegury PRl 2oy

T
+ / / (4R200,|V p|* + ROA(p) — RpOy)w? — C / / R3S30Pe*Svy?
Qo\/{ 0 M\w
< [le R Pe|[2y qur,+C / / RSP,
: Q'
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Moreover, assuming that Assumption 1.2 is satisfied, there exists Cy > 0 such that
[V(m)y| > Cy for all m € M \ w. Thus

T
/ / R33393e33wgg / / RSP |V [fu?.

0 M\ Q?\;{T
We deduce, for S large enough,
3Q8 3,35y S 4 Sy 2
R3S30Pe (1 +51y] )wz + [ RS0 |V
QA QA

1 2 Y
+§ ||PEWHL2(Q?-MT)+HPRWHLZ(Q?J)

+ / / (4R200,|Vp|* + ROA(Up) — RpOy)w?
QU.T
M
< ||9_RJPZ||iZ(QO.T)+C // R3S30Pe3Svu?.
M QgT

Finally, using the properties of the function 0 and R > Roe*SI¥l~ we get

(52) / / RSP (1 +%Vz//|4)w2+ / RS06S |Vau?
Q7 @

1 2 — 112
+5 1Pl g+ Prow oy

< ”e_RUPz||iZ(QO-T)+C // R38393635V,w2.
M
Q"

Ro

Going back to z = e*“w, we have

(53) // R3S3(PeSv (1 + % \Vl//|4) e 2Ro2 4 / RS0 e 27|z ?
Q% Q7
1 9 -
+§ |‘PI+BWHL2(Q?\'AT)+HPRW|‘L2(Q3~AT)

2
< C'He’R”Pz||L2(Qo.T)+ C’ // R3S3(PePSv e 2R02,
M
QO.T
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3.3.6 - End of the proof of Theorem 3.1

To complete the proof of Theorem 3.1, we only need to estimate z;. First we es-
timate wy, using Prw: we have

wy = Prw + ROApw + 2R0O(Vw, Vp) = Prw — p(dy + S|V Pyw — 2p(Vw, V),

Hence

H\fl\7C||7||+CSH\TWII+CII\WVWII

Using (52), we obtain that
S 1) By 2 1,
64) [ (1519w ) o+ ([ vl + ] S
p
& & &

2 1,,._ 2
+§ ||PIJ5w’|L2(ij)+§ ||PRW"L2(Q?J)
< CHe‘R“Pz{Ez(Qo.T)—i—C / / RPSPPePSvut.
M
Q'

Finally, going back to z = ef7w, we have

55 // 1_|_ |Vx//\ 72Rﬂp3z2+// —2Ra |VZ| _|_// 72R0

e
P g5 1Pl
o I R L2@H ™ o 117 R™IL2@Y
< CHe_RaPZHiZ(QO‘T)—i_C // R3S303€38V/6_2R022.
M QS)T
This gives (36) and completes the proof of Theorem 3.1. .

4 - Proof of Proposition 1.1

In this section, we study the validity of the geometrical Assumption 1.2.

4.1 - The case of the sphere S

Let us prove that Assumption 1.2 is satisfied in the case of the sphere S2.
Consider w.: a non-empty open domain of the sphere. Choose N € ., that will
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play the role of the North pole. Choose S € w,S # N. Consider a small neigh-
borhood wy of N included in w, and a small neighborhood wg of S included in w.
such that oy Nwg = 0.

Now consider n the stereographic projection of pole N:

m:SE\ {N} — RZ

Then Q, := n(S? \ wy) is a bounded domain of R2, n(wg) is an open subdomain of
Q.. The classical geometrical lemma of Fursikov-Imanuvilov [18] (see also [7])

ensures that there exists
v, Qr— R, y—yy)

smooth such that
Vy, () =0 =y < nlwy).

Then consider
pe  SF\ oy — R, ye@) =y, ().

Let us prove that
Vl/lﬁz(ﬂ?) =0 = x€ws.

Indeed, fix x € Sz\cuN and consider any ¢ € T,S%, and take a smooth curve
y: T — S% 9(0) = x, y'(0) = &. Then

(Vo @), &) = Epa)@) = O‘fmo (s (O = jt/to (D).
Denote
Pl = RE 9,(0) = ().
Then

(Vyg(), &) = %/t_o W () = Vi (n()) - 7,(0).

Since y7(0) can be taken arbitrary in IR?, we obtain that
Vye@) =0 = Vy, (1) =0,

which implies 7(x) € n(ws), hence x € wgs. Then it is sufficient to extend y.: to S2,
This can be done, it can bring new zeros of V., but inside wy, hence inside ...
This proves that Assumption 1.2 is satisfied in the case of the sphere S2. O

4.2 - The case of a simply connected oriented manifold of dimension 2

Assume that M is simply connected, and still compact, oriented, of dimension
2 and without boundary. Then the celebrated theorem of uniformisation of
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Riemann [1, 40] implies that there exists a C!-diffeomorphism between M and
the sphere S%. We denote it

D:M— S m— d(m).
Consider also a (small) non-empty open subdomain w,, of M, and denote
wg = D).
Then consider y» constructed in the previous section, that satisfies
V@) =0 = xcoe,

and
Yy M= Ry (m) =y (Pim)).

Then let us prove that
Vyyuim =0 = meoy.

Indeed, fix m € M and consider any ¢ € T,, M, y: I — M such that y(0) = m,
/(0) = &. Then

(T, €)= i) = 5o a0 = G5 @GN,
Denote
e I — 8% ye®) = d().
Then
(Ta). s = W00 = (T @), o 0)

Since yéz(O) may describe all the tangent directions at &(m), we obtain that

which implies @(m) € we = P(wp), hence m € wyy. This completes the proof of
Proposition 1.1. O

5 - Preliminary study of the Sellers model on a manifold
5.1 - Local existence of classical solutions

In order to apply the theory in [28], we need to rewrite (1) as an evolution equation
in L2(M). We recall that (4, D(4)) = (A, D(A)) defined in subsection 2.3. The natural
energy space is H'(M) and the bilinear form a is H(M)-L?(M) coercive, i.e.

Jo > 0,36 € R, Yo € H' (M), a@,v) + Bl[v|[r20 = 2lv]7n000-
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To rewrite (1) as an evolution equation in L*(M), it remains to check that the
second member of the equation takes its values in L?(M). So we define G by

G.{[O,T]XHI(M) — LA(M)
' tu) — r@)qBuw) — ewyulul.

If G is well-defined, then problem (1) on [0, '] is equivalent to the evolution equation
in L3(M)

(56) {ut(t) +Au@) = G, u(®)), t<[0,T],

w(0) = uyg.

We prove

Lemma 5.1. G is well defined on [0,T] x H'(M) with values in L*(M).
Moreover, G satisfies

o Vt €[0,T],VR > 0,3C > 0,Vuy,u2 € Bria(0, R),
(57) 1G(t,u1) — G u)l 2y < Cllun — | g ugy-
e VR >0,30¢€(0,1),3C > 0,Yu € Bia(0,R),Vs,t € [0,7T1],

(58) Gt ) — G(s, )|z upy < Clt — 51"
Proof. For the proof, we will need the following result (see [37, p. 14]):

Lemma 5.2. Forall q € [1,+ o0), HY(M) C LI(M) with continuous embed-
ding .

Let us first prove that G is well defined on [0, 7 x H'(M), with values in L2(M).
We set Q@ = rq and Q1 = ||QHL°<(]R><I)' Forte[0,T],u € Hl(./\/l), we write

1G]y = / Ralt, 1) — Rew)f? < 2 / Q.2 pu)? + 2 / e
I M

M

2 2 o2 8
< 2Q%||ﬁ\|Lx(JR) + 2|lell 7wy / ub < 2Q?C||ﬁ||L0¢(JR) + Cllullgn gy
M

where we used Lemma 5.2 (with C = [ 1dM < + o0).
M
Next, we prove that (57) is satisfied. Let ¢t €[0,7], R >0 and u;, ug in

BHI(M)(O? R). Then
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2
|Gt 1) — Gt up)|[F20np = / ’Q(t, ) (B(u1) — Pu2)) + Re(u1) — Re(uz)
M

< 20208 By / jy — a? + 2 / Reun) — Rewn)?
M M

211 ol 12
< 2QU08 17y

U1 7u2||%,+2/ 1Reo(ur) — Re(uz)[>.
M

To conclude the proof of (57), it remains to show

(59) [ 1Res) = R P < o~
M

for some C > 0. We compute

(60) / [Re(u1) — Re(uz)” < 3 / le(uy) — e(uz)*|us [*
M M
2
+3 / e(u)?|ur — upf*|un|® + 3 / s(uz)zluzlz(lml3 — qulg) :
M M

So it remains to estimate the three terms in the right hand side of the above in-
equality. From the assumptions on ¢ (Assumption 1.1), we have:

2 8 2 2 8
/Ie(u1)—6(u2)l ua|” < &7 roll2en — w2l e a2 s 0

M

2 2 6 2 2 6
/ )ty — o Pl < [Jel2 o lloer — w2 cugp e[Sz ry
M

and

2
/ s(uz)uzl (Jur [P — |uzl”)
M

2 2 2 2 2\ 2
< [lellzxr) / (2| (Jux| — [oaz]) ™ (Jua]™ + Joea [Juz] + [uz])
M

1/2
2 2 4 2 2\4
< |8||L>o(t[a)||ulu2||L4(M)( [ el ]+ )) .
M

Using Lemma 5.2 and u1,u2 € Byiu)(0, ), we end the proof of (57).
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Finally, we prove condition (58): for all ¢,s € [0, T,

Gt ) — Gls, )| Zapgy = / I1(t) — 7(8) Pg(@Pplue)?
M

A2 2 2 2
< Ol el gz~ 1Bz~ 1t = 817

where C = J 1dM < + co. This implies (58). O
M
We are now ready to deduce a result of local existence:

Theorem 5.1. For all u® € D(A), there exists T*(u°) € (0,4 o] such that, for
all 0<T <T@, problem (56) has a unique solution u € C([0,T], D(A)N
Cl(0, T, LA(M)). Moreover, if T*(u®) < + oo, then || g1 g — + 00 as t— T*(u°).

Proof. Since (4,D(4)) generates an analytical semigroup and since the
interpolation space [D(A), L2(M)]; 12 1s H'(M), Lemma 5.1 allows to apply
[28, Theorem 7.1.2] to (56). So there exists a unique weak solution defined until
a maximal time 7*(u"). Then [28, Proposition 7.1.8] implies that, if 7*(u°) < + oo
then [|u(®)||z () — + 00 as t — T*(u’). Moreover, since Au’ + G(0,u") € L*(M),
[28, Proposition 7.1.10] ensures that, for all T < T*u"), u € C(0,T],D(4)N
cl([0, T, LA(M)). O

5.2 - Weak maximum principle

First we prove

Lemma 5.3. Letve HY (M) and M > 0. Then (uw —M)" :=sup(u — M,0) €
H'(M) and (u + M)~ :=sup (— (u + M),0) € H'(M). Moreover

grad(w)(m) if w(m) > M
1 _wnt _
. gradie =470 { otherwise
- —gradw)(m) if wim) < —-M
62 dw + M —
- gradiu 4o { otherwise

Proof. Inthecontextofamanifold, Lemma 5.3 replaces [39, Lemma6.1] thatis
the classical result when working in an open subset of R". Consider (U;, ®;);1<;<n an
atlas of M. Let us first prove that: V1 < i < N, Vf € L*(M),

(63) sup (f,0) o qﬁi‘l =sup(fo @;1,0) on &;(U;).
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Indeed, let y € ®;(U;) be such that (f o ®; 1)(y) > 0. Then f(x) >0 with «=
@, (y) € U;. Consequently,

sup (f o @;1,0)(y) = (f o &; )(y) = f(x) = (sup (f,0) o &; (@)

The reasoning is similar when (f o @; 1)(y) < 0. This proves (63).

Let us now prove Lemma 5.3. From Proposition 2.2, it suffices to show that, for all
1<i<N,(w—M" od;! c H(®;(U)). But u — M € H'(M), so, for all 1 < i < N,
(u — M) o @;1 € H(®;(Uy)). Using [12, Proposition 6 p. 934], ((u — M) o &;1)"
HY(®,;(U,)). But, from (63),

(w — M)* ocbi‘1 = ((u—M)o¢{1)+.
So we proved that (u —M)" :=sup(u — M,0) € H'(M). Moreover, from [12,
Prop. 6, p. 934], we know that
Vo &Ny if W@ (y) > M,

V(u —M)" o @ 1) y) = { .
0 otherwise.

From the local definition of the weak gradient (see the proof of Proposition 2.2),

SN glJi(((u ~M)yod;HYod)g, if uim)> M,
grad(u — M)"(m) = 1= = O
0 otherwise.

We immediately deduce (61). The proof of (62) is similar. O

Then we prove the following maximum principle:

Theorem 5.2. Letu’ € D(4) N L>(M) and T*(u°) defined by Theorem 5.1. We
denote

1/4
(64) M= max{”uoHL " (anmwran(R)nﬂan(m) : }

Emin

Then the solution w of problem (1) satisfies ||wl| 1o r-woyxprn < M-

Proof. Theorem 5.2 replaces [39, theorem 3.3] obtained in case of the 1-di-
mensional Sellers model. The proof (based on Lemma 5.3) is similar so we omit it
here. It can also be found in [38]. O

From Theorem 5.2, we deduce that, for allu® € D(A) N L>*(M), ||ul|2(,) does not
blow up as t — T*(u"). However, this is not sufficient to ensure the existence of a
global classical solution since we did not prove that ||u| 51,y does not blow up. Before
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showing this, we begin by proving some regularity result on the time derivative of
the solution.

5.3 - Regularity of the time derivative of the solution of (1)

We work with initial conditions defined in
(65) U = {u’ € D(Up) NL¥(M) : Au’ € L*(M)}.
We denote:

WO, T; H' (M), H(M))):= {ve L*0, T; H'(M)): v, € L*(0, T; (H (M)))}.

Then we prove

Theorem 5.3. Let u® € U and u the corresponding solution of (1). Let T be

such that 0 < T < T*u®) (where T*®) is defined in Theorem 5.1). Then z := u;
belongs to L*(0, T; H'(M)) and is solution of the following variational problem:

z € W, T; H-(M), (H (M),
(66) Vw € H'(M),  (z(t), w) + b(Et, 2(8), w) = (T’(t)q/f(u(t)), W)
2(0) = — Au® + G(0,u?),

)

LA(M)

where b : [0, T] x H' (M) x H (M) — R is the time-dependent bilinear form:

b(t,v,w) = / (grad(v), grad(w))dM + / 7(t, ) vwd M,
M M

with 7(t, x) == Ro(u(t, ) — rt)q)f (u(t, x)).

Proof. Consider «° €. Multiplying the equation satisfied by u by
w € H'(M), we obtain, thanks to Proposition 2.3 : V¢ € [0, T,

(0.),,  + (V®.V0), - = (rOapd) - @), v)

2TM) LEM)

In order to prove that z € L?(0, T; H'(M)), we use the method of differential quo-
tients (see e.g. [26]). Let 0 <d < g, te (0,T —0)and —J < s <d. We observe that

©7) { wt+8) — At +s) = QU+ 8)pu(t + ) — Re(ut + s)),

wy(t) — Au(t) = QWOPu®) — Re(u(?)).
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Then we define, for allt € (5, T — 9),
S
Forallt € (6,T — 9), u*(t) € H' (M) and (67) implies

ou®

D oy - QDB+ 5) QB | Re(wlt) ~Rulout +5)

(68) ot s S

Multiplying (68) by u®(t), using Proposition 2.3 and integrating over (6,7 — J),
we get

T—-0
1, . ; . 1, .
(69) 3 (T — 5)||i2( w T / (Vu(é)(t), Vu(a>(t))L2<TM)dt =3 Hu(a)(é)”iz( M
5
-5
n / [Q(t + s)pult + ;)) — Q)S(u(?)) L Re(u(t)) — fe(u(t +5)) WD),
5 M
With computations identical to [39, equations (6.11) and (6.12), p. 697], we have
-9
(70) / / QU + s)pult + 5)) — Q(t)ﬁ(u(t))us ®
S
5 M

= 2 2
< CT| <l e no 17 12 iy
s

T—
1
+ (510 + 1@ srallB i) [ [ 0P
o M

where C = [ 1dM and
M

T—0 T—0
(71) / / Re(u(ta «%')) - ?e(u(t +S, 90)) ’I/Lé(t) S C / / |’M/(s)(t, .%')|2
5 M 5 M
Thanks to (70) and (71), (69) becomes
T—o T—0

S—

. 1. .
VU O Z 20t < 51142 O)F2e00 + C +C / / [ (t, ) Pd Mdt.
J M

As u € CL([0, T1; LA(M)), we obtain
T—0

)12 1 2 2
/ VU O[2randt < 5 SUD [[utllzang + €+ CT sup [Juelzap-
5 te[0,7] te[0,7]
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T-6
Consequently, the quantity [ ||Vu(s)(t)||iz<T Apdt is bounded by a constant in-

dependent of s. So, there existg a sub-sequence, still denoted by (u®);, that weakly
converges to some v € L2(6,T — 5; H(M)) as s — 0. But L2, T — 6; H{(M)) is
continuously embedded in L2(6, T — J; L?(M)). So the sub-sequence (u®), weakly
converges to v in L?(5, T — 6; L2(M)), (see e.g. [5, Theorem II1.9, p. 39]). But, from
[8, Corollary 1.4.39, p. 15], (u®), strongly converges to u; in L?(6,T — ; LA(M)).
Hence u; = v € L6, T — 0; H'(M)). Moreover,

Nt 205 75000y < 1M Sulg 14| 26 7580t
8*}
<1 2 4+ C+CT 2
<5 sup llut]|Z20 00 + C + sup  [[2t|2 -
t€[0,7] #€[0,7]

As the right hand side above does not depend on J, we may let J tends to 0 and we
obtain that z € L0, T; HY(M)). O

Corollary 5.1. Let u’cU and 0<T < T*w®) with T*(u°) defined by
Theorem 5.1. Then the solution z of (66) satisfies

1210, ) < el DTN,

with N := max { | — Aul + G(0, uO)HLm(M), ”V,HLOC(R)H(]”LX(M)||ﬁHL°°(WR)}'

Proof. This result replaces [39, Corollary 3.1] obtained in the case of the 1-
dimensional Sellers model. The proof (that uses Lemma 5.3) is similar to the proof of
[39, Corollary 3.1] for dimension 1. The main difficulty in the proof relies on the lack
of coercivity of the bilinear form b so one has to introduce some auxiliary variational
problem associated to some coercive bilinear form b;. We omit the proof here. It can
also be found in [38]. O

5.4 - Global existence of the solutions of (1)

Theorem 5.4. Let u® € U. Then the solution u of (1) is defined on [0, + co),
t.e. T*(u) = 4 oco. Consequently, Theorem 5.2 and Corollary 5.1 hold true with
T*(ud) = + .

Proof. Theorem 5.4 replaces [39, Theorem 3.5] obtained in the 1-dimensional
case and it can be proved in a similar way (except the fact that computations are now
on a manifold). So the proof (that can be found in [38]) is omitted. O
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6 - Proof of Theorem 1.1

STEP 1: Reduction to some non standard linear inverse source problem.
Let T > 0, uy,us € C([0,T]; D(4)) ﬂCl([O, T]; L*(M)) be the solutions of (1) cor-
responding respectively to ¢; with the initial condition #?, and to g with the
initial condition ug. We introduce w := u; — ug. Then one can prove that w e
C([0,T); D(4)) N C* ([0, T}; LA(M)) solves

) {thwH*JrHJrH (t,x) € (0,T) x M,
w(0,2) = ud — ud xeM,

with

(73) H" := r(q1 — q2)B(w),

(74) H = rga(f(ur) — B(uz2)),

(75) H = e(up)usz|us® — elur)urus[*.

As rand f are bounded from below (see Assumption 1.1), it suffices to estimate H* to
deduce an estimate of g; — ¢z in L(M). So we reduced the problem to the de-
termination of H* in the above linear problem (72).

STEP 2: Condition satisfied by h;. Let us recall that in inverse source pro-
blems, the source term has to satisfy some condition otherwise uniqueness may be
false. Motivated by [22], we introduce the following condition: given Cy > 0, we
consider the condition

(76) ‘g};(t,x) < Co|W(T", x)| for almost all (¢,x) € (0,T) x M,

and we define the set of Cy-admissible source terms:
G(Co) := {h € H'0,T; L*(M))|h satisfies (76)}.

Coming back to (72), we prove that the part H* defined in (73) (and which is the part
we wish to identify) is admissible (with some explicit Cy):

Lemma 6.1. The function H* = r(q1 — q2)p(u1) belongs to G(Cy) with Cy > 0
defined by

1l 1Bl iy I iy ] ey 2 0D

C . )
0 ﬁminr( T/)

where 7y is given in Theorem 5.3 with u’ = u‘l) and N1 is given in Corollary 5.1 with

0,0
w =uy.
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Proof. Theproofisbased on Corollary 5.1. Asitisidentical to the similar result
established in [39, Lemma 7.1], we omit it. O

STEP 3: Application of global Carleman estimates and link with some more
standard inverse source problem. In the following computations, C stands for
generic constant depending on 7T, ty, 7", B, ® and the parameters in Assumption 1.1.
Let us introduce Z := wy = u1; — u2; where w solves (72). Using Proposition 2.4,
Z € L2(to, T; D(4)) N H (ty, T; L*(M)) and satisfies

(77) Zy—AZ =H; +H+H; (t,x) € (ty, T) x M.

Then we apply the Carleman estimate (36) to Z on the time interval (fy, T'), with
0 : (t), T) — R’, smooth, convex, such that

1 to+ 1"
te (t, 0T
t—t 6(0’ 2 )

1 T+T
- t€<L7T)7

o) =
T—t 2
and 0 attains its global minimum at 7”. And we obtain

T T T
1
(18) Ip:= / / pP7Pe R / / p|VZ[Pe 2 4 / / /—)Z?e‘ZR“

to M ty M ty M

T
—Ro 2 3 —2Ro
<C||le* Pz||L2((tmT)XM)+//p J20—2R

tow

Inequality (78) is the first step when dealing with standard inverse source pro-
blem, see [22]. Here the problem consists is retrieving only the part H* in the

~ T ~
source term H* + H + H. First we estimate [ [ (H? + H?)e 22°d Md¢t in the left
hand side of (78): ty M

Lemma 6.2. There exists a constant C > 0 such that

T T
(79) / / (H? + H)e k7 < C( / ZPe 2R 4 / w(T’)2>.
M M M

to
Proof. The proof is similar to the proof of [39, lemma 5.2] (using Theorem 5.2
and Corollary 5.1 instead of their analogous 1-dimensional forms) and can also be
found in [38]. O

to
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Coming back to (78), we deduce:

T T T
(80) Iy §C<// (Hf)ze’zR"—k//Zze*ZR"—k /w(T’)2+//p3Z262R“>.
M M M f

to to )

Forallt € (&), T), 1 < CH(t), so that, for R large,

T 1 T
C// Z2672Ra Sé// p3z2672Ra.
to M to M

Hence, there exists B; > 0 and C > 0 such that: VR > Ry,

T T
(81) nec| [ [apers [uwps [ [pzew]
to M

M tow

=l

Let us note that, without the term f w(T’ )2d/\/l, inequality (81) would be the kind of

M
inequality that one would obtain when dealing with the standard inverse source
problem that consists in retrieving H* in the equation wy — 4w = H*. Let us observe
that this extra term satisfies

/ (' = [[r = ua)(T", M F2p) < lar — u)(T, [y
M
Consequently, it can easily be estimated by the right hand side of (12).

STEP 4: Estimate from above of I;. Let us prove that there exists C > 0
such that

1 )
G Sclﬁ [ @ T s+l 1 |
M

Indeed, there exists pji, >0 such that p(x) > p, for all & € M, hence
pPe2Rot) < R3S3e3SI i (t)Pe~2RPnind® | and since O(t)>e 2EPnin?® — 0 as t — t; and
ast — T, there exists C such that

T
372 2R 2 2
///7 Z7e = < C”Z”L?((tO,T)xw) = CHwt”L?((to,T)xw)'

ty o

Finally, the proof of (82) follows from
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Lemma 6.3. There exists C > 0 such that

T
1 ,
83 H e 2Rogmdt < C— / HA(T"))?e 2R Mg \.
(83) /Z(t) _*/EM(())
0

Proof. Lemma 6.3 is classical in inverse source problems. We refer to [22] for
its proof. Indeed, the fact that one works on a manifold does not change the rea-
soning. The key point is the form of the weight function 6. O

STEP 5: Estimate from below of I,. Let us show that there exists
C = C(ty,T) > 0 such that

(84) / Z(T'?e 2R < CI,.
M

)2e—2Ro(t.)

Indeed, since Z(t, x — 0ast — tp for a.a. x € M, we can write

T

(85) /Z(T’)ZeszU(T/) :/% (/Z(t,.’)ﬁ)ZQZRU(t’x)>
M M

to
”
- / / [ZZZt—2RatZ2 ¢ 2R
ty M

First, we estimate

T T 7 _Ro
(86) / / 2770 2R — / / 2@26%%
ty M ty M ’

T/
2 ,—2Ro
g/ / <pZ262R”—|—Zte) < CI,.
t() M p

Next we estimate the other term of (85): since |6;(t)| < CH(t)S, we have

T T
(87) / / OR|o,| 7227 < C / / P72k < O,
to M ty M

Finally, (85), (86) and (87) imply (84).



[35] LIPSCHITZ STABILITY FOR AN INVERSE PROBLEM FOR THE 2D-SELLERS ETC. 385

STEP 6: Conclusion. Using (84), (81) and next (82), there exists C > 0 such that
(88) / Z(T" e 2R < U / H (T2 2R
+ C”w(T,)HLZ(M) + C”thLZ((tO,T)xw)
Let us recall that
Z(T") = w(T") = 4w(T") + H*(T") + H(T') + H(T"),
hence

/H*(T/)ZeszO'(T) < C(/ Z(T/)Z 72R0‘(T/ / |A’M)(T/)‘2 —2Ra(T")

M
n / H(T'2e2RAT) | / T e—2Ra(T’)>.
Applying (88), we get
/ H (T P70 < c( / H* (e 2T ol oy myean + 190
n / H(T'2e2RAT) | / T 6—2Ra(T’)>.
Choosing R large enough so that C/vR = 1/2, we get
(89) %/H*(T’)zesz”(Tl) < C('lthiz((tO,T)xw) + ”w(T/)HZD(A)

M

+ / H(T/)Ze—ZRzT(T’) + / I:I(T/)Ze—ZRa(T’)> )
Let us now estimate the two last terms of the right hand side of (89). First, we recall
that |H| = [rg2(f(u1) — Bu2))| < ||7l|wyBIIB || (o [t1 — 2| Therefore

(90) / H(T e 2R < ¢ / WP 2T < Clan(T) Eopg.

Next, we write
H| = | (e(uz) — e(ul))u2|uz|3 + ey g — up)|ug| + 8(u1)u1(\%2|3 - |%1|3)’
4 3
< Hg/HLm(H)WZ — uzl|uz|” + ngLm(H)WZ =y |[uz

— |u1||(|u2\2 + |ugus| + |u1|2).

+ [lell e ery
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By Theorem 5.2, for ¢ = 1,2, |\ui||Lx<(0’T)XM>§ C. Hence,
|H| < Clug — uq] +C||u2| - |u1|| < Clug — uq].
We deduce

(91) / H(T"Pe 2R < Clla(T")7 200-
M

Finally, putting (90) and (91) into (89), we get

[ @R <l e + 0T
M

On the other hand, R being now fixed, there exists some C,,;, > 0 such that
e 2o > ¢, . > 0. Hence

/ H(TPe 7 MdM = / r(t7)q1(@) — g2 Blan (T')Pe 2 d M
M

M
2 2
> Cminﬁzinﬁminllql - qZHLZ(M)‘

It follows
2 2 2
g1 — (IZHLZ(M) < C[Hwt”Lz((to,T)xw) + ”w(T,)HD(A)]

This concludes the proof of Theorem 1.1. O

And (13) follows then immediately from the Carleman estimate of Theorem 3.1
and the stability estimate (12).
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