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Invariants and coinvariants of class groups in Z,-extensions

and Greenberg’s Conjecture

Abstract. Let K/kbe a 7Zy-extension of a number field k, k,, its n-th layer and A,,
the p-class group of k,, . In this paper we give two criteria, both based on the group
of invariants B,, of A,,, which imply the finiteness of the Iwasawa module X (X /k)
and we discuss some of their consequences. The first criterion deals with stabili-
zation and capitulation of the B,,, while the second one uses the nilpotency of the
Galois group Gal(L(K)/k), where L(K) is the maximal unramified abelian pro-p-
extension of K.
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1 - Introduction

Let p be a prime number, k¥ a number field and K/k any 7.,-extension of k. We
denote by I' = (y) ~ 7, the Galois group Gal(K/k) and by k,, the n-th layer of K /k,
i.e., the unique subfield of K of degree p" over k. Let ny(K /k) (or ny for short) be the
minimal % > 0 such that every prime ideal which ramifies in the extension K/k,, is
totally ramified and let s = s(X/k) be the number of ramified prime ideals in K /&y, .

We denote by L = L(K) the maximal abelian unramified pro-p-extension of K in
a fixed algebraic closure of Q, and by X = X(K) the Galois group Gal(L/K).
Similarly, let L,, = L(k,) be the maximal abelian unramified p-extension of k, and
let X,, = X(ky) be the group Gal(L,/k,).
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Let, moreover, A,, be the p-part of the ideal class group of k,, so, for alln € N, A,
is canonically isomorphic to X,, via the Artin map. For all m > »n > 0, we denote by
Tum : Ay — Ay, the map induced by the extension of ideals. Put

(1) A :=lm A, and denote by intA, = A

the natural inclusion map. In addition let H,,,, be the kernel of 4, ,, and H,, be the
kernel of i), ,i.e., H,= |J Hym-The H,,, and the H,, are often called capitulation

mz=n
kernels and are quite important in Iwasawa theory, for example because of their

link with Greenberg’s Conjecture (see [8, Proposition 2], [10, Proposition 1.B] or
[6, Theorem 2]). For an extensive study of the properties of the H,,,, and the H,, for
Zp-extensions, see [4], in which the authors provide a detailed description in terms
of the maximal finite submodule D := D(K/k) of X(K/k). For similar results on
capitulation in connection with Greenberg’s Generalized Conjecture in the case of
multiple 7,-extensions see [3], [2] or [9]. We recall that Greenberg’s Conjecture
predicts the finiteness of X(k.,.) when k is a totally real number field and k., its
cyclotomic 7,-extension; we will not deal with multiple 77, -extensions here, for a
nice survey of the theory see [7] (it includes the statement of Greenberg’s
Generalized Conjecture as Conjecture 3.5).

Let B, := (A,)" Dbe the invariant subgroup of A, with respect to the action
of I, ie.,

B, ={bcA, : b =>}.

In Section 2, as preliminary result, we will show that the sequence of the orders
of the B,, stabilize, i.e., becomes constant, at the very first layer n > ny for which
|By| = |By+1| (see Lemma 2.2 (b)). For similar results on stabilization of the 4,, see
[6] and [1], or for other Iwasawa modules like the capitulation kernels see [4] and, in
a quite different context (non-abelian Iwasawa theory), [5]. Now, our first criterion
can be stated as follows (efr. Theorem 2.1)

Theorem 1.1. Let K/k be any Zy-extension. Assume that |By| = |Byi1| and
B, C H,,, for some m =n = ny, then X ~ A,,.

The previous theorem can be particularly useful in specific cases, for example
when |By| = |By+1]| for a small » and B,, is generated by classes of totally ramified
ideals or of ideals which totally split.

For the proof and some consequences of Theorem 1.1 see Subsection 2.2, in
which we shall also explain how some results of [8] and [6] can be seen as particular
cases of our Theorem 1.1.

Our second criterion, instead, relates the invariant subgroups B,, with the nil-
potency of the group Gal(L(K)/k) as follows (cfr. Theorem 3.1)
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Theorem 1.2. Let K/k be any Z,-extension of a number field k. The fol-
lowing conditions are equivalent:

(a) the sequence {|By|},cx ts bounded and G := Gal(L(K)/k) is nilpotent;
(b) X = X(K/k) is finite.

The previous theorem relies on methods very different from the ones used for
Theorem 1.1. In particular it involves the lower central series and the nilpotency
class of the group Gal(L(K)/k); similar tools are described and used in [12] and [5].
The final Section 3 of the present paper is devoted to the proof and some con-
sequences of Theorem 1.2.

2 - The first criterion

In the first subsection we briefly describe some of the basic objects in Iwasawa
theory we are going to work with: for more details and comprehensive references
see [14, Chapter 7 and 13] or [11, Chapter 5].

2.1 - Notations and preliminaries

Let I" be the Galois group Gal(K /k) ~ Z, and choose a topological generator y of I'.
We use I',, to denote I'/I™", which is canonically isomorphic to the eyclic group
Gal(k,, /k) of order p™.

We recall that X = Gal(Z(K)/K) (called the Iwasawa module) is a module over
the completed group ring Z,[[I']] ~ l(ir_n Zp|Gal(k, /k)] via the action of conjugation.
The map y — 1 + T gives a noncanonical isomorphism between Z,[[1']] (called the
Twasawa algebra) and A := Z,[[T1]], i.e., the formal power series ring in one variable
over Z,. In the following we shall identify both with our symbol 4. For any n > ng
let Y,, be the A-submodule of X such that A, ~ X/Y,, roughly speaking, Y, is o-
btained by taking the closure of the module generated by the commutators and
the inertia subgroups of Gal(L(K)/ky). For any m > n = ny we have Y, = vy, Y0,

- 1 T p”? _1 . n Mm—n __ . »
V, 7(4’ ) :1+(1+T)P ++((]_+T)p)p 11sadls-

where vy, ., = i m
tinguished polynomial which basically represents the map ¢,,,, (in particular H,, ,, =
{xeX/Y, : vym(@) €Y,,}). Moreover, for any m >n > 0, the v,,, verify the
following formula (see, e.g., [6, Lemma])

m—n

1+ - D+ " -1 ~
@D DD 1 e o 11,

(2) Vim =
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A finitely generated A-module M is pseudo-null if it has at least two relatively
prime annihilators. Being 4-pseudo-null is equivalent to being finite, and we write
M ~, 0 to denote a pseudo-null /-module M.

Let I be the augmentation ideal of A (which correspond to T4 in the iso-
morphism y < 1+ T above) and let C), := (4,); be the coinvariants of A, with
respect to the same action of I, i.e.,

3) Cp:=A,/IrA, = A,/ {@! :acA,}.

In terms of Galois groups C,, is isomorphic to Gal(k], /k,), where k!, is the genus
p-class field of k,, over k (i.e., the largest abelian extension of k contained in L,,), and
B, corresponds through the Artin map to Gal(L, /L), where L/, is the smallest
extension of k, contained in L,, such that I',, acts trivially on Gal(L,,/L},). Moreover

for all m > n > 0 we denote by N, : A, — A, the norm map between the p-class
groups.
Lemma 2.1. For every n = 0 we have
(a) Nn+1,n(Bn+1) C B, and inerl(Bn) C Byt
(b) Nn+1,71/(II‘An+l) c IFAn and in,n+l(ll‘An) - IFA17/+1 .

Proof. All statements can be easily derived from the commutativity of the
following two diagrams

y—1 y—1
Appy ———— A A, ———— = A,
leH-l,n lN!l+1‘ﬂ liﬂ-}—l,n lin+1,n
7—1 y—1
A, —88M8MM8 A, Appg — A,

O

Therefore inclusions and norms induce well defined maps on B,, and C,, as well,
and we will still denote them with %, ,, and N,,,, . We also put
B =B(K/k) :=lim B, and iy : B, — B
(notation analogous to that in (1)). We introduce a final piece of notation: we let
¢r : X — X represent multiplication by 7' and this implies that, in terms of A-
modules, we write
B, =A~X/Y,)"
={xeX :ypp=x (mod Y,)}
={xeX : TreY,} =&Y, .

So our ¢y avoids using a possibly misleading 71 .
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2.2 - The modules B,, and the pseudo-nullity of X

In this subsection we give the proof of Theorem 1.1 together with some related
results and consequences. We begin with the following stabilization lemma

Lemma 2.2. Let K/k be any 7.,-extension. Then

(a) the sequence {|By|},, s non decreasing for n = ny;

(b) if |By| = |Bny1| for some n = ng, then |By,| = |B,| for every m = n.

Proof. (a) Notice that B,, and C,, appear in the exact sequence
0—B, —A, 5 A, —C,—0

hence they have the same cardinality for every n > 0. But for n > ny we have
Cy,~X/TX +Y,, so the sequences {|Cy|}, and {|B,|}, are non decreasing for
n=ng.

(b) The hypothesis |B,| = |By.1| gives |C,| =|Cyi1|, hence we obtain
|X/TX +Y,|=|X/TX +Y, 1| which means TX +Y,, = TX + Y, for some n > n,.
Now considering the quotient module 7X + Y, /TX we have v, ,,1(TX + Y, /TX) =
TX+Y,/TX, and from Nakayama’s Lemma we obtain 7X +Y,,/TX =0. But this
yields Y,, C TX, and C,, ~ X/TX for all m > n. O

Remark 2.1. Recall that the norm N,.;, is surjective on class groups for
n = Ny, hence the induced map on the C), is surjective as well. From the proof of the
previous lemma, the equality |B,| = |By+1| yields |B,,| = |By| and C,, ~ C,, (for all
m = n), but not B, ~ B,. Moreover if the sequence {|A|}, - ,, stabilizes at m, then
{I1Bul}, > 1, Stabilizes at most at m as well. More precisely: if Ny i1 : Ayy1 — Ay is
an isomorphism for some 7 > 5y, then it maps isomorphically B,,,; onto B,, as well.
On the contrary, if we assume that B, is isomorphic to B,,, we cannot deduce
anything on the A4, unless we know that the isomorphism is given by the norm map
(i.e., if Nyt14 : Bys1 — By is an isomorphism, then N, 1, : 4,41 — A, is an iso-
morphism too, see Proposition 2.1 below).

Now we state and prove the first criterion.

Theorem 2.1. If |B,| = |Buy1| and By, C Hy,, for some m = n = n, then
X~A,.

Proof. The hypothesis on the capitulation of B, means that v, &p Ly,) is
contained in Yy, , so Ty &p 1(Y,q,) C TY,, (recall the correspondence between the
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maps i, and the polynomials v, ,,). As we have already seen in the proof of Lemma
2.2, |By| = |Bn+1] implies Y,, C TX, i.e., Y, is contained in the image of &;. Thus

Tvpmér Yy, = VamYn =Yy and Y,, = TY,, . Nakayama’s Lemma yields Y,, =0
and since A,, ~ X /Y, , we conclude that X ~ A4,,. O

The following is a straightforward consequence which reproves (and slightly
generalizes) [8, Theorem 1] and the first statement of [6, Theorem 2].

Corollary 2.1. If s(K/k) =1, ny(K/k) =0 and Ay = Hy, for some n >0,
then X ~, 0.

Proof. The hypothesis on the unique totally ramified prime yields |B,,| = |Ao|
for any n. |

Furthermore it is also possible to generalize some results obtained in [4], using
Theorem 2.1 in a very similar way. Recall that D is the maximal finite submodule of
X and let » = (K /k) := min{z = ny s.t. DNY, =0} (for the origin of this para-
meter and its meaning see [4, Definition 3.1 and Remark 3.8]). Another application
of the criterion is given by the following

Corollary 2.2. We have
B=0&X~,0.

Proof. The « direction is obvious. For the other direction if B = 0, then
Ip11(Br11) = 0 and this means that B,,; is contained in H,,;, i.e., in terms of
Iwasawa modules, & l(Y,»H) C Y,1 + D (see [4, Proposition 3.3]). It is easy to see
that &5 (Y,11) = Y,y + DIT], thus

Byi1 ~ DIT1 + Yyi1/Yysy ~ DIT]

(the last isomorphism depends on the fact that D[T]NY,,; =0, which comes
from our definition of r=r(K/k)). Now consider B, which, by hypothesis, is
contained in H, : repeating the previous argument we find B, ~ D[T]. Therefore
B,=B,,; and we can apply the criterion given by Theorem 2.1 to obtain the
pseudo-nullity of X. O

Remark 2.2. For completeness we also give a direct proof of B=0=A4=0
(the fact that A = 0 = X ~, 0 is well known).

Assume that B = 0 and that there exists n > 0 such that H,, # A,, . Consider the
action of I, on A,/H, : from the class orbit formula we have that there exists
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[a] € A,, — H,, such that [a]H,, is fixed by y. Hence [a]~! € H,, i.e., there exists
m > n such that i,,,([a]) € B,,. By hypothesis B,, C H,, and we have a contra-
diction. Therefore H, = A,, for every n > 0, hence A = 0 and X is pseudo-null.

We want to point out the following fact about the B,, in connection with the
kernel of the norm maps.

Proposition 2.1. Suppose that B,.1 NKer(N, 1,) =0 for some n = ny,
then X ~ A,,.

Proof. By hypothesis Nyi14 : Byi1 — By, is injective. Thus it has to be
surjective too and then |B,.1| = |B,|- But this means éT_l(YnH) +Y, = éT_l(Yn)
and, as we have seen in the proof of Lemma 2.2, Y, is contained in the image of &7.
Therefore Y,.1 + 7Y, =Y,, ie, (yu+1,1Y, =Y,. By Nakayama’s Lemma
Y,=0and X ~ A, . O

Remark 2.3. The proof of Proposition 2.1 follows the lines of the rest of our
results, but we can also provide a more group theoretic proof. Consider the action of
I'yi1 on Ker(N,41,)/Ker(N,11,) N B,11 which, by hypothesis, is isomorphic to
Ker(N11,). Now, since Ker(N,+1.,)/ Ker(Ny,1,,) N By+1 has no fixed points, by the
class orbit formula we have that Ker(V, ) is trivial: hence X ~ 4, ~ A4,

We conclude this section drawing attention on how the capitulation of B,, N H,,
depends basically on the exponent of the torsion module D[T1].

Proposition 2.2. Foranyn > r, B, N H, capitulates exactly in B,,.;, where
pt is the exponent of D[T.

Proof. Interms of A-modules
B,NH, ~ (&' X)/Y)ND+Y,/Y,) =7 X) N D+ Y)Yy,
S0, using the modular law, we get
B,NH, ~ (&' Y)Y, + & V) ND)Y, =Y, + &' X)ND)/Y,.

Since n > r, one has that Y, + (¢;(Y,,) N D)/Y,, is isomorphic to &, (¥,) N D =
DI[T]. Hence we obtain B,, N H,, ~ D[T]+ Y, /Y, and, using (2), we get

an«rg’(Yn + D[T]) = Yn+( + an«rg’D[T] c Yn+§ +pZD[T] + TVnQD[T] = Yn+¢fa
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for some @ € A. This means that B, N H, capitulates in B,,,; for all » > r. Now
assume that there exists some m > r such that B,, N H,, capitulates in B, ;.
Working as before, one finds vy, p+—1(Yy, + DIT]) = Y,4c-1 and, in particular,
Vinmic-1DIT1 € DN Yy 4¢-1 = 0. Using (2) again, we find p*~'D[T] = 0: a contra-
diction. O

Recall that X is pseudo-null if and only if A, = H, for every n > 0 (see [8,
Proposition 2]). Then, an immediate consequence of Proposition 2.2 is that, if X is
pseudo-null, then B,, capitulates exactly in 4, for every value of n > .

3 - The second criterion and Greenberg’s Conjecture

This section is devoted to proving our second criterion, which in the case of a
totally real field for which Leopold’s Conjecture holds, links the nilpotency of the
Galois group Gal(L(K)/k) with Greenberg’s Conjecture (see Corollary 3.1).

If H is a group, for all a, b € H, we put a’® = b~'ab and [a,b] = o 'b 'ab. If
H,, Hs are subgroups of H we denote the commutator group of Hy; and Hy by

[Hi,Hsl := ([h,he] : hy € Hy, he € Hs) .

When H is a topological group we refer to [H;, Hz] (the topological closure of
[H1,H:]) as the topological commutator group of Hy and He. Moreover we let

CiH):=H and CyH):=[H,C;i_1(H)] (for anyi>2)

denote the lower central series of H. If H is an abstract group, C;(H) has the obvious
meaning. The group H is called nilpotent if there exists an integer ¢ such that
Ci.1(H) =1 and the least integer 7 such that C;,1(H) =1 is called the nilpotency
class of H. We use also the notation H <, G (resp. H <, () to indicate that H is a
closed (resp. open) subgroup of a topological group G.

We begin with a simple observation: if a group G has a normal subgroup N such
that G/N ~ 7, then there exists a subgroup H of G isomorphic to Z such that
G = N x H. The following lemma deals with the case of a topological group.

Lemma 3.1. Let G be a profinite group and N a closed normal subgroup
such that G/N is a torsion-free procyclic group. Then there exists a procyclic
subgroup H of G such that G is the topological semidirect product of H acting on N.

Proof. Leto; € Gbearepresentative of a topological generator of G/N and let

Hy := (1) <. G.Notethat HN/N, being a subgroup of G/N, is torsion-free. By the
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canonical isomorphism (which is also an homeomorphism, because N is compact)
between H1N /N and H;/N N H;, we obtain that the last is torsion-free too. Hence
(see, for example, [13, Section 2.7]) there exist disjoint sets of primes S;, Sz, S3and
an isomorphism

¢:Hy — [[ Zp < [ Zo x TI Zo/0" P70

peS; pESs PES;

(where n(p) is a positive integer for every p € S3) such that

¢Hy N N) = ] Zp x [ Zo/0" "7, -

pGSz pGSg

Define H := gifl(]_[pes1 Z,p) and let o be a topological generator of H: since
HnN(H;NN) =0, it follows immediately that H "N = 0.

The natural projection 7 : G — G/N is a closed map since G is profinite and N is
compact. Hence the equality oy N = aN yields

G/N = (uN) = (aN) = (n(@)) = n({x)) = n((«)) = n(H) .
Therefore G = HN and we have an isomorphism of groups between G and N x H. It
is easy to check that the map
0:NxH—G

given by 0(n, h) = nh, is also a homeomorphism of topological spaces. O

Lemma3.2. LetGbeagroup andlet A< G, B < G be abelian subgroups such
that G = A xB. Then

Ci(@) =141 B]
for all 1 =2 (where [A,;_1B]l=I[...[[A,B],B]...1,B] with B appearing i — 1
times).

Proof. Weuseinductiononi > 2. Leti =2anda, a; € A,b, b; € B. Asimple
computation shows that

[ab, a1b;] = [a®, by 1[(a; V)™, b] € [A, B],

so Co(G@) = [A, B].

Now assume the statement true for some 7 > 2 and observe that, if £ is a normal
subgroup of G contained in A, then [E, G] = [E, B]. Thus, since C;(G) is a normal
subgroup of G contained in 4,

Cii1(G) =[Ci(G),G] = [[A,;1B],G] = [[A, ;-1 B], B] = [A,; B] .
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Now we are ready to state and prove our second criterion for the finiteness of
the Iwasawa module X (X /k).

Theorem 3.1. Let K/k be a Z,-extension of a number field k. The following
conditions are equivalent:

(a) X = X(K/k) is finite;
(b) the sequence {|By|},cn i bounded and G := Gal(L(K)/k) is wilpotent.

Proof. By Lemma 3.1, we can write G as a semidirect product G =X xI”
(where I" is isomorphic to Z,). We claim that C;1(G) = T'X for every i > 1 and
prove it with an induction argument on .

If 7 = 1 the claim is true by, for example, [14, Lemma 13.14], so we assume that it
holds for some 7 > 1. We have

Cis2(9) = [Ci11(9), 6] = [T"X, G]

and, applying Lemma 3.2, we obtain

Ciy2(9) = [TX, I'].

It is easy to show that [T"X, I'l = T"+1X and T"*1X is closed (since it is the image of
a compact set). Thus C; 2(G) = T"*'X and the claim is proved.

(b) = (a) Let j € N be the nilpotency class of G (i.e., the least ¢ such that
Ci+1(G) = 1): the previous claim yields X = X[7”]. Now, since {|Bul},ex is bounded,
we have C,, ~ X/TX (for every m > n, see the proof of Lemma 2.2) and in parti-
cular this means that X/7X is finite. Hence 7 does not divide the characteristic
polynomial fx of X(K /k) (for a definition see, e.g., [14, Section 15.4]) and we conclude
that 77 and p'fy are two relatively prime annihilators of X for suitable j, 7 € .

(a) = (b) The boundedness of the orders of the B,, comes from the bound for
the X,,. Since X is finite, there exists a j € N such that 77X = 0 which yields
Ci1(9) = 1. O

Observe that in the previous theorem we can substitute, whenever convenient
for applications, the hypothesis on the boundedness of the sequence {|B,|}, . With
the one on {|Cy|},cn -

Corollary 3.1. Let k be a totally real number field for which Leopold’s
Conjecture holds. Then Greenberg’s Cowjecture is true for k if and only if
Gal(L(keye) /) is nilpotent.
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Proof. Forany number field k let M (k) be the maximal abelian p-ramified pro-
p-extension ok k, k be the compositum of all the Z,,-extensions of k and, in analogy to
the definition of k], (i.e., the genus p-class field of &, /k), we denote by (kcyc)' the
maximal abelian extension of k contained in L(k.).

Considering the following diagram

k k cye k

we notice that the degree [M (k) : l~c] is finite for every number field k by class field
theory (see for example the proof of [14, Theorem 13.4]). Since, in our case, k is a
totally real number field for which Leopold’s Conjecture holds, we have k& = keye and
consequently (k)" is a finite extension of key..

Now, the sequence {|C,|},cx is bounded if and only if | X /7X] is finite (see the
proof of Lemma 2.2) and this means [(kcyc)’ : keye] < 00, so the condition on the
sequence {|By|},cx in Theorem 3.1 is automatically satisfied in the setting we are
considering. O

The results of this section seem to suggest that it could be worthwhile to study
the lower central series of the Galois group G := Gal(L(K)/k). It is reasonable to
expect that (at least in some cases) it could provide a different approach to results
similar to those obtained in [5].
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