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Integer polynomials with small integrals

Abstract. The smart method of Gelfond—Shnirelman—Nair allows to obtain in
elementary way a lower bound for the prime counting functions z(x) and y(x), in
terms of the integral of suitable integer polynomials. A survey on the knowledge
about the method together with a new approach and some new results are pre-
sented.
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1 - introduction

Let n(x) be the number of primes not exceeding x. The Prime Number
Theorem (PNT), independently proved in 1896 by Hadamard and de la Vallée-
Poussin, states that

N
n(N)Nlog—N aSN_"i“OO.

In 1851, Chebyshev [8] made the first step towards the PNT by proving that,
given ¢ > 0,

() - <) < (o te)

N
log N log N

where ¢; = log(21/231/351/5/301/30), ¢y = 6¢, /5 and N is sufficiently large. This re-
sult was proved using an elementary approach, i.e. without the use of complex
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analysis and the Riemann zeta function. A survey of elementary methods in the
study of the distribution of prime numbers may be found in Diamond [9].

In 1936 Gelfond and Shnirelman, see Gelfond’s editorial remarks in the 1944
edition of Chebyshev’s Collected Works [8, p. 287-288], proposed a new elementary
and clever method for deriving a lower bound for the prime counting functions 7(x)
and w(x). In 1982 the Gelfond-Shnirelman method was rediscovered and developed
by Nair, see [12] and [13]. The method of Gelfond—Shnirelman—Nair runs as follows.

Let dy denote the least common multiple of the integers 1,2, ..., N. By using the
fundamental theorem of arithmetic it is immediate to see that

1) dy = H p[logN/logpL
p<N

where p belongs to the set of prime numbers and [log N /log p] denotes the integer
part of the real number log N/log p. Then we can write

(2) dy=exp <10g ( []pe 1‘@“)) =exp ( > _[logN/logp]log p) =exp(y(N)),

P<N p<N

where y(x) is the summary function of the von Mangoldt A-function.
An elementary and smart way to proceed is to consider a polynomial with integer
coefficients

N-1
P(x) = Z ayx”

n=0

and let
1

IP)= [ P(x)dx =
/

N-1
a
anl'

n=0

Since I(P) is a rational number whose denominator divides dy, we have that I(P)dy
is an integer and hence, if I(P) # 0, we get

dy|I(P)| >1
and then from (1) we obtain
1
3 N) > log ———.

Moreover from (1) we have

dN — H p[logN/logp] < H plogN/logp
p<N p<N
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which gives

logdy < log< H plogN/lng> = Z log(plogN/lng) = n(N)log N
p<N p<N
and hence

1
log ———
logdy [1(P)]
> > .
) ) 2 logN = log N

From the above we can obtain a lower bound for the prime counting functions 7(N)
and y(N) from an upper bound for |/(P)|. The easiest way to carry on is to bound the
absolute value of the integral I(P)

1 1
(5) I(P)| = / P(x)de| < / |P(x)| dac
0 0
and
1
(6 [ 1P@lds < max, 1PG] = [1Plloy.
0
obtaining
( )>log(1/||P||[o,u)
N = log N
and
1
w(N) > log ———.
= 1Pllox,

If we could find a sequence of integer polynomials p,, of degree n, with sufficiently
small supremum norms such that

. ey 1 B
nkgrnoo log (Han[o?l]n) a nEIJPoo B ’7& IOg ”an[O"l] N 17

we would obtain the best possible lower bound consistent with the PNT. This mo-
tivates the study of the quantities Cy such that

1
7 =———1 i P
(7) Ov=-§_1 0g< P@E ] | ”[O’”>’

deg (P)<N,||P|lg1;>0

the so-called integer Chebyshev problem.
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2 - The classical integer Chebyshev problem

Much is known about polynomials for which the above minimum is achieved
and about the quantities Cy. For small values of N it is easy to obtain the fol-
lowing table.

N Cn Extremal p(x) 1211011
3 106931 |x(—x) 1/4=0.25
4 107803 |21 —x)@x—1) 1/6/3 = 0.0962
5 106931 |22(1 — o) 2(1 — x)@2x — 1),

w1 — x)(5x? — bx + 1) 1/16 = 0.0625
6 |0.8047 |a2(1 —a)’@r—1) 1/251/5 = 0.0178
7 107803 |21 — x)*@2x — 1) 1/108 = 0.0092
8 07991 |31 —x)®@x — 1) 0.0037
9 10.8010 |31 —ax)®@x — 1) 0.0016

10 |0.8316 |31 —x)*@x — DG —bx+1) | 0.0005

It is quite evident a regularity in the form of the polynomials of the table, but
unfortunately it is not entirely clear how to construct extremal polynomials for
larger values of N. However, along the lines of [11], we can prove the following
partial results.

Theorem 2.1. Let N > 3 and let p(x) an extremal polynomial for (7). Then
a(1 — x)|p().

Theorem 2.2. Let N > 6 and let p(x) an extremal polynomial for (7). Then
2?1 — w)|p().

Theorem 2.3. Let N >4, N #5, and let p(x) an extremal polynomaial for (7).
Then (2x — 1)|p(x).

If we are satisfied with results for N tending to infinity, we can claim the fol-
lowing result of E. Aparicio [2].
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Theorem 2.4. Let N be sufficiently large and let p(x) be an extremal poly-
nomial for (7). Then

(x(1 — x))[(Nfl)/ll](zx _ 1)[(1\7*1)&](5%2 — B+ :I_)[(I\Ll))-:s]|p(',)c)7

with 0.1456 < 41 < 0.1495, 0.0166 < 2 < 0.0187 and 0.0037 < A3 < 0.0053.

The best know result of this type is due to P. B. Borwein and T. Erdélyi [7] and
is the following.

Theorem 2.5. Let k be a positive integer,

po(x) =,
pl(x) =1- X,
pe(x) =22 — 1,

ps(x) = ba? — b + 1,

pa(ac) = 132% — 1922 + 8¢ — 1,

ps(x) = 1323 — 200 + 9 — 1,

pe(x) = 292 — 58« + 40a% — 11 + 1,

pr(x) = 31t — 612 4 41a% — 11 + 1,

ps(x) = 3l — 632> 4 44a® — 122 + 1,

po(x) = 94128 — 37642 + 634925 — 5873x° 4 3243x* — 1089x> + 2162% — 232+ 1

and
67 .24

Payo(@) = p§’ p* p3 s pa 5 P 7 D8 Do-
Then (sz(ac))k divides every extremal polynomaial p(x) for (7), provided N is suf-
ficiently large.

It was proved by Shnirelman, see [11], that the sequence Cy converges to a limit
C. Borwein and Erdélyi [7] showed that C € (0.85866,0.86577) and the lower bound
was improved by Flammang [10] to 0.85912. The best known result to date, due to
Pritsker [14], is that C € (0.85991, 0.86441). See also [1], [5], [6] and [16].
Therefore, following this lines, we can get a lower bound in the form
N
> -
N = C log N’
only for a constant C less than 0.87, which is quite far from what is expected by
the PNT.
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3 - A new approach to the method of Gelfond-Shnirelman

In order to avoid the trouble above we can deal with the problem in a different
way. From the definition of /(P) we have that

1 N-1 o, 1Y gy
IP)|=|[|P = T = ——— .
P)| / (@) de ;)n—&-l dy ;)n—&—la
" - -
Since dy/(n + 1) and a,, are integers for every n =0,1,..., N — 1, we have that
g e
n
n:OnJrl

is an integer and then the small positive value of |I(P)| is 1/dy and it is reached if

with integer coefficients dy/(n + 1). Since the integer coefficients dy, dy/2, ...,
dy/N are relatively prime, we have that for all N there exists a polynomial of de-
gree < N such that I(P) = 1/dy. This leads to define the following sets of poly-
nomials.
Definition 3.1. Let N > 2. We define
Zyn = {P(x) € Zlx], deg (P) < N},
Ry = {P(x) € Zlx], deg (P) < N,I(P) = 0}

and
Sy = {P) € 7Zl[x], deg (P) < N,I(P) =1/dn},

where dy denotes the least common multiple of the integers 1,2,..., N.

It is simple to verify that, for every N, Zy is a free Z-module and Ry is a
submodule of Zy and then it is also free. Sy is the affine space of the integer
polynomials with positive and minimal integral on [0, 1].
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4 - Properties of the sets Ry
We start giving a theorem about the structure of the modules Ry.

Theorem 4.1. A basis By of the module Ry can be constructed by adding to a
basis By_1 of the module Ry_1 a suitable polynomial q(x) € Ry. More precisely

1. if N is a prime: q(x) =1 — NaN-1L;

2. if N is a power of a prime: q(x) = "1 — pa¥ -1, where N = p*, n = p*~1 and

k>2;

3. otherwise: q(x) = a1a™ ! + a1 — N1 where p1 and ps are distinct
primes dividing N, a; and az are such that a1p1 + agpe =1, ny = N/p;
and ng = N /ps.

Proof. Let N be prime and p(x) € Ry. Then we can write

p(®) = ag + arx + aga® + ...+ ay_x¥

with
dy

dy dy dy _
aOdN+a17+a2§+"-+aN72m+(lN,1ﬁ—0.

Since N is a prime number we have that dy = Ndy_; and then

dy dy
5 Nl

d
N\dN,N|7N7N|

and N does not divide dy/N. From this it follows that ay_;1/N is an integer.
Now we define

an-
’1”(90)=ao—|—a1x—|—a2x2+...+aN,2xN*2+%’

which implies

p(x) = r(®) + ay_1aV ! — ON-1 _ (i) — aN-1 (1 - N2V,
N N
Then the first assertion of the theorem is proved, since (x) € Ry_;.
To prove the second assertion we let N = p*. In this case dy = pdy_; and
more precisely

log q/log N k logq/log N
dN:Hq[ogq/og I=p H glogd/10eNT — Ny,
g<N q<N.q#p
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where (m, p) = 1 and ¢ runs over primes. From this it follows that

dyp| X p B
plan,p 2 NY 3 7pN_1

and p does not divide dy /N, hence ay_1/p is an integer.
Now we define n = p*~! and

AN-1 _n-1

r(®) = ag + a1 + aga® + ...+ ay_sxN 2 + L

which implies

aN-1

N-1 _ ON-1 1 n—1
=r(x) — — (2" — px
p

p(x) = r@) + ay_2™ " — x

N—l).

Then also the second assertion of the theorem is proved, since r(x) € By _1.

To prove the last assertion we observe that if N is neither prime nor a power of a
prime then there exist two primes p; # p2 both dividing N. Let a; and ay integers
such that a; p; + agpz = 1, we define ny = N/p1, ng = N/p2 and

71 —1 ng—1

x) = ag + mx + azx® + ...+ ay 22N 2 + aray 1% + agan_1x

We conclude that

n1—1 Nno—1 N—l)

p) = r@) — ay 1 (@™ + aga™ ™ —x

and then the proof of the theorem is complete, since r(x) € By _1. O

Using Theorem 4.1 we can fully describe the sets Ry. By the definition we have
Ry = {p(x) € Z[x],p(x) = a¢ + a1x,2a0 + a; = 0}
= {p@) € Z[x],px) = ap(1 — 2x), a9 € 7Z}.
Then a basis Bs of the set Rs is
By = {1 — 2x}.

Using several times Theorem 4.1 we can get a basis By of the set Ry for many
values of N:

Bs = {1 — 22,1 — 3x?},

By = {1 —2x,1— 3a? —x + 22},

Bs = {1 — 22,1 — 3a?, —x + 23,1 — 5u*},

Bg={1—2x,1—-3x% —x+ 2231 — 50, (1 — 2 — 2*)},

Br = {1 —2x,1 —3x?, —x +2¢3,1 — bt x(1 — x — a*), 1 — Tab},

Bg = {1 — 22,1 —3x? —x + 2231 — 5t 21 — 2 — ), 1 — Tab 2® — 207} ...
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5 - Properties of the sets Sy

It is much more complicated to describe the sets Sy. Since Sy are affine spaces,
we can write
Sy = {p(@) + r(x) : (x) € Ry},

where p(x) is a fixed polynomial of Sy. For small values of N it is simple to find such
a suitable polynomial:

pla) = (1 — x)

pla) = 2*(1 — )

pla) = 2*(1 — )1 — 22)
plx) = 231 — @)

pae) = #*(1 — x)(w — 2a%)
) = 231 — x)’(1 — 3a2)

222222

I
[ TR TN~ NG LI NS IC

Unfortunately it is very difficult to find out such a polynomial for a generic value
of N. However we may provide some theorems about their roots and their factor-
ization.

Theorem 5.1. Let N > 2. Then there exists an integer polynomial P(x) € Sy
with x = 0 (or x = 1) as a root of degree ~ N /2.

Theorem 5.2. Let N be an even natural number. Then there exists an integer
polynomial P(x) € Sy with N — 1 roots on (0,1) and N — 1 changes of sign.

On the other hand we can prove that in the set Sy there are also integer poly-
nomials with at most one root and one change of sign.

Theorem 5.3. Let N > 2. Then there exists an integer polynomial P(x) € Sy
with at most one root on (0,1) and at most one change of sign on (0, 1).

For the proof of the above theorems see [3]. At last we can investigate the
factorization of polynomials in Sy, similarly as shown in Section 2 for the classical
integer Chebyshev problem.

Theorem 5.4. Forevery N > 3 there exists a polynomial p(x) € Sy such that
p(0) = pQ) = 0, namely p(x) = (1 — x)q(x) with q(x) € Zlx).
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Proof. We can directly prove that the theorem is true for 3 < N < 7. Then we
let N > 8 and p(x) € Sy, that is
p(®) = ag + are + aga® + ...+ ay_x¥
and

d d d d d
(8)  aodytar gty g T ONa gy = L

The Diophantine equation

dN dN dN dNi
a3T+a4F+...+aN_2m+aN_lﬁ—].
has an integer solution (ag, ay,...,ay_1), since for N > 8 we have
dy dy  dy_dv)_,
4’57 'N-1"N/)

Setting ap =0, a1 =2(ag + a4+ ... +ay_1) and ag = —3(ag + a4 + ... + ay_1) we
have that (ag, a1,az,...,ay_1) is a solution of (8) and verifies p(0) = ay = 0 and

10(1):(104-01/1—|—(Z¥/2—|-...—|—(;l,]\771:()7

which concludes the proof of the theorem. O

At the cost of some complications we can prove a similar result also including the
factor 2x — 1).

Theorem 5.5. Let N > 4.

1. If N is not a power of 2, then there exists a polynomial p(x) € Sy such that
p(0) = p(1) = p(1/2) = 0, namely such that p(x) = x(1 — x)2x — 1)q(x) with
q(x) € Zlx);

2. If N is a power of 2, then there does not exist a polynomial p(x) € Sy such that
2 — D)|p(x).

Proof. We can directly prove that the theorem is true for 4 < N < 24. Let
N > 25 and p(x) = (2 — 1)(bg + by + bae® + . .. + ay_2xN2). The condition

1

1
/p(x) doe = %
0
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is equivalent to
N-2
dy k
9 b, =1.
®) E:m+nw+m
If N is a power of 2, then all the coefficients

dy k
k+ Dk +2)

are even and thus the equation (9) has no solutions, therefore there does not exist a
polynomial p(x) € Sy such that 2x — 1)|p(x).
If N is not a power of 2, then we are able to prove that the coefficients

dy k
(k+Dk+2)

are relatively prime. In order to prove the coprimality, we suppose on the contrary
that there exists a prime p dividing

dy k
k+1Dk+2)

for every k=1,2,...,N — 2. Let H = p/, with j = max{i : p’ < N} and observe
that p does not divide dy/H. Then at least one of the two coefficients

dy (H-1) and dy (H-2)
HH+1) (H-1DH

is not divisible by p, a contradiction. By the coprimality of the coefficients of
the Diophantine equation (9) it follows that there exists p(x) € Sy such that
2x — D|p().

To have also the factors x and (1 — x) it is sufficient to note that the integer H
defined above is greater than 7, since N > 25, and then there exists a solution
(b4, b5, . ..,by_2) of the Diophantine equation

N-2 dy k

(10) 22%+D%+%

=4

by =1.

We conclude the proof as above by setting by = b; =0, bp = 9(by + b5 + ... + by_2)
and b3 = —10(by + b5 + ... + by _2). O

Following the same lines we can prove also this last theorem.
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Theorem 5.6. Let N >4 and let 0 < m < n be natural numbers such that
(n,m) = 1.

1. If N is not a power of a prime, then there exists p(x) € Sy such that
(e —m)|p(x);

2. If N is a power of a prime p, then there exists p(x) € Sy such that
(nx — m)|p(x) if and only if (p,n) = 1.

6 - Open problem

In the standard method of Gelfond—Shnirelman—Nair we bound the absolute
value of the integral

1 1
(11) [ I(P)| = /P(m)dx §/|P(w)|dm
0 0
and then
1
(12) [ 1P@as < max 1P@)] = [Pl
0
to obtain

log<1/||P||[011])

( )Zlog—N

As observed in the introduction, following this line we can get a lower bound in

the form
N

nN)>C Tog V'
only for constant C' much smaller than 1. It is not clear if this is only a consequence
of the bound by the supremum norm on the interval [0, 1] in (12) or if the inequality
(11) is also involved.

If the set Sy contains polynomials of constant sign in (0, 1) for all N, or at least
for infinitely many values of N, the limit of the method would be only due to the
inequality (12).

It is simple to verify that for very small values of N these positive poly-
nomials exist. For Ss, deg(P) =2 and ds = 6, we have the positive polynomial
P(x) =21 — x) and for Sy, deg(P) =3 and dg = 12, we have the positive poly-
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nomial P(x) = 2?(1 — x). For Sy with larger values of N is not simple to de-
termine what happens, and this leads to the following question.

Conjecture. For every N >3, or at least for infinitely many values of N,
there exists an integer polynomial p(x) € Sy such that p(x) > 0 in the interval [0, 1].

An answer to the posed question in the maximum generality does not appear
simple but it is possible to obtain some results about small values of N. A
straightforward way to obtain a negative conclusion about the existence of integer
polynomials of Sy non-negative in [0, 1] is to consider 0 < x; < xe < a3... <, <1
and a generic polynomial p(x) € Sy in the form

N-1
plx) = Z ag.
k=0

Since p(x) € Sy, we have

that is

and consider the following linear Diophantine system composed of an equality and n
inequalities

If we are able to prove that, for a fixed value of N, the above linear system has no
integer solutions aj,az...any_1, we obtain that there does not exist an integer
polynomial p(x) € Sy such that p(x) > 0 in the interval [0, 1].

By the branch and cut algorithm, used in many mathematical software sys-
tems, we can verify in deterministic way that for N =5 and x; = k/4, with
k=0,1,...,4, the system (13) has no integer solutions, although it has infinitely
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many real solutions, which implies that there are no integer polynomials p(x) € Ss
such that p(x) > 0 in the interval [0, 1]. Hence we disproved the strong form of the
conjecture.

For N = 6 there exists the polynomial p(x) = 231 — x) € S¢, non-negative for
all values of x € [0,1]. Then the case N =5 might appear as an exceptional case.
Instead we can verify that for many values of N there does not exist a polynomial in
Sy non-negative in [0, 1]. More precisely we can verify that there does not exist an
integer polynomial p(x) € Sy such that p(x) >0 in the interval [0,1] for all
7 < N <20, with the only exclusion of the case N = 10, for which we have the
polynomial p(x) = «3(1 — x)*(2x — 1)%.

Thus not only the conjecture about the positivity of the polynomials is not true
for all values of N but, with the exclusion of small N, seems to be satisfied only for a
minority of the values of N. It still remains open the question whether the con-
jecture is true at least for infinitely many values of N.
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