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Structure of the paper

In the first chapter we recall some landmark theorems of the last century, such
as the Mordell-Weil Theorem, the Manin-Mumford Conjecture, the Mordell-Lang
Conjecture and the Bogomolov Conjecture. In Section 2, we introduce the defini-
tions of anomalous and torsion anomalous varieties and a general open conjecture:
the Torsion Anomalous Conjecture. In Section 3, we discuss effectivity aspects, in
particular we present conjectures and results on the height of torsion anomalous
varieties. In Section 4, we explain how these bounds imply some cases of the ef-
fective Mordell-Lang Conjecture, which is one of the challenges of this century. As a
further application, in Section 5 we explicitly bound the Néron-Tate height of the
rational points of a new family of curves of increasing genus, proving the effective
Mordell Conjecture for these curves. In Section 6, we prove new bounds for the
torsion anomalous points on a curve and we explain the implications of these bounds
on the quantitative and effective Mordell-Lang Conjecture.

1 - Setting and Classical Results

By a variety X over a number field ¥ we mean a subset of an affine or projective
space, defined by a set of polynomial equations with coefficients in k. The k-rational
points of X are the solutions with coordinates in k&, denoted X (k). We denote by G a
torus or an abelian variety over the algebraic numbers and we identify G with G(Q).
A torus G" is the affine algebraic group (Q°)" endowed with coordinatewise mul-
tiplication. In G" we consider the Weil logarithmic height. By an abelian variety A,
we mean an irreducible group variety over the algebraic numbers embedded in
some projective space. On A we consider the canonical Néron-Tate logarithmic
height. We denote by h the described height function. We consider on G the Zariski
topology. The torsion points of G, denoted by Torg, form a dense subset of G and are
defined over Q. By a generalisation of Kronecker’s theorem, Tor is exactly the set
of points of height zero. We denote by ki, the field of definition of Torg.

Let V be a subvariety of G defined over the algebraic numbers.

A central question in Diophantine Geometry is to describe the set of points on V'
that satisfy some natural arithmetic property. The general method to study such a
problem is to compare the arithmetic and the geometry of the variety. The leading
principle is that to a geometric assumption on V corresponds the non-density of
subsets of V defined via arithmetic properties.

In recent years several authors have obtained crucial results in this context,
which in turn triggered a host of quite general questions concerning subvarieties
embedded in general group varieties.
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A simple but illustrative example is the case of an irreducible curve C in a torus
G". Inside the torus we can consider natural subsets defined via the group law: the
torsion subgroup Torq», any subgroup I” of finite rank and the union B, of all al-
gebraic subgroups of codimension > r. A natural question is to ask when the in-
tersection of the curve with one of these sets is finite. Clearly, if the curve is a
component of an algebraic subgroup none of these intersections is finite, however,
excluding the trivial cases, it turns out that the intersection of C with Torg», I” and Be
is finite. These are very special cases of the Manin-Mumford Conjecture, Mordell-
Lang Conjecture and of the Torsion Anomalous Conjecture, discussed below.

Geometrically a variety is characterized by its ‘distance’ from being an algebraic
subgroup. More precisely:

Definition 1.1. A variety V C G is a torsion variety (resp. a translate) if
it is a finite union of translates of algebraic subgroups of G by torsion points
(resp. by points).

A proper irreducible subvariety V ¢ G is weak-transverse (resp. transverse) if it
is not contained in any proper torsion variety (resp. any proper translate).

Clearly transverse implies weak-transverse and non translate, which imply non-
torsion.

Arithmetically one considers subsets of V defined via the group structure or via
the Weil or Néron-Tate height function, for instance torsion points, subgroups of
finite rank or points of small height. For a subvariety V c G C P™ we consider the
normalised height of V, denoted (V), defined in terms of the Chow form of the ideal
of V, as done by P. Philippon in [Phi91] and [Phi95].

We now recall some of the classical landmark theorems proven in the last cen-
tury in this context.

Theorem 1.2 [Manin-Mumford Conjecture]. A subvariety V of G is a torsion
variety if and only if the set V N Torg is Zariski dense in V.

The Manin-Mumford Conjecture was proved by M. Raynaud [Ray83] for abelian
varieties and by M. Laurent [Lau84] for tori. Another break-through result is

Theorem 1.3 [Mordell Conjecture]. There are only finitely many k-rational
points on a curve over a number field k and of genus at least 2.

G. Faltings [Fal83] used sophisticated tools involving Néron models and Galois
representations, to prove the Mordell Conjecture. P. Vojta [V0j96] provided a



104 EVELINA VIADA (4]

completely different proof based on the so-called Vojta inequality. Using deep
Arakelov intersection theory, he showed that if two points of ‘big’ height lie on a
curve, then they have a fairly big angle with respect to a height norm. Vojta’s work
is fundamental in the proof of G. Faltings [Fal91] of Lang’s conjecture, which im-
plies the general Mordell Conjecture via the Mordell-Weil Theorem: the set of k-
rational points of an abelian variety over k is a finitely generated group.

Theorem 1.4 [Mordell-Lang Conjecture (MLC)]. Let I' be a subgroup of G of
finite rank. Suppose that V C G is not a translate. Then, the set VNI is not
Zariski dense in V.

As mentioned, G. Faltings proved it for I" a finitely generated subgroup in an
abelian variety (Lang’s Conjecture). Further work of P. Vojta [Vo0j96], M.
McQuillan [Meq95] and M. Hindry [Hin88] finally proved the general case of
varieties in semi-abelian varieties and I” of finite rank. Note that the Mordell-Lang
Conjecture implies the Manin-Mumford Conjecture, because Tor is a subgroup of
rank zero.

In 1981, F. Bogomolov [Bog80] stated a conjecture for curves, which generalises
as follows. Let V(0) be the set of points of V of height at most 6 and V(0) its Zariski
closure.

Theorem 1.5 [Bogomolov Conjecture]. A variety V C G is non torsion if and
only if its essential minimum

u(V):=inf{ c R : V(O =V}

1s strictly positive.

This generalises the Manin-Mumford Conjecture, because the torsion points are
precisely the points of height zero. The Bogomolov Conjecture was proved by E.
Ullmo [Ulm98] for curves and by S. Zhang [Zha98] in general.

Effective and explicit versions of this conjecture have important implications, as
clarified below. For points, the Bogomolov Conjecture becomes a generalisation of
Kronecker’s Theorem, and explicit versions are a generalisation (up to a log term) of
a famous conjecture of E. and D.-H. Lehmer (see [Leh33]): for an algebraic number

o not a root of unity h(x) > with ¢ an explicit constant. The best result

¢
[Qx) - Q]
proved for algebraic numbers is Dobrowolski’s bound [Dob79]:

c ( log[O(x) : O] >‘3

M) 2 0701 \ogloglow) - Gl



[5] EXPLICIT HEIGHT BOUNDS AND THE EFFECTIVE MORDELL-LANG CONJECTURE 105

In general, we state the following conjecture:

Conjecture 1.6 [Lehmer Type Bound]. Assume that the group variety G is
defined over a number field k. Let o be a point of G and let B be the irreducible
torsion variety of minimal dimension containing o. Then, for any real n > 0, there
exists a positive constant c(G,n) > 0 such that

(deg B)w "

[tor (@) ¢ Kepop ]t

k) > (G, )

where ki, 1s the field of definition of the torsion of G.

F. Amoroso and S. David [AD99] proved the conjecture in the toric case for
weak-transverse points. F. Amoroso and myself proved a general explicit result in
Tori [AV12]. S. David and M. Hindry [DHO00] proved this bound for weak-trans-
verse points in abelian varieties with complex multiplication (in short CM). M.
Carrizzosa [Car09] proved it for points in CM abelian varieties. No known method
generalises such a sharp bound in a general abelian variety. This is a big obstruction
when applying the bound. Some weaker bounds in this case are given for instance by
D. Masser [Mas85] and M. Baker and J. Silverman [BS04].

In positive dimension, an effective version of the Bogomolov Conjecture is

Conjecture 1.7 [Bogomolov Type Bound]. Assume that X C G is irreducible
and not a translate. Let H be the irreducible translate of minimal dimension
containing X. Then, for any real n > 0, there exists an effective positive constant
c(G, n) such that

(deg H) ™ "

WX) > e(G,n) TE—
(deg X)@dmpX n

where codim g X is the codimension of X in H.

This was proved for transverse varieties in a torus by F. Amoroso and S. David
[ADO3]. The sharpest explicit bound in tori is given by F. Amoroso and myself in
[AV09]. We avoided a complicated descent method used before. Instead, we used a
geometric induction which is simple and optimal. A. Galateau [Gal10] proved this
bound for transverse varieties in abelian varieties with a positive density of ordinary
primes. In [CVV12] with S. Checcoli and F. Veneziano, we deduce from Galateau’s
bound the Bogomolov bound for non-translates.
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2 - Anomalous and Torsion Anomalous Intersections

Anomalous Intersections are a natural framework for these kind of problems.

Definition 2.1. An irreducible subvariety Y of VC G is V-torsion anom-
alous if"

(i) Y is a component of the intersection of V with a proper torsion variety B of G;
and
(ii) Y has dimension larger than expected, i.e.

codimY < codimV + codim B.

In addition, Y of positive dimension is V-anomalous if the above conditions are
satisfied with B a proper translate of G.

We denote by V' the set of points of V deprived of the V-torsion anomalous
varieties and by V°” the set of points of V deprived of the V-anomalous varieties.

We say that B is minimal for Y if it satisfies (i) and (ii) and it has minimal
dimension. The codimension of Y in its minimal B is called the relative codimen-
ston of Y.

We also say that a V-(torsion) anomalous variety Y is maximal if it is not con-
tained in any V-(torsion) anomalous variety of strictly larger dimension.

We note that we define torsion anomalous points, while in the original definitions
they were excluded. Our choice makes some statements easier. It is clear that any
point would be anomalous, so in this case the dimension must be positive. This point
of view, introduced by E. Bombieri, D. Masser and U. Zannier [BMZ99], has been
successfully exploited in the development of the theory, and still leads the research
in this field. The following conjecture has been open for several years:

Torsion Anomalous Conjecture (TAC). For an wrreducible variety V C G,
there are only finitely many maximal V-torsion anomalous varieties.

The special case of considering only the V-torsion anomalous varieties that come
from an intersection expected to be empty, was considered previously by B. Zilber
[Zil02]. So the TAC implies:

Conjecture on Intersection with Torsion Varieties (CIT). If V C G is weak-
transverse, then the intersection of V with the union of all algebraic subgroups of
codimension at least dimV + 1 is non dense in V.

The CIT, as well as the TAC, implies several celebrated questions such as the
Manin-Mumford Conjecture and the Mordell-Lang Conjecture; they are related to
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the Bogomolov Conjecture and to previous investigations by S. Lang, P. Liardet, F.
Bogomolov, S. Zhang and others. Further connections to model theory have arisen
when similar issues were considered by B. Zilber. Recent works in the context of
the Morton and Silverman Conjectures highlight an important interplay between
Anomalous Intersections and Algebraic Dynamics (for an introduction to the
subject see [Sil07]).

The TAC has been only partially answered, after having received great at-
tention by many mathematicians. Only the following few cases of the TAC are
known: for curves in a product of elliptic curves (K. Viada [Via08]), in abelian
varieties with CM (G. Rémond [Rém09]), in abelian varieties with a positive
density of ordinary primes (E. Viada [Vial0]), in any abelian variety (P. Habegger
and J. Pila [HP16]) and in a torus (G. Maurin [Mau08]); for varieties of codi-
mension 2 in a torus (E. Bombieri, D. Masser and U. Zannier [BMZ07]) and in a
product of elliptic curves with CM (S. Checcoli, F. Veneziano and E. Viada
[CVV14]). Under stronger geometric hypotheses on V, related results have been
proved by many other authors.

A seminal result in this context has been the proof of the CIT for transverse
curves in a torus, by E. Bombieri, D. Masser and U. Zannier [BMZ99]. Their proof
builds on two main statements.

(a) The set of C-torsion anomalous points has bounded height.
(b) The set of C-torsion anomalous points has bounded degree.

Then, by Northcott Theorem the set is finite. A novel idea in the proof of part (b)
is the use of a Lehmer type bound. An approach of similar nature has been used later
in several papers. Unfortunately the Lehmer type bound is only known in CM
abelian varieties, so the method does not work in non CM abelian varieties. The
author introduced a new method which avoids the use of such a bound and uses
instead a Bogomolov type bound which is known in some non CM abelian varieties.
In [Via08], the author proved the TAC for curves in any power EV of an elliptic
curve. Then, in [Via09] and [Vial0] she generalised the method. A method of a
different nature, based on the Pila-Wilkie approach for counting points in o-minimal
structures, was introduced by J. Pila and U. Zannier [PZ08] and later exploited by
several authors.

For varieties of general dimension the situation is much more complicated. In
this case the dimension of the torsion anomalous varieties can be bigger than zero,
so for instance not all such anomalous varieties are maximal. We shortly explain the
method used for some varieties in tori in [BMZ07] and in products of CM elliptic
curves in [CVV14]. In Section 3, Theorem 3.4 we give some more details and in
Section 6 we extend the bounds for curves.
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Let Y be a V-torsion anomalous variety. So Y is a component of an intersection
V' N B with B a minimal torsion variety.

(a) Use the Zhang inequality [Zha98] and the Arithmetic Bézout Theorem due
to P. Philippon [Phi95] (both recalled in the next section) to get an upper
bound for the essential minimum of type

(deg B)*

Y)<¢ —n—>Z>"T—
HY) <6 Ty M deg ¥
for some rational exponent e;.

(b) IfY has positive dimension, use the Bogomolov lower bound for x(Y) and if Y
is a point, use the Lehmer lower bound for u(Y) = h(Y). These give a bound

of type
degB o
<Y
. ([km(Y):km] dng> < ud)

for some rational exponent es.

Clearly if e; < ez, then these two bounds imply that deg B < c3. In addition,
there are only finitely many algebraic subgroups of G of degree < cs. Thus, there
are only finitely many V-torsion anomalous varieties. In particular, for varieties of
codimension 2 in a torus and in a product of CM elliptic curves e; < ez holds.

3 - Bounded Height Conjectures

It is well known that an effective proof of the CIT implies the Effective Mordell-
Lang Conjecture, which has a strong impact on mathematics and computer science.
Obtaining effective versions of the Mordell-Weil Theorem would be an astounding
break-through.

The effectivity of the results is a key point in Diophantine Geometry, being the
difference between a purely theoretical statement and a theorem which could, in
principle, provide a way to explicitly solve diophantine equations. Let us underline
the difference between the words ‘effective’, ‘explicit’ and ‘quantitative’ when
talking about solving diophantine equations: a result is effective if it provides a
method that, in principle, allows to find all solutions; a result is explicit if it gives in a
simple way such solutions. In particular an effective result guarantees the existence
of an algorithm to find all solutions, while an explicit result provides the algorithm
itself. On the other hand, quantitative is a weaker concept and it means to bound
only the number of solutions. Notwithstanding their importance, several central
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results in Diophantine Geometry are, unfortunately, not effective. Among them are
the above mentioned Mordell-Lang Conjecture and Mordell-Weil Theorem, whose
proofs do not provide an upper bound for the height of the points, and consequently
we do not know how to find such points.

Similarly, the obstruction to an effective proof of the TAC and of the CIT is due
to the lack of effective bounds for the normalized height of the torsion anomalous
varieties. In the following we generalize the Bounded Height Conjecture (BHC),
formulated by E. Bombieri, D. Masser and U. Zannier [BMZ99] and proven by P.
Habbeger (see [Hab08] and [Hab09]). Their BHC says nothing for varieties that are
not transverse or that are transverse, but covered by anomalous varieties. Indeed in
these cases V% is empty. In addition their statements are not effective.

Conjecture 3.1 [BHC]. Foran irreducible variety V C G, the set V°* N Bgimv
has bounded height.

Recall that V% is the set of points of V deprived of the V-anomalous varieties and
Baim v = Ueodim B > dim v B 18 the union of all algebraic subgroups of G of codimension at
least dim V. We state here a natural variant of this conjecture which has particular
significance for weak-transverse varieties and remains open in its generality.

Conjecture 3.2 [BHC']. For an irreducible variety V C G, the maximal
V-torsion anomalous points have bounded height.

As shown in [Vial0], the BHC' together with a Bogomolov type bound is suf-
ficient to prove the CIT. The method is effective, thus an effective version of the
BHC', implies the effective CIT. For curves in an abelian variety, the BHC' is
proved by G. Rémond [Rém09]. His method relies on a generalized Vojta inequality,
so it cannot be made effective. For transverse varieties in an abelian variety with a
positive density of ordinary primes, the Bogomolov type bound is proved by A.
Galateau [Gall10]. Rémond’s and Galateau’s bounds, together with the just men-
tioned result of the author [Vial0] give the TAC for curves in abelian varieties with
a positive density of ordinary primes. Using the BHC of P. Habegger mentioned
above, the Bogomolov type bound of A. Galateau and the above implication of the
author, we can deduce the CIT for transverse varieties V not covered by V-
anomalous varieties in an abelian variety with a positive density of ordinary primes.

To emphasize the effectivity of the methods presented below we state the
Effective Bounded Height Conjeture.

Conjecture 3.3 [EBHC]. For an irreducible variety V C G, the maximal
V-torsion anomalous points have effectively bounded height.
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Effective bounds were known only for transverse curves in a torus [BMZ99] and
in a product of elliptic curve [Via03] (to pass from power to product of elliptic curve
is an immediate step explained for instance in [Via08]: in a product the matrices
representing a subgroup have several zero entries). In [CVV14, Theorem 1.4] we
prove the EBHC for V-torsion anomalous varieties of relative codimension one in a
product of CM elliptic curves. This implies the effective TAC for such torsion
anomalous varieties and in particular the effective TAC for V of codimension 2. As
usual we indicate by < an inequality up to a multiplicative constant, moreover we
indicate as a subindex the variables on which the constant depends.

Theorem 3.4. Let V be a weak-transverse variety in a product EN of elliptic
curves with CM defined over a number field k; let ki, be the field of definition of all
torsion points of E. Then the maximal V-torsion anomalous varieties Y of relative
codimension one are finitely many. In addition their degrees and normalized
heights are bounded as follows. For any positive real n, there exist constants de-
pending only on EN and n such that:

1. 1f Y is not a translate then
W(Y) <, (V) + deg V)¥=im =17,
degY <, deg V(W(V) + deg V) mr—=+7;

2. if Y is a translate of positive dimension then

N-2 dim V-1

I(Y) < (V) + deg V)T ko (V) : higr ] 780777,

dim V-1 +7

deg Y <, (deg V)(h(V) + deg V) [kior (V) ¢ gor]) ¥ o7 T

3. if Y is a point then its Néron-Tate height and its degree are bounded as

WY) <y (V) + deg V)T oy (V) kg | 70717,

dimV4+DHN-1)

[QY) : Q] <, (V) + deg V) eor (V) : Fror]) a5 .

The method to prove the theorem is effective, and we give explicit dependence
on V. This proves the EBHC for relative codimension one. In [CV14] we generalise
the method to abelian varieties with CM.

We sketch here the proof which follows the method described in Section 2. This
method will be extended and detailed in Section 6.

We shall prove that there are only finitely many B which give a V-torsion
anomalous varieties of relative codimension one. To this aim it is enough to bound
the degree of B. Let Y be a maximal V-torsion anomalous variety of relative codi-
mension one. Then Y is a component of V' N B with B minimal for Y.
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Use the Arithmetic Bézout Theorem and the Zhang inequality to get an
upper bound for the essential minimum of Y.

The Arithmetic Bézout Theorem states that for Z;,...,Z, irreducible
components of VNW with V and W irreducible projective varieties em-
bedded in P", we have

g

> h(Z) < deg ViAW) + deg Wh(V) + ¢ deg Vdeg W,

=1
where c is a constant depending explicitly on m.
To apply this in our setting, we construct a torsion variety B’, obtained by
deleting some of the equations defining B, such that Y is a component of
VNB, degB < (degB)““®# and h(B') = 0. Let k be a field of definition
for V and for any abelian subvariety of EV (such a k depends only on the field
of definition of V and E). Then, also all the conjugates of Y over ki, are
irreducible components of VN B'. Let S be the number of such conjugates.
The Arithmetic Bézout Theorem gives

Sh(Y) < degV WB') + deg B'(h(V) + cdegV)

dim V —dim

< (degB)“s®8 (W(V) + cdeg V).

The Zhang inequality states that

. -1 M(Y) h(Y)

So deg Y u(Y) < W(Y) which, together with (1), gives

dimV—dim Y

Sdeg Yu(Y) < (V) +cdegV)deg B wims

If Y has positive dimension and it is not a translate, use the Bogomolov lower
bound for wu(Y) and if Y is a point, use the Lehmer lower bound for
w(Y) = h(Y). In relative codimension one, these bounds give respectively

(deg B)'™"
€2 —— 3
(degY)™™"

in positive dimension; and

< uY)

, (degB)'™

o <Y
D) o1~ MY

in dimension zero. The case of a translate can be reduced to the zero-di-
mensional case.
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Parts (a) and (b) imply

dimV—dim Y

deg B < c3(W(V) + deg V) deg B  wim# .

By the definition of V-torsion anomalous

(2) N—-dimY <N —-dimV + N — dimB.
Thus
dimV —dimY <1
codimB
and
deg B < c¢(V),

with ¢(V) a constant depending on V. Consequently there are only finitely many
V-torsion anomalous varieties of relative codimension one and their height is
effectively bounded using, for instance, the bound for deg B in (1).

Note that if dimV = N — 2, then (2) implies dimB =dimY + 1. So for V of
codimension 2 all V-torsion anomalous varieties have relative codimension one, and
the above proof covers all cases.

In spite of the fact that the method above is effective, the use of a Lehmer type
bound is a deep obstacle when trying to make the result explicit. Moreover such a
bound is not known in the non CM case.

In [CVV15] we use a different method which avoids the use of a Lehmer type
bound, and so works for the CM and non CM case. Our method is completely ef-
fective and it proves new cases of the EBHC. We prove that, in a product of elliptic
curves, the maximal V-torsion anomalous points of relative codimension one have
effectively bounded height. An important advantage of this method is that we
manage to make it explicit. In the non CM case, we compute all constants and we
obtain the only known explicit bounds. Even if the result is only for points, the
bounds are very strong, in the sense that the bounds depend uniformly on the
degree and height of V, but are independent of the field of definition of V. This
independence is crucial for some applications. In [CVV15, Theorem 1.1] we prove
the following theorem.

Theorem 3.5. Let V be an irreducible variety embedded in EN. Then the
set of maximal V-torsion anomalous points of relative codimension one has
effectively bounded Néron-Tate height. If E is non CM the bound is explicit, we
have

h(P) < Ci(N)I(V )(deg V)V ! + Co(E, N)(deg V)N + C3(E, N),
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where

2 2 N-1
Cy(N) = ()Y NAY-2 <3N NHGININ-1(y 1>N+1>

3
(onwN-1)

3V log 2
2

Co(E,N) = Cl(N)( + 12N10g2—|—N10g3+6NhW(E'))

2 2
C3(E,N) = % log2 + N?hW(E’),

W, = 72 /T (r/2 +1) is the volume of the euclidean unit ball in R", h(V) is the
normalised height of V and hy(E) is the height of the Weierstrass equation of E ( if
E is given by y*> =a® +Ax + B then hy(E) is the Weil height of the point
(1:Az:B3)).

The proof of this theorem relies on a more classical approximation process in the
context of the geometry of numbers. Let P be a point as in Theorem 3.5; in parti-
cular P is a component of V N B for some torsion variety B. We replace B with an
auxiliary translate of the form H + P in such a way that P is still a component of
V N (H + P), and the degree and height of H + P can be controlled in terms of h(P).
Using the properties of the height functions and the Arithmetic Bézout Theorem,
we can in turn control the height of P in terms of the height and degree of H + P
itself. Combining carefully these inequalities leads to the desired result.

This construction is not difficult, but when making the constants explicit we must
do deep computations related to several height functions and to the degrees of
varieties embedded in a projective space. In order to keep the constants as small as
possible, we must adapt and simplify several classical arguments.

4 - Applications to the Mordell-Lang Conjecture

The toric version of the Mordell-Lang Conjecture has been extensively studied,
also in its effective form, by many authors. A completely effective version in the
toric case can be found in the book of E. Bombieri and W. Gubler [BG06, Theorem
5.4.5]. However this says nothing about the k-rational points of a variety, because
the k-points are not a finitely generated subgroup in a torus. The Mordell-Weil
Theorem shows that the k-points of an abelian variety are a finitely generated
group. But unfortunately an effective Mordell-Lang Conjecture in abelian varieties
is not known. The method by C. Chabauty and R. Coleman, surveyed, for example,
by W. McCallum and B. Poonen in [MP10], gives a sharp quantitative Mordell-Lang
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statement for a curve in its Jacobian and I” of rank less than the genus; it involves a
Selmer group calculation and a good understanding of the Jacobian of the curve. In
some special cases, the bounds are sharp, this allows an inspection that leads to
finding all the points in the intersection of the curve with I" (see W. McCallum
[McC94]). The method by Y. Manin and A. Demjanenko, deseribed in Chapter 5.2 of
the book of J.P. Serre [Ser89], gives an effective Mordell Theorem for curves with
many independent morphisms to an abelian variety. As remarked by J.P. Serre, the
method remains of difficult application.

In this section we discuss several implications of our bounds on the height to the
effective Mordell-Lang Conjecture in the elliptic case. In particular we would like to
underline that with our method the bounds are totally uniform in 2(V) and deg (V),
thus it is very simple to give examples of curves with effective, and even explicit
bounds for the height of their rational points. We will give some new explicit ex-
amples in the next section. This is a major advantage over the just mentioned ef-
fective classical methods.

Let E be an elliptic curve defined over the algebraic numbers. Let I” be a sub-
group of EV, we denote by I" the group generated by all coordinates of the points in
I' as an End(&)-module. The height of a set is as usual the supremum of the heights
of its points.

For simplicity, we write MLC for the Mordell-Lang Conjecture.

Consequences of Theorem 3.4 on the effective MLC. The following theorem is
proven in [CVV14, Corollaries 2.1 and 2.2] . It is a consequence of the main Theorem
of [CVV14], stated here as Theorem 3.4.

Theorem 4.1. Let E be a CM elliptic curve and I" be a subgroup of EV, where
N > 3. Let C be a weak-transverse curve in EN. Assume that T’ has rank one as an
End(E)-module. Then, for any positive real n, there exists a constant c,, depending
only on EN and », such that the set C N I” has Néron-Tate height bounded as

MC ) < ey ((C) + deg O ey (C) : gor] T2,

Let N = 2 and let C be a transverse curve in E?. Assume T is generated by g as an
End(®)-module. Then for any positive real nthere exists a constant ca depending only
on EN and n, such that the set C N I has Néron-Tate height bounded as

MCNT) < ealkior(C % 9) ¢ kior () + (hg) + 1) deg C)*H.

Consequences of Theorem 3.5 on the effective MLC. In [CVV15, Theorem
1.3] we give the following application of Theorem 3.5. We can immediately remark
the nice improvement on the previous result: this bound does not depend neither on
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the generator g of I' nor on the field of definition of C. In addition the dependence on
n disappears. In the non CM case the constants are explicit. The method can be
made explicit also in the CM case (see [CV16]).

Theorem 4.2. Let E be an elliptic curve. Let N > 3 and C be a weak-trans-
verse curve in EN. Assume I is a subgroup of EN such that T’ has rank one as an
End(E)-module. Then, the set C N I" has Néron-Tate height effectively bounded. If E
is non CM, we have that

e < CiNIC)(deg ON ! + Co(E, N)(deg O + Cs(E, N),

where C1(N), Co(E,N), C3(E,N) are the same as in Theorem 3.5.
Let N = 2 and let C be a transverse curve in E2. Then the set C N I” has Néron-
Tate height effectively bounded. If E is non CM, we have that

(€ N I') < D11(C)(deg C) + Dy(E)(deg C) + Ds(B),

where
264340 2
Dy =—3 ~2.364 - 10
962341
Dy(E) = 3 (T1log 2 + 4log 3 + 30h(E)) =~ (5.319 - hyy(E) + 9.504) - 103
9 21
Dy(E) = éhW(E) + 5 log 2 ~ 4.5 - () +7.279.

In particular, in both cases, if k 1s a field of definition for E and E(k) has rank 1,
then all points in C(k) have Néron-Tate height effectively bounded as above.

5 - An Explicit Bound for the height of the rational points on a new family of curves

As an application of Theorem 4.2, we give in [CVV15] the following explicit bound
for the height of the rational points on a specific family of curves of increasing genus.

Let E be the elliptic curve defined by the equation 3> = &* + x — 1; the group
E(Q) has rank 1 with generator g = (1,1). We write

y§:x§’+x1—l
ya=a +ap—1

for the equations of E? in Pg, using affine coordinates (x1,y1) X (®2,¥2). Consider
the family of curves {C,}, with C, C E? defined via the additional equation

no__
X1 = Ye.
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In [CV V15, Theorem 1.4] we prove:

Theorem 5.1. For every n > 1 and the just defined curves C, we have
IC,(Q)) < 8.253 - 105 (n + 1)°.

Our explicit results cannot be obtained with the method used in [CVV14]. Such
kind of examples are particularly interesting because they give, at least in principle,
a method to find all the rational points of the given curves. The bound is un-
fortunately still too big to be implemented. We are now working to improve the
bounds and to find a way to implement the process of testing all the points of such
height (see [CVV16]). This is going to allow us to find all rational points on this
family of curves. In particular, we expect that the only rational points on all the
curves in the above family are the points (1,1) x (1,1) and (1,—1) x (1,1).

We give here a new family of curves of increasing genus and we explicitly bound
the height of their rational points. This underlines that our method can be easily
adapted to new families of curves.

The new example is the following.

Let E be the elliptic curve defined by the Weierstrass equation

E:yf=a®—2-2
With an easy computation one can check that

log 2

hwl) = 3

In particular the curve is non CM because j(¥) ¢ 7. Furthermore the group
FE(Q) has rank 1 with generator g = (2,2) and no non-trivial torsion points; this can
be checked on a database of elliptic curve data (such as http:/www.Imfdb.org/
EllipticCurve/Q).

We write

Y=o —x -2

yg = xg — Xy — 2
for the equations of £2 in p“g’, using affine coordinates (x1,y1) X (x2,y2). We consider
the family of curves {C,}, with C,, C E? defined via the additional equation

wyf +1=1yz.
We have the following:
Theorem 5.2. For every n > 1 and the just defined curves C, we have

W(C(Q)) < 9.689 - 1033 (n + 1)°.
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Proof. The proof follows the line of the proof of [CVV15, Theorem 1.4]. Note
that the only irreducible curves in E? which are not transverse are translates, so
curves of genus 1. Thus, to show that our curves C,, are transverse we show that they
are irreducible and of genus > 1. We then bound the height and degree of the C,, and
substitute them in Theorem 4.2 getting the desired result.

The irreducibility. The irreducibility of the C, is easily seen to be equivalent to
the primality of the ideal generated by the polynomials y? — 3 + x; +2 and
(f + 17— 3 + &z + 2 in the ring Q[ay, 2, y1]. This follows from an easy argument
in commutative algebra.

The genus. We shall show that each C,, has genus at least 2; in fact we prove that
Cy, has genus 4n + 2.

Consider the morphism =, : C,, — PP; given by the function y2. The morphism 7,
has degree 6n, because for a generic value of ¥ there are three possible values for
%2, n values for x;, and two values of y; for each x;.

Let oy,09,03 be the three distinct roots of the polynomial f(T) = T% — T — 2;
let also f;,f,Ps,0, be the four distinct roots of the irreducible polynomial
27T* + 108T2 + 104, which are the values such that f(T) — 7 has multiple roots.
The f; have degree 4, and therefore they cannot be equal to o + 1, which have
degree 3. Also for all n, the three numbers oc;? + 1 are distinct, otherwise the ratio
a;/o; would be a root of 1 with degree a divisor of 6, and all cases are easily
discarded.

The morphism 7y, is ramified over f, s, f5, B4, 1,0 + 1,05 4+ 1,05 + 1, 00. Each
of the points f5; has 2n preimages of index 2 and 2n unramified preimages. The point
1 has 6 preimages ramified of index n. The points o + 1 have 3 preimages ramified
of index 2 and 6n — 6 unramified preimages. The point at infinity is totally ramified.

By Hurwitz formula

2 - 29(C,) = degm,(2 — 29(P1) = Y (ep — 1)
Pec,

2-29C)=12n—-4-2n+6(n—1)+3-3+6n—1)
9(Cy) = 4n + 2.

Thus the family {C,}, is a family of transverse curves in EZ.

The degree. We can compute the degree of C,, as an intersection product. Let
¢,m be the classes of lines of the two factors of 5 in the Chow group. Then the
degree of C, is bounded by multiplying the classes of the hypersurfaces cut by the
equation x} + 1 = y2, which is nf + m, by the two Weierstrass equations of £, which
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are 3¢ and 3m, and by the restriction of an hyperplane of Pg, which is ¢ 4+ m. In the
Chow group
(nl + m)BOBm)L +m) = I + 1) (¢m)*

and then
3) degC, <9(n + 1).

The normalized height. We estimate the height of C,, using Zhang’s inequality
WX)
deg X
minimum u(C,) of C,. To this aim, we construct an infinite set of points on C,, of
bounded height. By the definition of essential minimum, this gives also an upper
bound for u(C,).

Let us recall some definitions. The essential minimum of X is defined in the

uX) < < (1 4 dim X)u(X) and computing an upper bound for the essential

Zhang inequality as
uX) =1inf{0 € R | {P € X | ho(P) < 0} is Zariski dense in X},

where the /g is defined as follows. Let My be the set of places of a number field K.
For apoint P=(Py:---: Py) € Pp(K) let

1/2

o [Ku : Qv] ) [Kv . Qv] 12

4)  he(P)= Z K O] logm?x{|Pl|v} + Z K O] log (Z |Pl|v>
v finite v infinite %

be a modified version of the height that differs from the Weil height

(K, : Q]
(5) h(P) = e 7 log max{|P;[,}
vg/l:;g [K : Q] ¢

at the archimedean places. These heights are both well-defined, they extend to Q
and it follows easily from their definitions that

(6) h(P) < ho(P) < h(P) +% log (m + 1).

Let Q; = ((x1,%1), ((,¥2)) € Cn, where { € Q is a root of unity. Clearly there exist
infinitely many such points on C,. Using the equations of £ and C,,, we have:

log 6
2 )

log 24

HO = 0,hiye) < .

h(xy) <

h(y1) <

log24 log6
g n 0g
n 2

Thus

3log24 N log 6
2n 2’

1
I, ) < 086

h(,y2) <
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and

3log24 n log 18
2n 2 7

log 18
ha(C,y2) < i .

ho(xr,y1) <

So for all points @ we have

h2(Qe) = ha(xr, y1) + ha((y2) <

log 24
3(;g + log 18.

By the definition of essential minimum, we deduce

3log 24
< log1

and by Zhang’s inequality

) 1(Cy) < 2deg Cou(Cy) < 18(n + 1) <1og 1843 lgi 24) .

log2
3

We can therefore apply Theorem 4.2 with N = 2 and hy(E) =
which gives, for P € C,,(Q)

to each C,,

h(P) < (2.364 - 10%h(C,)) + 1.074 - 10°° deg C,, ) (deg C,)°.

Substituting (3) and (7) for the degree and height of the C, we obtain the
theorem. O

6 - Further results on the Effective and Quantitative MLC

In this section we show how the method used in [CVV14] can be extended to
obtain a more general result for a curve C weak-transverse in a product of CM
elliptic curves. In [CV14, Theorem 1.5] with [ =1, A1 = FE, g; =1 and ¢; = N we
proved the bound below for the height. Here we give bounds also for the degree of
the field of definition of the torsion anomalous points and for the degree of their
minimal torsion varieties. This yields a sharp bound for the cardinality of our set
and it allows us to get not only examples of the effective MLC with the rank of I
larger than 1, but also sharp bounds for the quantitative MLC. These applications
are clarified in Theorems 6.3, 6.4 and 6.5 below.

In what follows, the notations are the same as in [CVV14]. For clarity, we recall
the well known relation between algebraic subgroups of ENand matrices with
coefficients in End(E®).
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Remark 6.1. Let B + { be an irreducible torsion variety of EV of codimension
codimB = r and let 7z : EN — EN /B be the natural projection. Then EV /B is iso-
genous to E”; let pp : EN — E" be the composition of 7z and this isogeny.

We associate B with the morphism ¢p. Then ker pp = B + 7 with 7 a torsion
subgroup whose cardinality is absolutely bounded. Obviously ¢ is identified with a
matrix in Mat,, y(End(%)) of rank r, such that the degree of B is essentially (up to
constants depending only on N) the sum of the squares of the minors of ¢p. By
Minkowski’s theorem, we can choose the matrix representing ¢ so that the degree
of B is essentially the product of the squares d; of the norms of the rows of the
matrix.

In short B + { is a component of the torsion variety given as the zero set of forms
hi, ..., hy, which are the rows of ¢g, of degree d;. In addition

dy---d, <deg(B+{ <dy--d,.

We assume to have ordered the h; by increasing degree.

We are ready to prove the following theorem.

Theorem 6.2. Let C be a weak-transverse curve in EN, where E has CM. Let
k be a field of definition for E. Then the set

S(C) =CnN (UcodimH>dimHH)

is a finite set of effectively bounded Néron-Tate height and effectively bounded
cardinality. Here H ranges over all algebraic subgroups of codimension larger
than the dimension.

More precisely, the set S(C) can be decomposed as

N—
SO=Cmu |J 80,

r=[¥+1]

—

. . N . . N
where Cro are the torsion points on C, L§ + 1] is the integral part of 5 +1,

M,
S0 =cn| JH;
=1
and this union s taken over M, algebraic subgroups H; with codim H; = r.

Moveover, for any real n > 0, there exist constants depending only on EN and
such that

rN—-r)N

M, <, (R(C) + deg C) [ktor(C) : kgor]) =¥ "
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and

(N =1)(N +2r—2

deg H; <, ((h(C) + deg C)[kior(C) : ktor])wyw)%”
(k) : kldeg )07,
Furthermore, if Yo € S,(C) we have

r

h(Yo) <, (W(C) + deg C)F ¥ kor(C) : Kior] > 7

and
[k(Yo) : Q) <, ([k(C) : k]deg cyritn
. ((h(C) + deg C) [ktor (C) . ktor})<2£}\\:i:}1)+'];
the cardinality S, of the points in S,(C) is bounded as
S’” <y [&(C) : k]CI (deg C)Cl+1+”((h(c) + deg C) [ktor(c) : ktor])cz-ma

where
. _™NEN+1)
" 20—

_ (N —1r)@rN +2r —2+2N* — N)
= 2@r — N)(r — 1)

Proof. We notice that the set Cr,, of all torsion points in C has height zero, is
finite and has cardinality effectively bounded by the quantitative Manin-Mumford
Conjecture (see relation (20)). From now on, we will be concerned with points in S(C)
that are not torsion.

Clearly all the points in the intersection C N (Ugogim 7> dimz H) are C-torsion
anomalous. In addition since C is a weak-transverse curve each torsion anomalous
point is maximal.

Let Yy € S(C) be a non-torsion point; then Yy € CN H, with H the minimal
subgroup containing Y, with respect to the inclusion, and dim H < codim H. This

gives N — codim H < codim H, so 5 < codim H. Since Y, is non torsion then

codim H < N. Thus Y, € S,(C) for some g< r < N —1 and codim H = ». This

shows that the decomposition of S(C) is correct.

Let B+ be a component of H containing Y,. Clearly dimB = dimH and
Yy € CN (B + {) with B 4+ { minimal for Y and the torsion point { in the orthogonal
complement of B.

Notice that

(8) deg H < (deg B) ord ().
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In fact B + ({) is an algebraic subgroup of dimension equal to dim A, it contains Y
and it is contained in H; thus B + ({) = H, by the minimality of H.

The proof now follows the lines of the proof of Theorem 3.4 given in [CVV14]. We
proceed to bound deg B and, in turn, the height of Yj, using the Lehmer Type
Bound for CM abelian varieties and the Arithmetic Bézout theorem. Then, using
Siegel’s lemma, we get a bound for [k(Y)) : k] and for the order and the number of
torsion points ¢, providing also a bound for deg H.

Recall that » = codimB = codim H.

We first exclude the case » = 1 and show that the case N — r = 1 is covered by
Theorem 3.4. If » =1 then dim B < codimB implies dimB =0 and N = dimB +
codimB = 1 contradicting the weak-transversality of C.

The case N —r =1 corresponds to dimB =1 and Yj of relative codimension
one, that can be treated with Theorem 3.4.

Thus we can assume » > N —r > 2. Moreover 2r > N, since by assumption
codimB > dim B.

By Remark 6.1, the variety B + ¢ is a component of the zero set of forms
hi,...,h, of increasing degrees d; and

dy---d. <degB=deg(B+ () <dy---d,.

Consider the torsion variety defined as the zero set of %1, and let Ay be one of its

connected components containing B + (.
Then

) degdy <« d; < (degB)%.

From the Lehmer Type Bound applied to Yy in B + ¢, for every positive real 7,
we get
(deg B)¥7 "
! [Fetor(Yo) : ktor]ﬁ+”.

(10) hYy) >

Notice that all conjugates of Y over k. (C) are components of C N Ay. In addition
all conjugates of Yy over ki, (V) are in V N (B + ), so the number of components of
V N Ay of height /(Yy) is at least

[ktor(YO) : ktor]

Wtor(V, Y0) = o (V] 2 ==

Applying the Arithmetic Bézout theorem to C N Ay we have

[ktor(YO) : ktor] »

(11) mh(yo) < (MC) + deg C)(deg B)".
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From (10) and (11) we get
(deg B 7" < ((C) + Aeg C) kiar(C) : Kuorl[huor(Yo) : huor 717
Since 2r > N, N —r > 1 and [kor(Yo) : Ktor] > 1, for # small enough we obtain

r(N—7r)

(12) deg B <, (h(C) + deg C)[kor(C) : kior]) T 17,

So, from (11) we have
(13) [etor(Yo) : torJ(Y) <y (R(C) + deg C) [kior (C) : Kox )TV 7
while, using the right-hand side of (11) as a bound for fe(Yo) and (12) we get

r (N=7)

(Yo) <, (W(C) + deg OOF ¥ ki (C) : kor ) "

as required.

Having bounded deg B and /(Y;), we now proceed to bound [k(Y) : k] only in
terms of C and EN.

We use Siegel’s Lemma to construct an algebraic subgroup G of codimension
1 = dim C defined over k, containing Y, and of controlled degree. The construction is
exactly as in [Via03, Propositions 3 and 4]. We present the steps of the proof.

We know that End(%) is an order in an imaginary quadratic field L with ring of
integers O. By minimality of B + {, the coordinates of Yy = (x1, ..., xy) generate an
O-module I" of rank equal to the dimension of B + { whichis N — . Let g1,...,9n_»
be generators of the free part of I” which give the successive minima, and are chosen
as in [Via03, Proposition 2]. Then h( Zj aig;) > > IN. L(aj)\fz(gj) for coefficients o; in
O. In addition, like in the case of relative codimension one, the torsion part is
generated by a torsion point 7' of exact order E.

Therefore we can write

Xr; = Zai_jgj —|—ﬂiT
J

with coefficients o;, f; € O and
N (B,) < R%.

As in [Via03, Proposition 2], we have
(14) hiw)) > "IN L@ )| (g)).
J

We define

vi = (o jy.oson ) and |y = max |Np (e ;).
(3
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Then
(Y,
(15) vj| < u¥o)
h(g;)
We want to find coefficients a; € O such that va a;x; = 0. This gives a linear
system of N — r + 1 equations, obtained equating to zero the coefficients of g; and of
T. The system has coefficients in O and N + 1 unknowns: the a;’s and one more

unknown for the congruence relation arising from the torsion point.

We use the Siegel’s Lemma over O as stated in [BG06, Section 2.9]. We get one
equation with coefficients in O; multiplying it by a constant depending only on £ we
may assume that it has coefficients in End(%). Thus it defines the sought-for al-
gebraie subgroup G of degree

N—r %
deg G < <(m;dXNL(ﬁi)> <H |vj|>> .
J

Let Gy be a k-irreducible component of G passing through Y,. Then

1

N-r "

deg Gp < (RZ II |vj|> .
J

Since C is weak-transverse, the point Y} is a component of C N Gy. In addition C
and Gy are defined over k and Bézout’s theorem gives

[k(Y)) : k] < [k(C) : k]deg Cdeg Gy.

Hence
r

N—r
[(Yo) : k] < [k(C) : k] degc<R2 11 |vj|> .
J

Using (15) we get

o h()V )
I kg
Following step by step the proof of Proposition 4 in [Via03], using the Lehmer
Type Bound for CM abelian variety in place of [DHO00, Theorem 1.3], we get

(16) [k(Yo) : k] < [k(C) : k]degC (R

N—r 1

17 h(g;) > .
o 11700 > o

By a result of Serre, recalled also in [Via03, Corollary 3], we know
[k(Yo) : k] >, R?71. Moreover from (13), the product fL(YO)[ktor(YO) : kior] is boun-
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ded. Substituting these bounds in (16) and recalling that » > 2, for # small enough
we obtain

(18)  [k(Yo) : k] <, (Ik(C) : k1deg O ((h(C) + deg C)[ktor (C) : kiton]) T V077,
Moreover, as in the proof of [CVV14, Theorem 6.1] , we can choose { so that

[K(0) : k] < [k(Yp) : Q],

and
(19) ord(0) <, [k(Yo) : Q17 7.

Substituting (19) and (12) in (8), we get the bound for deg H.

We now prove the bound on S,. By Remark 6.1 and Minkowski’s Theorem, we see
that the number of abelian subvarieties G in EV of codimension  and degree at most
degB is <, (deg B)N. In fact, if G is such an abelian subvariety, by Minkowski’s
Theorem there exists a linear trasformation of absolutely bounded degree that, up to
reordering of the columns, transforms the matrix of G in a matrix of the form

o= .t
0 ... d * ... x*

with |d;| the maximum of the i-row and [[; d; <« deg B. We now count the number of
such matrices. We have (Hi2|di|)N4<< (deg B)N ™" possibilities for * and at most
2 deg B possibilities for each d;. Thus the number of such matrices is < (deg B)". So
the number D of abelian subvarieties G of degree at most deg B is < (deg B)".

As for the point ¢, it is well known that the number of torsion points in EV of
order bounded by a constant 7' is at most 72V *1, In fact the number of points of
order dividing a positive integer i is i2V; so a bound for the number of torsion points
of order at most 7' is given by

T
7:2N < T2N+l )
=1

5

Applying Bézout’s theorem to every intersection V N (B + (), we obtain that the
number S, is bounded by

S, < degC(deg BN tord(*N !

and combining this with (19) and (12) we obtain the desired bound for S,..

Finally, we notice that the algebraic subgroups H of codimension r can be taken
in a finite set {H1,...,Hy } where the H; = G; + ENTord(0)] with G; abelian vari-
eties of degree < deg B and codimension ». A bound for M, can be given effectively
as done above for D, obtaining M, < (degB)". O
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6.1 - Consequences of Theorem 6.2 on the effective MLC

In this section we use Theorem 6.2 to obtain effective height bounds for the
intersection of C with a group I, such that I" has rank larger than 1. The following
corollary extends Theorem 4.1 and it is proven in [CV14, Corollary 1.6] with [ =1,
Aj=E,ey=N,g1=1andt; =t < N/2.

Theorem 6.3. Let C be a weak-transverse curve in EN with E an elliptic
curve with CM. Let k be a field of definition for E. Let I" be a subgroup of EN such
that T has rank t < N /2. Then, for any positive n, there exists a constant cs de-
pending only on EN and n, such that the set

cnr
has Nérvon-Tate height bounded as
hCNT) < es((C) + degc)%+”[ktor(c) : egor ],
We notice that Theorems 4.1 and 6.3 are proved for weak-transverse curves. If

we assume the transversality of C we can relax the hypothesis on the rank of I".

Theorem 6.4. Let C be a transverse curve in EN with E a CM elliptic curve
defined over k. Let I be a subgroup of EN such that the free part of the group of its
coordinates is an End(E)-module of rank t < N — 1, generated by g1, . .. ,g: Then,
for any positive n there exists a constant cs depending only on EN and n, such that
the set

cnr

has Nérvon-Tate height bounded as
IMCNT) < ealkior(C X 9) : ko] ¥ 1(RC) + ((g) + 1) deg OOF T+

where g = (g1, ..., G-

Proof. Consider the curve C' = C x g in EN*, Since C is transverse then C' is
weak-transverse. If a point (x1, . .., 2y) is in I, then there exist 0 # a; € End(%), an
N x t matrix B with coefficients in End(¥) and a torsion point { € EN such that

(e, ... axen) =B, ...,00)" + C.

Thus the point (1, ...%¥,01,.-.,g:) belongs to the intersection C' N H with H the
torsion variety of codimension N and dimension ¢ in E¥*? defined by the equations

(@1, ..., ayen) = Blynia, - yna) + L
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Thus, C N I is embedded in C' N Ugim g—H and A(C N I < W(C N Ugim g H) for H
ranging over all algebraic subgroups of dimension ¢. If N > ¢ then codim H > dim H.
The bound for the height is then given by Theorem 6.2 applied to C' C EN*,
where degC = deg C’' and k(C') < 2(h(C) + h(g) deg C) by Zhang’s inequality. |

6.2 - Consequences of Theorem 6.2 on the quantitative MLC

In [Rém00, Theorem 1.2], G. Rémond gives a bound on the cardinality of the
intersection C N I” for a transverse curve in EN and I a Z-module of rank ». He
obtains the following bound

HCn ) < cB, ) (deg )N,

where c(EN, £) is a positive effective constant depending on EV and on the choice of
an invertible, symmetric and ample sheaf £ on EV.

The Manin-Mumford Conjecture is a special case of the Mordell-Lang
Conjecture. Explicit bounds on the number of torsion points in C are given, for
instance, by E. Hrushovski in [Hru01] and by S. David and P. Philippon in [DP07,
Proposition 1.12]. There they show that the number of torsion points on a non-torsion
curve C is at most

(20) #(C N Torgy) < (102N +3deg 0)®,

where Torgy is the set of all torsion points of EV.

As another consequence of Theorem 6.2 we also get a sharp bound for the
number of non torsion points in C N I for C weak-transverse in EV, which, together
with the just mentioned bounds for the torsion, improves in some cases the bounds
of G. Rémond. Notice that below we use the rank ¢ of T, the End()-module of the
coordinates of I". To compare with Rémond’s result, we can use the trivial relation
r < 2Nt and t < Nr.

Theorem 6.5. Let C be a curve in E~, where E has CM and is defined over a
number field k. Let I" be a subgroup of EN such that the group I has rank t as an
End(E)-module. Let 4(C 0 I'\ror) be the number of non-torsion points in the inter-
section C N I. Then, for every positive real n there exist constants dy,ds, ds, dy de-
pending only on EN and 5, such that:

() if C is weak-transverse in EN, N > 2 and t = 1, we have

(N-DUNZ-_N—

4C N o) <da(R(C) + deg C) o (C) : kor]) 22?7

1\(’\7 1)(1’\/ 1)+I7

(deg ) 2VH S0 < k]
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(ii) if C is transverse in E? and t = 1, we have

4C O I iper) <do(lor(C X ) : i )(R(C) + (hlg) + 1) deg O
(deg OZMk(C x g) : kP

where g is a generator of I';

(iii) if C is weak-transverse in EN and t < N /2, we have

UN—D)AN2 _2Nt+N—2¢-2)

H(C N Mypor) <d3((R(C) + deg C)[ktor(C) : ktoy]) 220 — 7

N@N+1)N-t) N@N+DHWN-t)

- (deg Q)M Ev T HI(C) « k] et

(iv) if C is transverse in EN and t < N — 1, we have

N V.
+ (NHON@N+2t+1)

HCNT \or) < da(deg O 350 TI[K(C x g) : k]

(N-t)N(ZA +2t+1) +7

Nt(4N2 122 6Nt-+N—t—2
(4N +21° 16Nt + ) +

 ([ktor(C % ) < ke )(O) + ((g) + 1 degC)) ™7 ;

where I is generated by ¢1,...,9: and g = (g1, ..., 0.

Proof. Part (i) and (ii) are proved in [CV V14, Theorem 6.2]. To prove Part (iii)

N
weremark that0 < ¢ < 5 thus the codimension » of a subgroup of minimal dimension

containing a point in (C N I'\r,,) satisfies %\7 < r < N. This shows that (C N I'\1o) C
UN k y.1) S+(C). Then we use the bound in Theorem 6.2 for S, which is the cardinality
of S.(C). To prove Part (iv) we embed C in the weak-transverse curve C x g ¢ EN*,
Like above, we remark that (CNI'\p,) is embedded in UN 18, x ¢) and
N > NT+, because t < N. Then we use the bound in Theorem 6.2 for S, which is
the cardinality of S,.(C x g¢). O
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