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Various stability estimates for the problem of determining
an initial heat distribution from a single measurement

Abstract. We consider the problem of determining the initial heat distribution in
the heat equation from a point measurement. We show that this inverse problem is
naturally related to the one of recovering the coefficients of Dirichlet series from its
sum. Taking the advantage of existing literature on Dirichlet series, in connection
with Miintz’s theorem, we establish various stability estimates of Holder and
logarithmic type. These stability estimates are then used to derive the corre-
sponding ones for the original inverse problem, mainly in the case of one space di-
mension.

In higher space dimensions, we are interested to an internal or a boundary
measurement. This issue is closely related to the problem of observability arising in
Control Theory. We complete and improve the existing results.
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1 - Introduction

Inverse heat source problems appear in many branches of engineering and sci-
ence. A typical application is for instance an accurate estimation of a pollutant source,
which is a crucial environmental safeguard in cities with dense populations (e.g. for
instance [9] and [20]).

These inverse problems are severely ill-posed, involving a strongly time-irre-
versible parabolic dynamics. Their mathematical analysis is difficult and still a
widely open subject.

In the present work, we are concerned with sources located at the initial time.

1.1 - State of art

Approximation: In an earlier paper Gilliam and Martin [17] considered the
problem of recovering the initial data of the heat equation when the output is mea-
sured at points discrete in time and space. They observed that this problem is linked
to the theory of Dirichlet series and a solution is found in the one dimensional case.

In [14], Gilliam, Lund and Martin provide a simple and extremely accurate
procedure for approximating the initial temperature for the heat equation on the line
using a discrete time and spatial sampling. This procedure in based on “sinc ex-
pansion”. Later, in [15], the same authors give a discrete sampling scheme for the
approximate recovery of initial data for one dimensional parabolic initial-boundary
value problems on bounded intervals.

The problem of recovering the initial states of distributed parameter systems,
governed by linear partial differential equations, from finite approximate data, was
studied by Gilliam, Mair and Martin in [16].
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Li, Osher and Tsai considered in [19] the inverse problem of finding sparse initial
data from the sparsely sampled solutions of the heat equation. They prove that
pointwise values of the heat solution at only a few locations are enough in an /¢!
constrained optimization to find the initial data.

In arecent work, De Vore and Zuazua [7] studied the problem of approximating
accurately the initial data in the one-dimensional Dirichlet problem from finite
measurements made at (x,%1), .. ., (g, t,). They proved that, for suitable choices of
the point location of the sensor, xy, there is a sequence t; < ... < £, of time instants
that guarantees the approximation with an optimal rate, of the order of O(n~") in the
L?-sense, depending on the Sobolev regularity of the datum being recovered.

It is worth mentioning that the orthogonality method in [15] leads to a best ap-
proximation in space, while in [7] the authors show a best approximation in time.

Uniqueness: The determination of the initial distribution in the heat equation on
a flat torus of arbitrary dimension was considered by Danger, Foote and Martin [8].
They established that the observation of the solution along a geodesic determines
uniquely the initial heat distribution if and only if the geodesic is dense in the torus.
Their result was obtained by using a Fourier decomposition together with results
from the theory of almost periodic functions. Similar ideas were independently
employed in [5] in the context of the approximate controllability and unique con-
tinuation for the heat equation along oscillating sensor and actuator locations.

Let u be the solution of the heat equation in the whole space R?. Nakamura,
Saitoh and Syarif [23] showed that the initial distribution is determined and simply
represented by the observations u(t, xo, ) and O, u(t, xp,2'), t > 0, &' € R for
some fixed xy € R.

Stability: To our knowledge there are only few works dealing with the stability
issue. In a series of papers by Saitoh and al. [2, 25, 26], based on Reznitskaya
transform and some properties of Bergman-Selberg spaces, they obtained Lipschitz
stability estimate from a point or a boundary observation.

1.2 - The relationship with the Dirichlet series

We consider the initial-boundary value problem, abbreviated to IBVP in the
sequel, for the one dimensional heat equation

(O — Pyu =0 in (0,7) x (0, +00),
(1.1) w0, ) = wu(z,-) =0,
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It has a unique solution us € C([0, +o0), L*((0,n))) whenever f € L*((0,n)). This
solution can be written in term of Fourier series as follows

(1.2) wr(,t) = 2 Z fke*kzt sin (kx),
T =1

where fk is the k-th Fourier coefficient of f:
~ 2 7 .
Je= - / S () sin (ka)de.
0

Given a point xy € (0, n) for the placement of the sensor, we address the question
of reconstructing the initial distribution f from wus(xo,?), t € (0,7). In light of (1.2),
setting ay, :]?k sin (kxy), we see that the actual problem is reduced to one of re-
covering the sequence a = (a) from the sum of the corresponding Dirichlet series

2.
Zake*k ¢

k>1

For this to be the case xy has to be chosen in a strategic way so that sin (kxg) # 0 for
allk > 1.

1.3 - Outline

Section 2 is devoted to establish stability estimates for the problem of recovering
the coefficients aj of a general Dirichlet series » ;.; aj e~ from its sum. Here (1) is
a strictly increasing sequence of non negative real numbers, diverging to infinity.

The behavior of this problem depends on whether the series Z% converges.
k

1
e When > - converges, (¢ *!) admits a biorthogonal family and this simplifies
k

the analysis.

1 . o . .
e The case > — = oo is much harder and the stability estimates we obtain are
weaker. *

In both cases, we prove stability estimates of logarithmic or Holder type and to carry

out our analysis we need to compare /;, with k”, # > 0is given. In the case Z;i = 00,
e

a gap condition on the sequence (/) is also necessary in our analysis (see (2.21) in
Subsection 2.2).

In Section 3, we apply the results obtained in Section 2 to the problem of de-
termining the initial heat distribution in a one dimensional heat equation from an
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overspecified data. We get a various stability estimates of Holder or logarithmic
type. Our results include fractional heat equations of any order. We also establish a
boundary observability inequality with an output located at one of the end points.
This latter enables us to obtain a logarithmic stability estimate for the inverse
problem of recovering the initial condition from a boundary measurement.

In Section 4, we first consider the particular case of the (fractional) heat equation
in a d-dimensional rectangle Q2. We show that if the Dirichlet eigenvalues of the
laplacian in Q are simple’, then, in some cases, the determination of the initial heat
distribution can be reduced to the one dimensional case. This is achieved when the
measurements consist in the values of the solution of the heat equation on d affine
(d — 1)-dimensional subspaces. Next, we revisit the case when overdetermined da-
tum is an internal or a boundary observation. We comment the existing results and
show that these latter can be improved using recent observability inequalities.

1.4 - Notations

The unit ball of a Banach space X is denoted by Bx.
P = ¢P(C), 1 < p<oo,is the usual Banach space of complex-valued sequences
a = (@) such that the series > |a,|” is convergent. We equip ¢? with its natural norm

1/p
lafl, = (Z |ak|f’> L a= () €.
k>1

£ = ¢>°(C) denotes the usual Banach space of bounded complex-valued se-
quences a = (ay,), normed by

lall, =sup|ax|, a= () e .
k

For 0 > 0, the space h? = h’(C) is defined as follows

B’ = {b = (br) € 0% (k) |bi <oo},

k>1

where (k) = (1 + k%)%,
kY is a Hilbert space when it is equipped with the norm

1/2
16l = <Z<k>2"lbklz> .

k>1

! This is a generic property among open bounded subsets of RY.



284 MOURAD CHOULLI [6]

2 - Determining the coefficients of a Dirichlet series from its sum

We limit our study to Dirichlet series whose coefficients consist in sequences
from /7,1 < p < oc.

We pick a real-valued sequence () satisfying 0</; <o <---/J; < ... and
A — +o00 as k goes to +oo. We additionally assume that ), -, e
t>0.

To a = (a,) € /P, 1 < p < oo, we associate the Dirichlet series

F,t) = Z ane .

n>1

t < 0o for any

Let 1 < p < oo and p’ be the conjugate exponent of p. Observing that

— _ _ /
aye Il = aye j-nt/pe ;~nt/p7

we get by applying Hoélder’s inequality

1y
Fa®)] < (Z ef"lt) > lauffe

n>1 n>1

Y
< (Z e’“‘ﬂ‘) > auf?, t>0.

n>1 n>1
Also,
Fa®] < lanl, t>0(p=1),
n>1
|Fa@)] < (Z e_)'”t> sup |a,|, t>0 (= o).
n>1 n

Therefore, the series Fy(t) converges for ¢ > 0, for any a € /7,1 < p < oc.

From the classical theory of Dirichlet series (see for instance [28]), we know that
F, has an analytic extension to the half plane ®z > 0. Since a Dirichlet series is zero if
and only if its coefficients are identically equal to zero, we conclude that the
knowledge of F', in a subset of Rz > 0 having an accumulation point determines
uniquely a. In other words, if D C {Rz > 0} has an accumulation point and F,
vanishes on D, then a = 0.

The most interesting case is when p = 1. We can define in that case the operator
U by

U : 01— Cy([0, 4+ 0))

ar—Ua) = Fy, Fu(s) =Y are ™.
k>1
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Here, C;([0, + 00)) is the Banach space of bounded continuous function on [0, + o0),
equipped with the supremum norm

I1F|l. = sup{|F(s)|; s €[0,+00)}.

Then U is an injective linear contractive operator.

Similarly to entire series, we address the question to know whether it is possible
to reconstruct the coefficients of a Dirichlet series from its sum. This is always
possible if the values of the sum is known in the half plane Rz > 0. More specifically,
we have the following formula (see a proof in [28]): for 4, <1< 4,1 and y > 0,

y+ico

. 1 F.@
Zakf%pv / Te dz.

y—100

In the present section we aim to establish the modulus of continuity, at the origin,
of the inverse of the mapping a € (¥ — Fyp, where D is a subset of (0, 4-c0). Roughly
speaking, we seek an estimate of the form

lallpy <P (IFallp~m))

for a in some appropriate subset of /7, p =1 or 2, where ¥ is a continuous, non

decreasing and non negative real-valued function satisfying ¥(0) = 0.

. 1 1
We discuss separately the cases 4 :=>",., T <00 and 4:=5 ;- 5= oo
= Ak = Ak

. . . . 1.
It is worthwhile recalling that the nature of the series Z,pl/l— is related to
= A

Miintz’'s theorem saying that the closure of the vector space spanned by
{e~#!; k > 1} is dense in Co([0, 4 00)) = {p € Co([0, +00)); ¢( + o0) = 0} if and only
if 4=o00. Usually this theorem is stated in the following equivalent form:
{axh; k> 1} is dense in Cy([0,1]) = {¢ € Co([0,1]); ¢(0) = 0} if and only if 4 = cc.

Let (1) be the sequence of eigenvalues of the Laplace operator, on a bounded
domain of RY, with Dirichlet boundary condition. For simplicity, let us assume that
these eigenvalues are simple. From [18, Lemma 3.1, page 229], 4. = O(k*9).
Therefore, in that case 4 < oo holds if and only if d = 1.

2.1 - The case A< oo

The following lemma will be useful in the sequel. Henceforth,

N
FY#$)=> are™, t>0, N>1
k=1
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Lemma 2.1. Let a € (% Then F, € L*(0,T)) and FY converges to F, in
L2(0,T)) as N — .

Proof. From Cauchy-Schwarz’s inequality

|F;V(t)y2, IF, @) < (i |ak2> <i e—%tdt> =G{t), N>1.

k=1 k=1

But

1

T
00 1 _ 24T (4
20t 3
S [eta=3 —F —<Z.
— 0/ R

Hence F, € L*((0,T)) and
A
1Fall 20 < 5 el

Similarly
7, — F¥ @) < (Ze-w> S lalf, N>1,t>0.
k>1 k>N+1

Thus FY(t) — F, () as N — oo, for any ¢ € (0, T]. As |Fév‘2§ G, N > 1, we apply
Lebesgue’s dominated convergence theorem in order to get that F'Y converges to F,
in L*((0,7)). O

Let £ be the closure in L2((0, 7)) of the vector space spanned by {e%!; k > 1}. By
[27, theorem in page 24], € is a proper subspace of L2((0, T)). Additionally, {e=*}
possesses a biorthogonal set {y,} in L2(0,T)):

T

(2.1) / v et dt = 3,
0

We assume that there are constants > 1, K > 0 and o > 0 such that
(2.2) Jy = K+ o) + o), n — occ.

From in [10, formula (3.25)],

civ
(2.3) Il 20y < Ce m>1,

for some constant C' > 0 that can depend only on (4,,).
In light of (2.1), we get

T
ay = / FY(ty,t)dt, n <N.
0
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Therefore, by Cauchy-Schwarz’s inequality,
(24) |an| < HFchv“LZ((O,T))HWn”L%(O,T)): n < N.
By Lemma 2.1, we can pass to the limit, as N — oo, in (2.4). We get

lan| < 1Fall 2oy lVallizqomy, ®>1.
Then, (2.3) implies
1/p
(2.5) |an| < Ce™||Fall 2o.1-

Hence, for any N > 1,

N
1/p
Z|an|2 < CNe“~'|F, ”LZ((OT))
n=1
But 73/ = O(N) by (2.2). Consequently,
al 2 2
(2.6) > lanf* < €N Fullfagor)-

n=1

Let 6 > 0 and m > 0 be two given constants. By inequality (2.6) we have, for any

a € mByy,
lallf. = Z ol + > lof
k>N

N

Z| a? "’ 1) Z k)*a

k=1 k>N

2
< ¢ [FulBaomy + %'
That is,
m?

(2.7 lal? < €N Fal7eq0.m) +N20

We need the following result to pursue our analysis. It is stated as Theorem 5.1
in [4].

Theorem 2.1. Let0< 1t < 1. There is a constant ¢ depending only on (1) (and
not on p, A and the length of p) so that

||P||Lx(o,,;> < C||p||L°°(A)v
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for every p € span{x’*; k > 1} and every Lebesgue-measurable set A C [p,1] of
Lebesgue measure at least t.

Corollary 2.1. Let B be a Lebesgue-measurable set of [0,T] of positive
Lebesgue measure. There is a constant d, that can depend on (J), B and T, so
that, for any a € 01,

(2.8) 1Fall <01y < AlFall =)
Proof. We proceed similarly as in the beginning of the proof of [22, Corollary
52]. Let p=e¢ T and
A={x=e'; tcB}Clp1l
Then
A| = /e‘tdt >eT|B.
B

We recall that
N a
FYt)=> ape™, t>0,N>1.
k=1

We get by applying Theorem 2.1

(2.9) ||FZLVHL°°((07T)) < dHFévHLx(B)v for any N > 1.

On the other hand, Fg’ converges uniformly to F, in [0, 4 oco). This is an immediate
consequence of the following estimate

Fa) = FY®| < Y ], N>1,¢>0.
k>N+1

Therefore, (2.8) is obtained by passing to the limit, as N — oo, in (2.9). O

Now, estimate (2.8) in (2.7) yields, where B is a given Lebesgue-measurable set of
[0, T'] of positive Lebesgue measure,

m2

N a € mBy net

2 2
(2.10) lallz < eCNHFa”Lx(B) +

1
< max (1,m%) <GCN||Fa||iw(B> + W) '
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Let N be the greatest integer satisfying

1

CN 2
< —_— .
e HFa”Loc(B) = N

Such an N exists provided that |Fallz~(p) is sufficiently small. A straightforward
computation shows that

N > Clln |Fol| ).
By taking N = N in (2.10), we get that there exists 6 > 0 so that
(211) lallz < C‘lnHFa||LOC(B)|_H, if ||Fallp~@ <0
When [|Fo |5 > 9,
(2.12) lalle < 5 1Fall
A combination of (2.11) and (2.12) implies
lallz < C{’hl||Fa||Loc(B>rH+||FaHLoc(B)}~

We sum up our analysis in the following theorem.

Theorem 2.2. We assume that assumption (2.2) is satisfied. Let B a
Lebesgue-measurable set of [0, T of positive Lebesgue measure, m > 0 and 6 > 0.
There exists a constant C > 0, that can depend on B, (4,), m and 0, so that, for any
a € mBj N o,

-0
(213) lalle < C{ 0 IFallznge |+ 1Fallzce }-

We observe that A’ C ¢! when 0 > 1/2. Therefore, mB, N {* = mBy, if 0 > 1/2.

Remark 2.1. 1) In light of (2.2) and (2.5), we have the following Lipschitz
stability estimate, where c is a constant depending only on (4,,),

- 2
Y e lanf < CllFall oy @€

n>1
Here the left hand side of this inequality is seen as an ¢2-weighted norm of a.

2) Starting from (2.7), we can prove the following estimate

0
@14)  lals < mlFulbaon| HFulixon | @€ mBy.

for any 6 > 0.
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3) It is possible to establish a Holder stability estimate. This is can be done by
substituting in Theorem 2.2 2’ by the following subspace

hey = {b = (b); Y e b, < oo},

n>1

with ¢ > 0 and y > 1. A proof of a similar result will be detailed in the next subsection.

4) A Lipschitz or a Holder stability estimate is not true in general. Indeed, let us
assume that we have an estimate of the form, where 0 < u <1,

(2.15) lallz < C(||Fa||ﬁz((0,T)) + ||Fa||L2((0,T))>» a € By.

Let (e;.) be the usual orthonormal basis of ¢2. That is e, = (J},,), Where Jy,, is the
Kronecker symbol. Letting f;, = <k>7oek, we get by a straightforward computation

1 1

2.16 F <—— —— k>1.
(2.16) 1F5 N 20,y < <k>9 Nk
Since fi. € By, if (2.15) were true then we would have from (2.16)
1 1 1
(2.17) —gC( - + ), k> ko.
W)\ R ()

The particular choice of 4, = k#, k > 1in (2.15) yields

1 1
1<C(W+W>, k>1.

But this inequality cannot be true if xf/2 — 6(1 — ©) > 0.

2.2 - The case A = oo
We pick a = (a;) € B, and we set
0= |[IFul. (<|lalln <D.
Since o > |Fo(s)| > |aile "* — e™2%, we have
la1| < 0e™* + e 2= for any s > 0.

The choice of s = %ln(l /o) gives
2

|CL1| < 2@1_22.
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More generally, we have
lag| < o+ |ag| + ... + |ap_1 e~ + e H®

and then
g < G+ Jaa] + ... + a1 )5

So an induction argument leads to the following estimate

-1 )
(2.18) lax| + .+ |ag] < Cro® 2

with C; = 2 and Cj;; = 3C, + 2. Therefore Cj, = 235137 < 3% | > 2,

If
w1l 4)

=1 ;“H*l

then (2.18) implies

k
(2.19) > Jai] < 3FoP.
=1

We introduce the weighted ¢! space, where 0 > 0,
A0 — {a = (a;); Ziﬂai\ < oo}.
i>1

We equip /1 with its natural norm

lallpo =3 lai.

1>1

Let a € Bjo. In light of (2.19), we have

”a’”/l - Z |a1| + Z |OL2

i>k+1
, 1 )
< 8k + > iagl.
1>k+1
Hence
1
(2.20) llall, < 8FoPr +o k=1

Let us assume that the sequence (/) obeys to the following assumptions: there
are four constants f; > 0, f; > 0,¢ > 0 and d > 0 so that

(2.21) Dist — A > ﬁ and /; <cif i>1.
1+
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Under these assumptions,

N
(k + 1
Therefore, (2.20) yields

Dk = Q. = with ff = f, + f; and ¢, = min (d/c, 1).

1
(2.22) lall, <8Fe% + =, k>1.

ﬁ7

If p is sufficiently small, we denote by k the greatest positive integer such that

. 1
kG, <« —
3% < =
Let ¢, = (In3 + 0 + B)V/%. Since
3l~c+1‘gq};A1 > ,
(k + 1)

we have
k> zic*(lnungnl/?

by a straightforward computation.
We end up getting

1\’ ~0/2
223) Jalls < (5-) Qalnll) " WPl = 0 < oo

for some g, > 0.
When ||Fy||., > g9, We have

F
(224) lallo < llafloe < 1 < el
0

Hereafter we used that F'), = AF,, A € C, which a consequence of the linearity of
U. In light of (2.23) and (2.24), we can state the following result.

Theorem 2.3. We assume that assumption (2.21) is satisfied. Let m > 0.
There exists a constant C > 0, that can depend only on (1,) and m, so that, for any
a € mB,

—0/2

lally < € (e Fal Il +IFull ).

We are now going to show that, even in the present case (1 = c0), it is possible to
establish a Holder stability estimate.
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We pick a € ¢!, N a non negative integer and we recall that F' is given by

N
Ffj (s) = Z:e”l”‘“’ab77

n=1

Letx, =e 7, n=1,...N. We introduce the following Vandermonde matrix

1 1
X1 TN
Vy =
N-1 N-1
Xy N

By setting Ay = (a1,...,ay)’ and By = (FN(0),...,FN(N — 1)), we get in a
straightforward manner that VyAy = By or equivalently Ay = VZQIB N-
If V' = (wy) and [[Vy']| = 30, o [w], then

(2.25) AN < VY IHIBy

From the proof of [13, Theorem 1], we obtain

1
Vi< S Tl

1<j<N i#j

Therefore, under assumption (2.21), we get after some technical calculations
IVl < Ce™™,
where f3; is the same as in (2.21). Hence, (2.25) entails
N
(2.26) S ol < e Fyl,, < e <||Fa|m +3 |an|>.
n=1 n>N
For o > 0 and 8 > 0, we introduce the following weighted ¢!-space:
Zu/f = {a = (a;); Ze“"ﬂ|a7;| < oo}.
n>1

We equip this space with its natural norm

lulls, = > ¢ lail.

n>1

Let m be anon negative constant and > f8; (6, is the same as in (2.21)). Assuming
that a € mB o we obtain in light of (2.26)

lall < Ce (IFull. +me ") + me'.



294 MOURAD CHOULLI [16]

Therefore, we find an integer Ny so that for any N > N,
ol < C(€5 Bl 4O
We derive by minimizing with respect to N the following Hoélder stability estimate.

Theorem 2.4. We assume that (2.21) is satisfied. Let m > 0, o > 0 and > f;.
There exist two constants C > 0 and y > 0, that can depend only on (1), m, o and p,
so that, for any a € mBél/j,

laly < C(IFalll + 1 Fall)-

3 - Determining the initial heat distribution in one the dimensional heat equation
3.1 - Point measurement
We come back to the one dimensional heat equation. We consider again the IBVP

(O — 3w =0 in (0,7) x (0, +00),

(3.1) u(0,-) = u(zm,-) = 0,
u(-,0) =f.
The solution of the IBVP (3.1) is given by
(32) ugle, ) = 23 oo sin ),
k>1

Where]?;C is the Fourier coefficient of f € L2((0, n)):
~ 2 r _
fe = - / f(x) sin (kx)de.
0

From [1, Lemma 1.1.4, page 30], there exists xy € (0, n) satisfying
(3.3) |sin (kao)| > dok™, k> 1,

where dj a constant depending on xy.
Let 0 > 0. It is known that the Sobolev space H’((0, 7)) can be constructed by
using Fourier series. Precisely, we have
H((0,m) = {h € LX0,7); >_ (k)" |lue|* < o0}

k>1
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H((0,7)) is equipped with its natural norm
1/2
||h’||H”((O,n)) = (Z<k>29|hkl2> .

k>1

We take f € H?((0, 7)) and we set
2 ~
ap = p sinkxofi, k> 1.
In light of (3.3), we get

7[ ~
(34) glarl < il < coklagl.

Here ¢ is a constant depending on . Therefore
SR <G Y ol
=1 k=1

Hence

1/2 1/2
(3.5) STIRE < c3<§j<k>4|ak2> <Z |ak|2>

=1 =1 k=1

by Cauchy-Schwarz’s inequality.
But

4
2 2
Sl < 5 Z NI = 3 Ifll2q0.0)-

k>1 k>1

This estimate in (3.5) gives

~ 1/2 1/2
£ 20 < Coll £l mego iy lllid

Here ¢y = v2¢y/ /7.

Then a consequence of Theorem 2.2 is

295

Theorem 3.1. Let B a measurable set of [0, T] of positive Lebesgue measure
and m > 0. There exists a constant C > 0, that can depend only on B, xy and m, so

that, for any f € mB gz )

-1
||f||L2((0.n)) < C(|ln||uf(aco, ')HLw(B)| + |l (o, ')||Lx(B))-

We extend the previous result to a fractional one dimensional heat equation. To

this end, for o > 0, we define A%, the fractional power of the operator A = — 92 under
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Dirichlet boundary condition, as follows

2 S
A'f == >k fi.sin k),

k>1

DA = {f € 10,0 3K fif <o}

k>1

The IBVP for the heat equation for the fractional one dimensional Laplacian is
represented by the Cauchy problem

(36) (at +Aa)u = 0 n (0, +OO)’
u(-,0) = f.

The solution of this Cauchy problem is given by, where f € L?((0, n)),

2 2y s
up(e,t) = - Z e ¥ £ sin (k).

>1
If 1/2 <o < 1, we can apply again Theorem 2.2. We get
Theorem 3.2. We assume 1/2<a < 1. Let B a Lebesgue-measurable set of

[0, T'] of positive Lebesgue measure and m > 0. There exists a constant C > 0, that
can depend only on B, xo, o and m, so that, for any f € mB ),

o _1 o
||f||L2((0,n)) < C(}ln||uf(aco, ')”Lx(B)} + H“f(ﬂcm ')||L>c(3))-

Next we consider the case 0 <o < 1/2. Since Y., k™ = 0o, Theorem 3.2 is
no longer valid in the present case. We are going to apply Theorem 2.3 instead of
Theorem 2.2.

We pick f € H**1((0, z)) for some 6 > 1/2. Let

e = % sin (ko) fi, k> 1.

In light of (3.4), we get by using Cauchy-Schwarz’s inequality

1/2 1/2
(3.7) ST 1Al < e (Zkzlau) (Z |ak|> .

k=1 k>1 k>1

But

1/2 1/2
(38) > Kl < (Z(@“) (%Z<k>2““>|f|2> :

k=1 =1 k=1
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This and the first inequality in (3.4) imply

(3.9) Zk2|ak| < collF 1l oo,y -

k>1

Here and henceforth ¢y is a constant that can depend only on 6.
Now a combination of (3.7) and (3.9) entails

7 1/2 1/2
(3.10) kz il < coll £l o el
>1

As H+1((0, 7)) is continuously embedded in C([0, z]),
31 Y IAF< sup el S1h <20l S 1Fel < coll Fllgoqomy D 1l

k>1 k>1 k>1 k>1

Hence, it follows from (3.10) and (3.11) that

3/4 1/4
(3.12) £ Lz < Coll £ o myllalls

Similarly to (3.8), we prove

Il < coll 1l zoco -

Thus
(3.13) lella < coll Fll oo,
by (3.4).
On the other hand, we have from (3.9)
(3.14) lallnz < coll fll oo -

In light of (3.12), (3.13) and (3.14), we obtain by applying Theorem 2.3.

Theorem 3.3. Let m > 0 and 0 > 1/2. There exists a constants C > 0, that
can depend only on 0, o, xy and m, so that, for any f € mByog )

1N 20y < C(‘ln‘ln (m‘lcgluu}(%a )”OO) ‘ ’71/4_1_”%}(900, )||OC>

Here cy is the constant in (3.9).

We observe that (2.21) is satisfied for the sequence (n?*) when 0 <o < 1 /2. The
case o = 1/2 is obvious and for the case 0 <« < 1/2 it is a consequence of the fol-
lowing elementary inequality

n+1

1
12%_ 20(:_/ 20—1 > .
n+1) n o P dp > 20 (n + 1)L 2

n
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We mention that is possible to get a Hoélder stability estimate even when
0 <o <1/2.To do that, we apply Theorem 2.4 instead of Theorem 2.3. We leave to
the interested reader to write down the details.

3.2 - Boundary measurement
Let o > 0. We recall that the solution of the fractional heat equation (3.6) is given
by, where f € L2((0, n)),

2 04N .
uf(x,t) = - ; ¢ "1f, sin (ka).
>

Since

2 wps
wie,T) == e fi sin k),
=1

we get by applying Parseval’s inequality

(3.15) 1 D ooy = > e 2RI
k>1
On the other hand,
2 e
(3.16) D (0,1) =~ kz kfie ™.
>1

When « > 1/2, (), the biorthognal set in L2(0,T) to (e %!, satisfies, for some
constant C > 0 depending on o,

Ck
Hl//n”Lz((O,l)) < Ce™".

This inequality is obtained from [10, estimate (3.25)].
Therefore we have, similarly to (2.5),

2| fi? < Ce 0,020, |72 0.1
and then

(317) k2€72k2"T ﬁc|2 < Cecchzk%T

19240, IZ2q0.1y
< C||9:uf(0, MEeo.1-
Estimate (3.17) implies the following observability inequality

1/2
(3.18) 4G Dl 20,09 = (Z o flc|2>
k>1

< Cl|0xuf (0, )|l 120, 1y-
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Let B a Lebesgue-measurable set of (0,7) of positive Lebesgue measure. As
9w (0, -) is given by a Dirichlet series, we get from Corollary 2.1.

1/2
(3.19) et . Dl 20,2y = (Z 62k21T|fk|2>

=1
< C||8xu}7:(0, ')”LOC(B),
under the condition that (]A”k) e .
Let g;. be the k-th Fourier coefficient of u}(~ ,T). Then
fo =G, k>1.
Hence, for any N > 1,

=2 200 ~ 2 20 o 2
Z il < NeV TZ gk|> < Ne¥ TZ [ D[220,

<N <N k<N
In light of (3.19), this estimate yields
-~ 20 o
> el < CeN 0030, )|l e -
k<N
Assuming in addition that f' € mBys(q ), for some ff > 1/2, we get
m

2 CON2*
122000 < Ce N

Ot (0, ) ) +

Here we used the fact that if f € H*((0, n)), with f > 1/2, then (fk) e,
As before, this estimate allows us to prove the following theorem.

Theorem 3.4. Let B a Lebesgue-measurable set of [0, T of positive Lebesgue
measure, f > 1/2 and m > 0. There exists a constant C > 0, that can depend only
on B, o, f and m, so that, for any f € mB s )

3

T max(@.f) o
00, ->||LX<B>).

(3.20) 1F 1 200 < C(‘IHWM#(O’ M@

We observe that if instead of (3.19) we use (3.18), then we get a variant of
Theorem 3.4 in which (3.20) is substituted by

B

T max(@.f)

||f||L2<<0,n)) < C<)1n|6xu;‘»(0, ')||L2<(0,T)> +||8xuj2‘-(0, ')||L2((0,T))>7

without the restriction that § > 1/2. We have only to assume that f > 0.
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4 - Multidimensional case
4.1 - An application of the one dimensional case

We firstly recall that a finite or infinite sequence of real numbers is said to be non-
resonant if every nontrivial rational linear combination of finitely many of its ele-
ments is different from zero.

Let Q= H,‘f:l (0, u;m), where the sequence (uy,.../;) is non-resonant. From
[24, Proposition 5] the Dirichlet-Laplacian on Q has simple eigenvalues

k2

d
B K= k) €N k1
—1 ™

=11

v
To each Ak corresponds the eigenfunction
2\ 1 &
P = (—) 7l sin (ke / 14;)
%) i i 111 '

so that (px) forms an orthonormal basis of L*(Q).
Let A :L*Q) — L*(Q) be the unbounded operator given by A = —4 and
D(A) = H*(Q) N HL(Q). The fractional power A%, « > 0, is defined as follows

A'f = > 25 o)k

K=(ky,..kg)eN?, k;>1

DA% = { fe LA S BRI enl < oo}

K=(ky,..kg)eN? k;>1
We consider the Cauchy problem for the fractional heat equation associated
to A*:
O +Au =0 in (0, +00)

4.1 ' ’
1) { u-,0) — f.
The solution of this Cauchy problem is given by

uj(e,t) = > ek (f o)k
K=(k1,..ka)eN, k;>1

To reduce the multidimensional case to the one dimensional case, we need to

d
restrict the initial sources to those of the form f=fi®...®f; € .®1C3C(0, w;m). In
that case, =

d
we,t) =] D e ™ (f oo,

i=1 ki>1
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2 . (k@%)
Q). = ——81n .
b Hi

d
(42) up(e,t) = | o @i, ).
i=1

where

In other words,

Here uy is the solution of the one dimensional fractional heat equation (3.6) when
(0, ) is substituted by (0, 1;7).
According to the maximum principle, we have

(4.3) HM}EHL’”((O,/QH)X(O.T)) = ||J3'|\Lx(<o.ﬂ,;n))~
Let us assume that

(4.4) if}f ||I;HL°°((0./WI)) =n>0.

Henceforth, xy and ¢y are the same as in (3.3). In light of (4.2), (4.3) and (4.4), we get

d—1
||u}(’a ey 'nujx()v Ty .)”Lx(Hi%j (Oa#iﬂ)X(O,T>) 2 1 ||u%(,u79007 ')”L“((O,T))
and then
45) A = o sty (] oman)

d-1y|,
> IH%%(ﬂjxoa Mo,y -

We fix m > 0 and o > 1. We prove similarly to Theorem 3.1 that there exists a
constant C > 0, that can depend only on 7 and o, so that, for any f; € Bz )
1<i<d,

-1
||ﬁ||L2((0./117Z)) < CH“ ||%}Z(ﬂ7:900, ')”LOC((O,T))‘

if I'(f) is sufficiently small. Hence, in light of (4.5), there is 4y > 0 such that

(4.6) 1fill 2o my < C|ln(’7d_l/1(f)) |_17 A(f) < Ay.

From estimate (4.6) we get in a straighforward manner that

d
(4.7) 1/l 2 = H /il 20 ) < dC({ln(ﬂdfl/l(f)) ‘71+/1(f))-
i1

1=

A continuity argument enables us to extend estimate (4.7) the closure of
d
® C3(0, y;m) in HZHA-D/2(Q).
i=1
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The case o < 1 can be treated similarly by using Theorems 2.3 and 2.4 instead of
Theorem 2.2.

4.2 - Boundary or internal measurement

As we said in the introduction, there are only few results in the literature dealing
with the problem of determining the initial heat distribution in a multidimensional
heat equation from an overdermined data. The usual overspecified data consists in
an internal or a boundary measurement. We describe and comment briefly the main
existing results and show the possible improvements.

Let Q be a bounded domain of R? with C2-smooth boundary I'. Let 0< /; <
Jo < ... < ...Dbe the sequence of eigenvalues, counted according to their multi-
plicity, of the unbounded operator defined on L*(Q) by A= —4 and D) =
H(l)(.Q) NH*Q). Let (¢,,) the corresponding sequence of eigenfunctions, chosen so
that it forms an orthonormal basis of L2(Q).

By [6, Theorem 1.43, page 27], for any f € H(Q2), the IBVP for the heat equation

O —MDHu=01inQ =0 x (0,7,
(4.8) u=0on2=1Ix(0,T),
/M/( ) O) = f7
has a unique solution u; € H>1(Q) = L*(0, T, H*(Q)) N H'(0, T, L*(2)). Moreover, it
follows from [6, Theorem 1.42, page 26] that 9,u, € L*().
Let y be a non empty open subset of /" and w be a non empty open subset of 2. We

set 2, =y x(0,7) and Q, = @ x (0, 7).
When f € HL(®), we have the following two final observability inequalities

(4.9) lur ¢, Dll o) < CllOusllecs,
and
(4.10) s (-, T)HHé(Q) < Cllugll 2,

Here uy is the solution of the IBVP (4.8) and C is a constant independent on f.
Inequality (4.9) follows from [6, Proposition 3.5, page 170] and (4.10) is proved
similarly (a variant of estimate (4.10) with less regularity assumption was given in
[21, Corollary 6.3]).
Let, for s > 1/2,

H{(Q) = {w e H*(Q); w=0on I (in the trace sense)}.
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Following [12]

HY(Q) = {w € LXQ); Y i w, ¢ < oo}, if 1/4<0<3/4.

k>1

From the proof of [6, Theorem 3.6, page 173], we deduce in a straightforward
manner the following result

Theorem 4.1. Let 1/2 <0 <3/4 and m > 0. Then there exists a constant
C > 0, depending on Q, y (resp. w), 0 and m, so that, for any f € mB H2(Q)»

-0
@11) £l < € Il |+ 10l
and

—0
(4.12) 1/l 220 < C(’m”uﬂLZ(Qw) + ||”f|L2(Q,“)>-

Remark 4.1. 1) According to [3, Theorem 1], we can replace in (4.12),
sl 12, OV [lurll L2y, Where D is any Lebsegue-measurable set contained in
Q x (0,T), having a non zero Lebesgue measure. We can also improve the es-
timate (4.11) when 0Q2 contains a real-analytic open sub-manifold, that we denote
by I'y. In light of [3, Theorem 2], estimate (4.11) holds true if 2 is substituted
by any Lebesgue-measurable subset of I’y x (0,7) with non zero Lebesgue
measure.

We note that the observability inequalities appearing in [3, Theorems 1 and 2]
hold for bounded domains 2 which are Lipschitz and locally star-shaped.

2) From [11, Remark 6.1], there exist two constants C; > 0 and Cs > 0, de-
pending only on Q, w and 7', so that

(4.13) S e VR TP <0 / s Pdedt, f e LXQ).
n>1
Qw
Here f, = [ f$,da.
Q
d

On the other hand, since there is a constant ¢ > 1 such that ¢ 1n¢ < 1, < en?/?,
n > 1, the inequality (4.13) is equivalent to the following one

(4.14) S e R R < G / s 2dedt, fe LXQ).

n>1
- Qo
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Clearly, the mapping
1/2
—CnVd\ 7
f =l = (Ze “ |fn|2>
n>1

defines a norm on L2(Q), weaker than the usual norm on L2(Q). Therefore, (4.14) can
be reinterpreted as a Lipschitz stability estimate of determining f from wuyq, :

||f||L$¢,(Q> < CQ”“fHLZ(Qm), fe L*(Q).

A consequence of (4.14) is

2 < Coel" / lug|Pdedt, fe LA(Q), n> 1.
Qo
This estimate allows us to retrieve the estimate (4.12).

3) Let us show that, in the case of an internal measurement, we can directly get a
stability estimate without using the observability inequality (4.10). The key of this
direct proof relies on Lebeau-Robbiano type inequality for the eigenfunctions ¢,.
For f € L*(Q), we set

N
unG. ) =Y e,

n=1

Let w be a Lebesgue-measurable subset of 2 of positive Lebesgue measure. From
[3, Theorem 5], we have

N
> e PR < 0 [ funt bfds,
n=1

w

But
[luxc.ofde < [ ofder Y IR

n>N+1

Hence

n=1 n>N+1

N
Ze—%ﬂfuzgcew[ / oy B+ > Ifnlzl-

We integrate, with respect to ¢, between 0 and 7. We get in a straightforward
manner that

N
SR < Cei / welde+ S 1P,
n=1

n>N+1
Qw =N
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implying that

SR < Cet / fugfPdw+ S If
n

n>1 >N+1
- QUI -

2/d -~
< 0 / wlde+ S .
n

>N+1
Qu) -

Therefore, under the assumption

Zecm|ﬁ1|2 <m,

n>1

for some ¢ > 0, m > 0 and y > d/2, we obtain similarly to Theorem 2.4 the following
Holder stability estimate
£l < €l @)

We end this subsection by mentioning that a Lipschitz stability estimate was
established in [25] when the space of the initial heat distribution is given by a Banach
space, that we denote by B, in the sequel, built on the Bergman-Selberg space H,,,
where u > 1/2 is a parameter.

0
Q. T llurl

Theorem 4.2. We fix xy € RY\ @, u € (1,5/4) and we set
vo={x el @—wx) vix) >0} and Xy =y, x 0,7).
There is a constant C, that can depend only on Q, xy and u, so that

C_1||f||L2(Q) < 0vurlip s < Clf 2oy € H*(Q) N Hy(9Q).

A detailed proof of this theorem is given in [6].

Acknowledgments. 1 have had many discussions with Enrique Zuazua
during the preparation of this paper. His comments were useful for improving
the major part of this work.
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