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Singular perturbation approach
to Legendre type operators

Abstract. Let 2 be a bounded domain in RY with compact smooth boundary
(N € N). Then this paper is concerned with the nonnegative selfadjointness in
L2(Q) of the maximal realization T» of N-dimensional second-order differential
operators in divergence form with diffusion coefficients vanishing on the boundary
I = 0Q. The operators may be called Legendre type operators over Q. The key to
the proof is a singular perturbation argument developed in [9]. In particular, the
resolvent of T} is given as the uniform limit of (£ +n~1( — 4) + ) lasn — oo, for
every & > 0, where — 4 is the Neumann-Laplacian in L(Q). It should be noted that
if N=1 then (E+n 1(—A)+ Tp)_1 converges strongly to (£ + Tp)_1 in L*(D),
where T}, is the one-dimensional analog constructed by Campiti, Metafune and
Pallara [2].
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1 - Introduction

Let Q be a bounded domain in RY with compact smooth boundary I" = 9Q. Let
¢ € C3(Q), with ¢ > 0 on Q and ¢ = 0 on I". Then the operator
8u}

(11) (Tae) = ~div g Vue) = 51 ¢ 5
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in L2(Q) with its maximal domain
(1.2) D(Ts) = {u € H(Q); $Vu € HYQV}

may be called a Legendre type operator. Since 7% is (densely defined and) sym-
metric, it follows that 7% is closable in L?(Q2). Moreover, it is not so difficult to prove
the essential selfadjointness of 7% in L*(Q) (see, e.g., Okazawa [9, Section 5.3]).
The purpose of this short note is to show that 7' itself is m-accretive (and hence
selfadjoint) in L?(2) under the following two conditions on the coefficient ¢ € C2(Q):

(i) 9>0onQandp=00n [}
(ii) 0¢/dv < 0 on I', with non-positivity of the Hessian matrix of ¢ on Q:

(1.3) f: 7 @)&E <0 Yee VEeRY
. j’kzl ax]awk ] kf ) .

Actually, T is implicitly obtained as the uniform-resolvent limit of the approximate
sequence {n 1S + T»}:

(1.4) (Tz+O7" = lim (n'S+To+¢) 7 VE>0,
with rate of convergence:
[(Te+ ) = (n'S+Te+&) Y| =03 as n— o,
where S is the so-called Neumann-Laplacian:
S:=—A with D(S):= {u € H¥(Q); du/dv=v-Vu =0 on I'}
satisfying the domain inclusion
D(S) ¢ D(T») C D(S'?) = HY(Q).

In other words, the domain of degenerate elliptic operator T is completely char-
acterized as in (1.2). In view of (1.2) n 1S is regarded as a singular perturbation with
respect to T because

D 'S +Ty) =D(S) c D(Ty) VnmeN

(see Kato [7] for singular perturbation after the publication of the book [6]). Besides,
(1.4) is equivalent to the following condition:

(1.5) YueDTs) 3{v,} € DWO); v, — u, m7IS + To)v, — Tou (n — o).

That is, the Neumann boundary condition vanishes in the limit as n — oc.
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Now let 1 < p < 0o (p # 2). Then it is desirable to develop the LP-theory for
(Tyw)(@) := —divi¢(@)Vu(x)] with D(T)) := {u € W(Q); ¢ Vu € W&’p @}

or more general degenerate elliptic operators. About twenty years ago the one-di-
mensional case of T), is settled by Campiti, Metafune and Pallara [2]. It should be
noted that some related problems are recently dealt with by Fornaro, Metafune,
Pallara, Priiss and Schnaubelt in [3] and [5]. In particular, the interplay between
diffusion and drift terms is discussed in these papers. The investigation in [5] is
based on the one-dimensional case developed in [4].

2 - Preliminaries (abstract lemmas in Hilbert space)
Let X be a Hilbert space.

Lemma 2.1 ([9, Theorems 4.1 and 7.1]). Let T be a linear accretive operator
m X. Let S be a nonnegative and selfadjoint operator in X. Assume that
D(S) c D(T) and there exist nonnegative constants o and § such that

(2.1) Re (Tu, Su) > —a||ulf* — fu,Su) ¥ u e D(S).

Then one has the following assertions :
(a) for every n € N, n~ 1S + T is m-accretive in X.

(b) T, the closure of T, is m-accretive in X and D(S) is a core for T. Furthermore,
the resolvent of T is given by the limit of that of n 'S + T :

_ 3 ) 1 -1
22) (T +O7" = slim (%S+ T+f) VeSO,
Lemma 2.2. The condition (2.1) yields that

(2.3) Re (T, (/% + Syu) > — (@2 + p)u, @/? + Su) Y u € D(S).

Let v € D(SY/2) = D((a}/2 + 8)Y%) and & > o2 + f. Then (2.3) implies that D(S'/2)
is invariant under (T + &7, with

(24) @2+ )T + &M < & — @2+ ) |2 + 8) 2,

where Q'/? denotes the square root of Q.

Note that the inequality (2.4) with & = 0 is contained in [9].
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Lemma 2.3 ([9, Theorem 4.4]). Let T and S be the same as defined in
Lemma 2.1, satisfying (2.1). Assume further that D(T) C D(SY2). Then, in
addition to the assertions of Lemma 2.1, for every { € C with Re{ > 0 there
is a constant c(0) > 0 such that

H(T +0 M IS+ T+ C)_IH <c®)/vn, meN;
hence the compactness of (1S + T + C)fl implies that of (T + C)fl.

Applications of these lemmas are stated in the next section. For other restricted
applications of these lemmas (in which S = 7*T) see [8] and [11].

3 - Legendre type operators in L2(2)

Let 2 be a bounded domain in RY with compact smooth boundary I" = 9Q. Put
X = [2(@Q) and Y := LX(Q)". Let A := V with D(A) := H'(Q)". Then A is closed
and densely defined from X to Y and its adjoint A* is given by

A" :i=—div, DAY :={veY; divveX, v-v=0o0n I'},

where v denotes the unit outward normal on I". In terms of A and A* we obtain the
so-called Neumann-Laplacian in X:

81) A*'A=-4, DA'A) ={u € DQA); Au € DA")}

={u € HXQ); ou/ov=v-Vu =0 on I'}.
Next let B be a bounded operator of multiplication by the square root of a non-
negative function ¢ € C2(Q), satisfying

(i) ¢(x) > 0on Qand ¢(x) =0on [

(ii) (09/0v)(x) = v(x) - Vé(x) < 0on I" (and hence |[Vé(x)| > 0 on I'); additionally,
the symmetric Hessian matrix

2
Dz¢<x>—< o <x>)
ik

890]' 890k

of ¢ is non-positive everywhere on Q:

(32) —XN: ¢ @& >0 Yee VEeRY
. o O o, ’ '
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ExaMPLE 3.1. (a) Put ¢(z) := 1 — |z|* over Q := {|z| < 1} with v(z) = |z| 'z for

2
z € I'. Then Vé(x) = —2z and ¢ () = —20j;, (in terms of the Kronecker
o6 Oz ;0xy,

delta). Hence a(m) = —2|z| = —2 on I" and, moreover, we have

72 a (w)fjék—zm >0 VeeQ vieRY

with tr (D?¢)(x) = Ad(x) = —2N < 0 on Q.

(b) Put ¢(x) := cos(% |ac|2) over Q := {|x| < 1} (Qis the same as in (a)). Then

Vé(x) = — nx sin (g |ac|2) and

62¢ . T 2 T 2
G0 (@) = — 7oy sm(i || ) — mPaja cos(i || )
8¢ . T 2
Hence 5(9@) = — 7] sm(§|x\ ) = —zn on I’ and, moreover, we have

- ZN: 862¢ @) & &, = n|éf? sm( |90|2) + 2z - &) cos (g|ac|2) >0
VeeQ, Ve RY with
tr (D*¢)(x) = Ap(x) = —N=n sin(g |x|2) — 7%|aef* cos (g |90|2) <0on Q.
Then we consider
(BAu)(x) = \/¢(x) Vulx), u e D(A), with (BA)* =A*B* = A*B
and hence Legendre type operators in L?(Q) are defined in terms of A, A* and B:
(3.3) (BA)'BA)u(x) = (A"B*A)u(x) = — div(¢x) Vu()),
D(A*B2A) = {u € H\(Q); $Vu € HY(Q)}.

First we show that A*B2A4 is closed under conditions (i) and (ii).

Lemma 3.1. Let Ty := A*B?A be the Legendre type operator in L*(Q) as de-

fined above.
(a) Under condition (i) one has

34) VYU, = 1BAuIZ, = Tyw.wy: < |Toullpellullye ¥ u € D).
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(b) Put (To)riu = — ¢Au and (To)yu = — V¢ - Vu. Then under condition (i) and
(ii) one has
(3.5) [(Trullzz < [[IVE]- [Vl
< 2||Toul| e + VM(Tou, )}, ¥ u € D(Ty);

hence Ty has the separation property:
Il + Tl e < 5wl +2VM(Tou, ),
where M := || 49|, ~ = max{|4¢(x)|; x € Q}.
(¢) The inequalities in (a) and (b) imply (under conditions (i) and (ii)) that
(3.6) IVull: < el Teull e + eollull ¥ w e D)

and hence Ty = A*B2A is closed in L2(Q).
Proof. (a) Let w € D(Ts). Then under condition (i) we have

(8.7) (Tou,u)2 = — /mdiv(ﬂw)Vu(x)) dux

Q

Ml ——
_ / ¢(m)a—7ju(m) das + / 919(90)|Vu(9c)|2 dax
T Q

1V/#Ivul|[7..

(b) Here we shall use the symbol (T2); as in the statement. Then under condition
(i) we have

(Tou, (T2)1u)2 = / div(¢(x) Vu(®) (V(x) - Vulr)) di
Q

N 2 N =
o6 ou  Fu &Pé ou ou
= - () ———dac—/ () — — —d.
Q/ ? 7; Oy, Ox; 0x;0w, ) ? 7; 0x;0x;, Oxj Oy,
Applying (3.2) in condition (ii) we see that

Q

- % / |V¢(w)lzlvu(x)|2dx+% / ) ) @)| Vul@) [ da.
o Q



[7] SINGULAR PERTURBATION APPROACH TO LEGENDRE TYPE OPERATORS 315
Now let M be as in (3.5). Then we see from (3.7) that

‘ / ) (AS)(@)|Veulw) [ dae| < M(Tou, ).
Q

Hence we obtain
V8] - [Vaul |5, < 2Re (Tor, (To)yu)yz + M(Tou, u),:
< 2| Toull [V - [Vl || + M(Tou, w)gz.

Setting ¢ := |||V4| - [Vul| ., we have a quadratic inequality with respect to t.
Completing the square, we obtain

(t — || Tou]|2)? < || Toull> + M(Tou,w)ye.

It turns out that t < 2||Toul| . + vM(Tou,)},”. This is nothing but (3.5).

(e) Suppose that conditions (i) and (ii) are satisfied. Then, since Q is compact, it
follows that /¢ and |V¢|* are uniformly continuous on €. This implies that for
(small) ¢ > 0 there exists ¢ > 0 such that

{ V(@) > ¢ for x with dist(x, ") > 6,

(3.8)
|Vé@)|* > ¢ for a with dist(x, ") < 0.

Thus we see from (3.4) and (3.5) that

/ |Vu(x)|2dac§% / |V¢(x)|2\Vu(9c)|2dac+% / V@) [ Vu)? da
Q

dist(x,I")<o dist(x,1")>0

N

1 1
< / \V¢(x)|2|Vu(9c)|2dac+E / V@) | Vue)? di
Q Q

INA
o | =

(81| Tou |72 + @M + 1)(Tou, w)yz).

This yields that || Va||;. < &2 (2v2|| Toul| 2 + vVZM + 1 (Tou, w)}). O
Now we are in a position to state the main theorem in this section.

Theorem 3.2. Let A and B be as stated above. Then there exists a non-
negative constant f such that

(3.9) Re (A"B2A)u, A*Au);: > — f(u, A"Au): ¥ u € D(AA).
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Therefore the Legendre type operator A*B2A is m-accretive (and selfadjoint) in X
and D(A*A) is a core for A*B2A, with inclusion relation

D(A*A) c D(A*B2A) C D(A) = D((A*A)'?).

Here D(A) is invariant under (A*B2A + 5)71 (& > 0). Consequently, one has
-1
ABA+ 97" = lim (%A*A FABA + 5) VES0,
N—00
where the convergence is uniform in the sense of operator topology.

Proof. Reminding that A*B%A is closed (see Lemma 3.1), we can apply
Lemmas 2.1 — 2.3 with 7 := A*B?A4 and S := A*A, respectively. It remains to prove
(3.9). Put

(3.10) {D(C) =DA")={veY; divveX, v-v=0on I'},

C :=A*B?> - B?A*.

Then, since B is a bounded symmetric operator on X, it follows that
(3.11) Re (A*B2A)u, A*Au);> = HB(A*A)uHiz + Re (CAu, A*Au);.
> Re (CAu, A*Au);s.

Noting that (Cv)(x) = — (Vé(x)) - v(x) for v := Au € D(A*), we see from the boundary
condition Ou/0v = 0 on I" that

(3.12) Re (CAu,A*Au);> = Re / (V) - V() div(Vule)) de
Q

N %o ou ou N Pu 0 u
:—Re/ ——dx—Re/ X —dx
> ps

Fy) dw;Ouy, Dy Oy, dw;Oxy, Oy Oy,
=

Applying (3.2) in condition (ii) to the first term on the right-hand side, we have

Re (CAu,A*Au);» > — %/Vgﬁ(aﬁ) . V(|Vu(90)\2) dx
Q

Y

. 1 8¢ 2 1 2
=3 /E(ac)Wu(x)\ das + 5 / |Vu(x)|” Ap(x) de.
T Q

Noting that (0¢/0v)(x) < 0 on I" as assumed in condition (ii), we obtain
Re (CAu,A*Au)rz > —(M/2)||A'MH%2 =—-—WM/2)(u,A"Au);: YV u € D(ATA),

where M is the same as in Lemma 3.1. This implies by (3.11) that (3.9) with f := M /2
is satisfied. U
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4 - Concluding remarks
Finally, we want to mention the strategy to an LP-theory (1 < p < o0).
Step 1. Assume that conditions (i), (ii) in Section 3 are satisfied. For p € (1, c0)
define Legendre type operators in LP(Q):
(Tyu)() := — div(¢@)Vu(x)), D(T)) :={u € WLP(Q); ¢Vu € Wé‘p(.Q)N}.
Then T), is closed in LP(Q). In fact, one has
IVullLy < cllTpull, VueDTy).

Step 2. Let A and B be as stated in Theorem 3.2. Put Ts = A*B?A4 and S, = A*A.
Then for every & > 0, (¢ + Sz + To) ! maps H*(Q) c C(Q) to C%(Q) if k is an integer
larger than N /2 (see [1, Section I1X.6]). Since H*(Q) is dense in L2(Q),

(4.1) Do := {u € C3(Q); du/dv=0 on I'} = (¢ + Sy + To) 'HNQ)

forms a common core for 7 1S + T (n € IN).

Step 3. Let u, := (& +n1Ss + Ty) v for v € H¥(Q) and & > 0. Then for the
sequence {u, } in Dy C WP(Q) one has the estimate

1 1,12 1/2
|20 — Ul < const.<%+w—z) (”Vun”%p + ||V“m||%p) / .

Step 4. Consider u, = (¢ + n 1S + T) v forv € H*(Q) c C(Q)and & > M /p’,
where M := ||48||;~ and (p') " +p~! = 1. Then

(4.2) IVl < &= M/p) 7Vl -
Hence there exists u € W?(Q) such that
w= limu, in L’(Q),  Vu=w-lim Vu, in LP(Q)",
N—00 n—oo

with the property ||V, < (& —M/p") |V,

Step 5. Let (C+n 1Sy + Tou, =ve HQ) as in Step 4. Then v, = —
(n + $)Au,, is bounded in LP(R). Hence {v,} converges weakly to — ¢Au € LP(Q),

satisfying
—¢pAu — V- Vu+ éu =v.

That is, u € D(T},) and (Tyu)(x) = —div (@) Vu(r)) = v(x) — Cu(x) which implies
that R(T), + &) O H*Q), with

u=CE+Ty v=lm E+n'Se+Te) v Ve HYQ).

Since T, is closed, T), is m-accretive in L?(Q) (actually, m-sectorial as shown in [10]).
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Up to now the above-mentioned program works well only if N = 1. In fact, we can
derive (4.2) only in the one-dimensional case. We can explain this within a half page.
For u € C?(I) we consider the p-Laplacian 4, : LP(I) — L*'():

Up)@) = [Ju' @)% ()]’
= |u' @)% @) + (p — 20’ @' @) Re {u @' @)} € CU).
In this one-dimensional case we have simple relations:
(4.3) Re {u" (2)(d,u)(@)}
= '@ [l @ " @F + (p — 2)[Re {u" @@} [
> (p— Dl @4 Re {u"@u'@}|" >0,
(4.4) Re {u'(x)(dyu)(x)}
(plﬂquW’zRe{u“wﬁPCB}ﬁyééﬂukxﬂﬁ-
Let u € Dy be as in (4.1). Making the inner product of
(7 1So + To)u = — (@) +n Hu" (@) — ¢'(@u'(x) € CU)

with —4,u € Cd) c LA(), we see from (4.3) and (4.4) that

1
(4.5) Re ((n 'Sy + Tou, (— Apu),, > — pi / ¢" @) ()| da.
0

Now let v € Wh?(I) ¢ C(I). Then u, = (¢ +n 1Sy + T2) v € Dy. Therefore it
follows from (4.5) that Re ((n 'Sz + To)u,, (— A,{,)un)L2 > —(M/p)|u,l,, where
= ||¢"|l;~- So we can obtain (4.2) by noting further that

-1
Re (v — Cun, (= Az < 0|l ll7, " — Ellwy |17,
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