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Quaternionic Darmon points on abelian varieties

Abstract. Inthe first part of the paper we prove formulas for the p-adic logarithm
of quaternionic Darmon points on modular abelian varieties over Q with toric re-
duction at p. These formulas are amenable to explicit computations and are the first
to treat Stark—Heegner type points on higher-dimensional abelian varieties. In the
second part of the paper we explain how these formulas, together with a mild
generalization of results of Bertolini and Darmon on Hida families of modular forms
and rational points, can be used to obtain rationality results over genus fields of real
quadratic fields for Darmon points on abelian varieties.
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1 - Introduction

Stark—Heegner points on elliptic curves over Q were defined by Darmon in [7] as
conjectural analogues over (abelian extensions of) real quadratic fields of classical
Heegner points. Since then, generalizations of these points to higher-dimensional
(modular) abelian varieties have not been systematically investigated.

Building on techniques developed in [17], quaternionic Darmon points on p-adic
tori and Jacobians of Shimura curves over Q were introduced in [18]. Recently, a
rationality result for projections of Darmon points to elliptic curves (which extends
to a quaternionic context the theorem obtained by Bertolini and Darmon in [2]) has
been proved in [21]. Let us briefly review the arithmetic setting in which the theory
of [17] and [18] takes place.
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Let Xy (respectively, X;) denote the (compact) Shimura curve of discriminant
D > 1andlevel M (respectively, Mp) for coprime integers D, M and a prime number
p 1 DM (here D is a square-free product of an even number of primes). Let H be the
maximal torsion-free quotient of the cokernel of the degeneracy map from
Hq(X,, 7) to Hy (X1, 7). Tt turns out that H is a free abelian group of rank equal to
twice the dimension of the p-new quotient J7 ™" of the Jacobian J; of X;. Let H be a
(Hecke-stable) non-zero torsion-free quotient of H and let K be a real quadratic field
in which all the primes dividing M (respectively, Dp) split (respectively, are inert).
The p-adic tori on which Darmon points are naturally defined are quotients of tori of
the form 7'y(K)) := H @ K by suitable lattices L contained in T;(Q)) := H ® @;
and built, as in [17], via group (co)homology and p-adic integration. So far, explicit
computations with Darmon points (of conductor 1) had been performed only in [21]
in the case where [ is associated with an elliptie curve over Q of conductor MDp.

While leading to rationality results for quaternionic Darmon points on elliptic
curves over Q that provide evidence for the conjectures formulated in [18], the one-
dimensional setting studied in [21] might obscure one of the key features of the
theory developed in [17] and [18], that is, the possibility of defining Stark—Heegner
type points of arbitrary conductor on higher-dimensional (modular) abelian vari-
eties. It is perhaps worth remarking that constructions of this kind lie outside the
scope of Darmon’s original theory, since Stark—Heegner points are defined directly
on elliptic curves over Q (when Shimura curves reduce to classical modular curves,
constructions analogous to ours could be carried out using Dasgupta’s p-adic uni-
formization of modular Jacobians, cf. [8]).

The first goal of this paper is to obtain formulas for quaternionic Darmon points on
modular abelian varieties over Q and to explain how these formulas can be used to
prove rationality results over genus fields of real quadratic fields. These results are
very close to those in [21] (for elliptic curves) and [10], [28], [31], [32] (for motives of
modular forms). However, we think that it may be interesting to have these results
stated and proved independently for abelian varieties. The case of (modular) abelian
varieties is considerably different from that of elliptic curves and presents some extra
technical difficulties (see later in this introduction), but, at the same time, the results
are neater than those for more general motives of modular forms. Moreover, along
the way we take some time to review the construction of Darmon points on Jacobians
of Shimura curves and some basic properties of logarithms and exponentials (in the
sense of p-adic Lie groups) on the p-adic points of abelian varieties, in the hope that
this will be of some use to those researchers who approach this subject for the first
time. We have also added an appendix where we summarize well-known facts on the
p-adic uniformization of abelian varieties over Q with purely toric reduction at p and
we briefly explain the role they play in the context of Darmon points.
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In order to describe our main results in detail, we need some further notation.
With H as before, let M, denote the abelian group of [H-valued measures on
]Pl(up) with total mass 0. Following [17, Section 4], one can explicitly introduce a
canonical cohomology class uy € HX(I', My) where I C SLy(Q)) is Thara’s group
defined in (1). The abelianization of I" is a finite group whose exponent will be
denoted by t. If Ok is the ring of integers of K and dy is its discriminant, let
O, := 7+ cOg be the order of K of conductor ¢ prime to MDdgp. As in [18],
multiplicative integration over PI(QP) against a representative uy of uy allows us
to attach a Darmon point Py, € Tr(K,)/Ly to every optimal embedding y of O,
into a fixed Eichler order Ry of level M in the quaternion algebra over (Q of dis-
criminant D. As conjectured in [18, §3.2], images on modular abelian varieties of
points of the form Py, are expected to be rational over the narrow ring class field
of K of conductor ¢ and to satisfy a suitable Shimura reciprocity law under the
action of the corresponding Galois group.

Now let I, := [T ® Zy,, let X be the set of primitive vectors in ¥ := 7]20 (.e.,
those vectors which are not divisible by p) and write D for the group of tl,-
valued measures on Y that are supported on X. If Iy denotes the group of norm
1 elements in Ry and 7 : X — Pl(Qp) is the map sending (a, b) to a/b then there
exists fiy € HY(I'y, D) such that (@) = resr,(ug). With self-explaining nota-
tion, we can also choose a 1-cocycle jy representing gy such that m.(i,) = .,
for all y € I'y. Let ¢, denote a generator of the group of units of O, of norm 1 such
that ¢, > 1 under a fixed embedding K — R and set Yy = w(e.) € I'y. Moreover,
denote z, the fixed point of y(K*) acting on IDI(KP) such that w()(zy,1) = a(z,, 1)
for all « € K. Finally, fix an algebraic closure Q, of Q, and let C, be the com-
pletion of Q.

Now let A be a modular abelian variety over Q of dimension d and conductor
N := MDp, which means that A is associated with a (normalized) newform f of
weight 2 and level N. Write Oy for the ring generated over 7 by the Fourier coef-
ficients of f. It is known that A has purely multiplicative reduction at p, i.e., the
identity component of the special fibre of the Néron model of A over 7, is a torus
over I7,. Since J{ ™" is the maximal toric quotient of J; at p, it follows that A is a
quotient of J7™". Moreover, if ¢ € {+} then the e-eigenspace for complex con-
jugation acting on Hy := H1(A(C), 7Z), which we denote by H, is a free quotient of
H of rank d. With notation as above, from here on we take Il = 1. Set T4 := Ty,
Ly = Ly and jiy = [i;. As a consequence of the uniformization results of [17], there
is a Galois-equivariant isogeny

94 Ta(Cp)/La — A(C))

defined over K. An explicit description of ¢, can be given in terms of the Galois-
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equivariant analytic isomorphism
©)/ g, q,) — AC))

due to (among others) Tate, Morikawa and Mumford. Here (g, ..., g ) is the lattice
inside @z generated by the Tate periods ¢,,...,q , for A at p, which turns out to be
commensurable to L4 (Theorem A.1). The reader can find details about these con-
structions in Appendix A.

Regarding ¢ as fixed, for every optimal embedding y of O, into Ry we define

Pay =04 (Pry) € AK)).

These are the Darmon points (of conductor c) on A alluded to before. To state our
formula for the points P4, recall that the theory of Lie groups gives a logarithm
map

log, : A(C;) — Lie(A(C))) ~

on the p-adic points of A. In particular, log,(P) € Lie(A(K))) for all P € A(K},). By a
result of Mattuck ([22, Theorem 7)), if K is a finite extension of Q, then A(K) is
compact, hence log,(A(K)) is bounded. Define ¥, := log, o ¢4 and, by implicitly
pre-composing it with the diagonal embedding and the projection onto the quotient,
view ¥, as defined on Q; . Our first main result, which corresponds to Theorem 4.1 in
the text, is

Theorem 1.1. log,(Pa,) = —t- /Y’A(x — zu,y)dﬂAJ,w(ac, Y).
X

It is relatively straightforward to show that if I is a complete subfield of C,
then both H ® K and Lie(A(K)) are free Oy ® K-modules of rank 1 (Lemma 4.1 and
Proposition 4.2). This fact, together with the boundedness of ¥4 | K;» ensures that
the integral in Theorem 1.1 is meaningful and does indeed exist.

Let o be an endomorphism of A /C, and let o, : Lie(A(C,)) — Lie(A(C,)) be the
linear map induced by «. As a consequence of Theorem 1.1, we obtain

Corollary 1.1. log,(«(Pay)) = —t- . (/‘}’A(oc — 2 YAy, (. y)).
X
These are the first formulas for points of Stark—Heegner type on abelian
varieties. When A is an elliptic curve and ¢ = 1, Corollary 1.1 essentially reduces to
[21, Corollary 3.5].
The interest for such formulas is twofold. On the one hand, since the construction
of measure-valued cocycles in [17] is entirely explicit, Corollary 1.1 allows us to
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compute (at least in principle) the orbit of a Darmon point on A under the action of
the endomorphism ring of A (cf. also Corollary 4.2). In this direction, it would be
interesting to extend the results for elliptic curves of [12] to more general abelian
varieties.

On the other hand, the expression for the p-adic logarithm of P, ,, in Theorem 1.1
plays a key role in the proof of rationality theorems for genus character combinations
of Darmon points on A of the type obtained in [21] in the case of elliptic curves.
Analogues of those rationality results in this higher-dimensional setting are the
subject of the second part of this paper, and now we briefly describe them.

Let A be an abelian variety of conductor N = MDp attached to a (normalized)
newform f € So(I'y(V)), as above. In addition, assume that M is square-free, so that
N is square-free and A is semistable. Note that the role of this semistability condition
is somewhat more delicate here than it was in [21], as it allows us not only to apply the
results of [24] (which we expect to hold in greater generality) but also to get in-
formation on the structure of the p-adic points of A that is a central ingredient for the
proof of our rationality results.

Let G}, be the narrow class group of K (i.e., by global class field theory, the Galois
group over K of the narrow Hilbert class field of K). For any genus character y of K
(i.e., an unramified quadratic character of G) we define the point

P, =Y x0)Py, €AK,),

"
oeGy

where y — . denotes the Galois action on optimal embeddings of O into Ry (that
is, we take ¢ = 1) and the choice of a sign ¢ € {£} depends on y. Our second main
result is

Theorem 1.2. Let y be a genus character of K associated with a pair (1, x2)
of Dirichlet characters such that y;( — MD) = —wyp for 1 = 1,2, where wyp s the
etgenvalue of the Atkin—Lehner involution Wyp acting on f.

1. Thereexistsn € Z suchthatnP, € A(H,) where H, is the genus field of K cut
out by y.
2. The point nP, is of infinite order if and only if L'(f /K, x,1) # 0.

This is Theorem 6.3 in the text. The reader will realize that our strategy for
proving Theorem 1.2 follows [21] (which, in turn, was crucially inspired by [2])
closely. Namely, let f., denote the formal g-expansion associated by Hida with f,
let y be a genus character of K corresponding to an unordered pair y;, y, of
quadratic Dirichlet characters and for j=1,2 write L,(fx,;,k,s) for the
Mazur-Kitagawa two-variable p-adic L-function attached to f. and y;. As in [21],
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the cohomology class fiy can be used to introduce a p-adic L-function
L,(fx/K, x,k) attached to f, and x. In a nutshell, the strategy of [2] and [21] can
be described as follows:

1. if we order the pair x4, x» in such a way that the sign of the functional equation
of the L-function L(f, y;, s) is —1 then a suitable factorization of L, (1, x, k) in
terms of L, (fw, 11, k,8) and L,(fx, 12, k, s) establishes a link between the va-
lues at k = 2 of the second derivatives of L,(f /K, . k) and of the restriction
of Ly(fx, x1,k,8) to the line s = k/2;

2. the second derivative of L,(f. /K, 1, k) evaluated at k = 2 is essentially com-
puted by the integrals appearing on the right hand side of Theorem 1.1, thus
providing a link with Darmon points;

3. an analogue of [1, Theorem 5.4] shows that the value at k = 2 of the second
derivative of L,(f«, x1,k, k/2) encodes the logarithm of certain linear combi-
nations of classical Heegner points.

These three observations provide a relation between Heegner points and Darmon
points and ultimately yield the rationality result for P, stated in Theorem 1.2.

Although, as noted above, our strategy parallels that of [2] and [21], the higher-
dimensional setting of this paper brings extra complications and several of the
techniques introduced in [21] need to be re-interpreted from a different, much more
“geometric” point of view.

First of all, a generalization of the results in [1] to abelian varieties leads one to
express the second derivative of a certain Mazur—Kitagawa L-function in terms of
the square of the logarithm of a suitable (global) point on A. Here log 4 takes values in
Lie(A(C,)), which is a d-dimesional C,-vector space with (in general) no intrinsic
ring structure. Furthermore, the exponential map exp, on Lie(A(K))) is a local in-
verse of log, takes values in A(K,)) ® Q (actually, in A(K},)) and occurs in our recipe
for Ly(fso/K, 1, k). In fact, Ly(fso /K, x, k) is defined as the square of a sum of in-
tegrals of A(K,) ® Q-valued, bounded functions against 1 ® Z,-valued measures of
the form j Ay, In our context, the following problems arise:

o we need to make sense of the square of an element of A(K,) ® Q;

e it is not a priori clear that the integrals involved in the expression of
Ly(fso/K, 1, k) are indeed well defined.

Underlying our solution to these issues is the Oy-module structure on the p-adic
points of A and, by functoriality, on their Lie algebra. It has already been re-
marked that H ® K and Lie(A(K)) are free Oy ® K-modules of rank 1 for every
complete subfield K of C,. On the other hand, if K is a finite extension of (), then
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the map log, and our fixed isomorphism Lie(A(K},)) ~ Oy ® K,, establish an
isomorphism A(K,) ® Q ~ Oy ® K,, that allows us to view A(K,) ® Q as a free
Or ® K,-module of rank 1. By fixing isomorphisms between H ® K,,, Lie(A(K))),
A(K,) ® Q and O ® K, we can extend the arguments of [21] to our more general
setting, thus obtaining the rationality of a suitable multiple of P, over the abelian
extension of K predicted by the conjectures that were formulated in [18].

The main results that we describe below are original but, as already pointed out, a
large portion of this paper has also an expository flavour. We refer the reader to [9]
and [10] for related results and for generalizations to higher-dimensional Darmon
cycles a la Rotger and Seveso ([28]).

2 - Measure-valued cohomology

2.1 - Homology of Shimura curves and measures

We recall notation and results of [17]. Let D > 1 be a square-free product of an
even number of primes, let M >1 be an integer prime to D and fix a prime
number p not dividing MD. Let B be the (indefinite) quaternion algebra over Q of
discriminant D. Let Ry C R; be Eichler orders of B of level M and Mp, respec-
tively. For ¢« = 0,1 write I"; for the group of units of norm 1 in R; and consider the
(compact) Shimura curve X; := I';\'H, where H is the complex upper half-plane
and the action of B* on PY(C) is by Mobius (i.e., fractional linear) transformations
via a fixed isomorphism of R-algebras

i : B®o R — Ma(R).
Let @, be an element in R, of reduced norm p that normalizes 'y and denote by
1, 7o X1 — Xo, FlanFOz, Flz»ifga)pz
the two degeneracy maps. Moreover, let
nt = @y Hy(Xo, 2 — H\(X1,7)

be the map induced in singular homology by pull-back. In terms of group
homology, it corresponds to the map H;(I'y, 7Y — Hy(T L,2)y~T i‘b induced by
corestriction. Let H denote the maximal torsion-free quotient of the cokernel of
7. If JPV is the p-new quotient (i.e., the maximal toric quotient at p) of the
Jacobian variety J; of X; and g is the dimension of J'™" then H is a free
abelian group of rank 2g. Throughout this paper fix a non-zero torsion-free
quotient H of H.
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Fix an isomorphism of (),-algebras
ip: B®gy Q, — Ma(Q,)
such that i,(Ry ® Z,) = Ma(Z,) and 1,(R1 ® Zj) is the order of M2((Q,) consisting
of the matrices (Z 2) € Ma(7p) with ¢ =0(modp). With C, denoting the

completion of an algebraic closure of (), let B* act on T[Dl(Cp) by fractional linear
transformations via i,,.
Let n : B — Q denote the reduced norm map and define Thara’s group I" as

(1) r=1{yeRy®Z1/p] |nG) =1} % SLy(Q,).

Write M for the group of H-valued measures on Pl(@p) and M, for the subgroup of
M of those measures with total mass 0. As in [17, Section 4], there is a canonical left
action of GL2(Q,) on M and M,. Then B* acts on M and M, via i, and the em-
bedding B — B ® (.

2.2 - A distinguished cohomology class

Using harmonic cocycles on the oriented edges of the Bruhat-Tits tree of
PGL2(Q,) and exploiting basic properties of radial (in the sense of [17, Definition
4.7]) system of representatives for the cosets in 7’1\ I, one can introduce a canonical
element

uy € HI(I', My).

We shall not review the construction of u;; here, but rather refer the reader to [17,
Section 4] for details. This cohomology class plays a central role in the definition of
Darmon points on p-adic tori and abelian varieties.

3 - Darmon points on p-adic tori

3.1 - Homology and p-adic integration

Define T := H ®7, G,, where (5, denotes the multiplicative group (viewed as a
functor on commutative Q-algebras).

Write H, := C, — Q, for Drinfeld’s p-adic plane, let D := Div(H,) be the
group of divisors on H, and let D := DiVO(Hp) be the subgroup of divisors of
degree 0. From the long exact sequence in homology associated with the short
exact sequence induced by the degree map on divisors one can extract a
boundary map 9 : Ho(I',7) — Hy(I",Dy). Now consider the multiplicative in-
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tegration pairing
(,) : Do x Mo — Tu(Cp)

defined in [17, §5.1]. By construction, this pairing factors through
Hy(I",Dy @7 My) and thus, by cap product, we can also define a pairing

2) Hy(I', Do) x H\(I', Mg) — Tri(C)p).

By fixing u;; € H'(I", Mp) in (2) we get amap 7 : H{(I",Dy) — Tu(Cp). Finally, we
take
d:=To 8 : Hz(r, Z) — T;[~[(Cp)

and denote by Ly the image of @. One can show that Ly is a Hecke-stable lattice
contained in T'y(Q)) (see [17, Proposition 6.1]).

Fix z € K, — Q) and let d, € H*(I", T1i(C,)) be the class represented by the
2-cocycle

1
d.: I x I — Tu(K,), (1, 72) — ][ e (Z) Aty 5, (),

PL(Q,)

where the multiplicative integral on the right is defined as in [17, §5.1]. The class d,
does not depend on the representative s, of u;,. Let d. be the composition of d, with
the projection onto T'1(K,) /L1 and denote by d. the resulting class. By construction,
Ly is the smallest subgroup of T'(Q,) such that d, is trivial in H*(I", Ty;/Lyy), so
there exists 5, : I’ — T'y/Ly splitting d.. The map f. is well defined only up to
elements in Hom (1", Ty /Lyy). To deal with this ambiguity, recall that the abeliani-
zation I"® of I is finite ([18, Proposition 2.1]). Hence if ¢ is the exponent of I"*" then
t- f, is well defined.

3.2 - Darmon points on p-adic tori

Let K = Q(v/dg) be a real quadratic field with discriminant dx such that all
primes dividing Dp (respectively, M) are inert (respectively, split) in K, and fix an
embedding K — R. Let ¢ > 1 be an integer prime to MDdgp, let O, := Z + cOk be
the order of K of conductor ¢, let H; be the narrow ring class field of K of conductor ¢
and set G := Gal(H, /K). The group G is isomorphic to the narrow class group of
O, via the reciprocity map of global class field theory.

Write Emb(O,, R) for the set of optimal embeddings of O, into R, i.e., the
embeddings y of K into B such that O, = y~1(R,). The group Iy acts on Emb(O,, Ry)
by conjugation.
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Let 7 denote the generator of Gal(K,/Q,). If y : K — B is an embedding of Q-
algebras then let Q,(x,y) be the quadratic form with coefficients in (O, associated
with w as in [21, §2.3]. Factor Q,(x,y) as Q,(x,y) = c(x — z,y)(x — Z,y) with
2y, 2y € K, — (), such that t(z,) = z,. Equivalently, z, and z, are the only fixed
points for the action of y(K*) on PI(KP) by fractional linear transformations via .

By Dirichlet’s unit theorem, the abelian group of units of norm 1 in O, is free of
rank 1. Let & be a generator of this group such that &, > 1 with respect to the fixed
embedding K — R and set y,, := y(e.) € I'o.

Definition 3.1. The Darmon points of conductor ¢ on Ty(K,)/Ly are the

points
Priy =1t B, € Tul&p)/Lu

where y varies in Emb(O,, R).

The points Py, (or, rather, their images on abelian varieties) are expected to be
rational over H; and to satisfy a suitable Shimura reciprocity law under the action of
G/: the reader is referred to [18, §3.2] for precise conjectures and to [21] for partial
results in this direction.

Proposition 3.1. The pownt Py, does mot depend on the choice of a
representative of uy. Furthermore, Py, depends only on the I'g-conjugacy class

of .

Proof. Proceed as in the proofs of [18, Propositions 3.4 and 3.5]. O

3.3 - p-adic measures and Shapiro’s lemma

Let H, := H® Z, and let X := (Zf,)/ be the set of primitive vectorsin Y := ZIZ),
i.e., the vectors in Y that are not divisible by p. Let D be the group of I,-valued
measures on Y and write D for the subgroup consisting of those measures which are
supported on X. As described in [17, §7.2], the group 2 := GL2((),) N M2(Z,) acts on
the left on D. This action induces an action of X on D (see [17, Lemma 7.4)).

Denote by 7 : X — ]Pl(@p) the fibration defined by (@, b) — a/b. By [17, Theorem
7.5], the canonical map 7, : H'(I'y, D) — HY(I"y, M) induced by 7 is surjective. Fix a
ity € H\(I'y, D) such that 7. (it;;) = resr,(u;;), where resr, is restriction in coho-
mology. As in [17, §7.3], we can choose a representative ji; of j;; such that
Tty ) = iy, forally € I'g (here 7, stands for the map induced by 7 between spaces
of measures). From now on we fix such a j.
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For any compact open subset U C Y write Dy for the subset of the measures on
Y which are supported on U. Thus, in particular, Dx = D. Define X, := Z; X pZip
and Xygr 1= 7 X Z;, so that X = X [] Xygr. Recall from §2.1 the element w, € Ry
of reduced norm p that normalizes I';. Shapiro’s lemma provides canonical iso-
morphisms

S:HY(I'y,D) — HI'1,Dx.), S+ H'(I'y, Doy, x) — HNI'1, Doy ).

For a prime ¢} Mp let S, denote the set of elements in Ry ®y, 7, with non-zero
norm. For a prime ¢|Mp let n, be the maximal power of ¢ dividing Mp. For primes
¢ # p with ¢|M fix an isomorphism of Q,-algebras

i : B®o Q —5 Ma(Qy)

such that (R ® 7;) is the order consisting of matrices (z b) € My (7)) with

d
0" |c. For all primes ¢|Mp define S, to be the inverse image via 7, of the semigroup
consisting of matrices g = ((; Z) € M(7Zy) such that £*|c,a € 7, and det(g) # 0.

Now we may consider the Hecke algebra ' associated with the pair ("1, S;) where
S1 :=B* N]],S¢and the product is taken over all prime numbers ¢ (see [17, §2.2] for
details). By definition, the Hecke operator U, € T is given by U, = I'1go{"1 for an
element gy € R; of norm p. We also have the Atkin—Lehner involution W, =
I'wpI'y € T1. Since the Hecke algebra Ty acts on H Y(ry, D« ), we may use S and S
to define Hecke operators

Up =S U,S : H\(I'y, D) — H (I, D),
W, o= SW,S : H\(I', D) — H'(I'y, Dy ).

Define ji;; := W, Uplty) € H (T, Dgy,x) and choose a representative ity; of jty;. By
[17, eq. (45)], there are elements m; € D« and ma € Dy, x,; such that forall y € I'y
one has

:&[ 1y = zﬁy +ym; —m; on Koo ; ﬁﬁ[ Ly = pﬂy +ymz —mz on anff .

4 - Formulas for Darmon points on abelian varieties

4.1 - Abelian varieties associated with newforms

Consider a newform f' € So(I"g(V)) with N := MDp. Write f(¢) = > a,(f)q" for

>1
the g-expansion of f, let F := Q(a,(f) | » > 1) be the (totally real)nnumber field
generated by the Fourier coefficients of f and let Or be the ring of integers of . The
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Fourier coefficients of f generate an order Oy in Or. Shimura’s construction ([33,
Theorem 7.14]) attaches to f an abelian variety A = Ay over Q of dimension
d = [F : Q]. Explicitly, let Ar : T'— O be the algebra homomorphism such that
2¢(T¢) = a,(f) whenever £ is a prime not dividing N. Then A is the maximal abelian
subvariety of J; killed by ker (4); furthermore, A is (O-simple because the cusp form
f is new.

Since p?}| N, part iii) of [16, Theorem 3] implies that a,(f) ==*1 and A has
purely multiplicative reduction at p, i.e., the identity component of the special
fibre of the Néron model of A over 7, is a torus over I7,. Equivalently, the re-
duction of A at p is semistable of toric dimension d. Since JI™" is the maximal
toric quotient of J; at p, it follows that A is a quotient of J'™V. Finally, by
construction, the ring Oy embeds into the ring Endo(A) of endomorphisms of A
defined over Q. In fact, F = Endp(4) ® Q, so that A is an abelian variety of GLg-
type ([27, Corollary 4.2]).

Remark 4.1. Since, by assumption, N is square-free, the abelian variety A , is
semistable, hence all endomorphisms of A are defined over Q ([25, Corollary 1.4, (a)]).
In particular, if Ends(A) denotes the ring of all endomorphisms of A then
F =End;(4) ® Q and End(4) is commutative.

Proposition 4.1 (Mattuck). If K is a finite extension of Qp then A(K) is
compact.

Proof. Let K be a finite extension of Q. By [22, Theorem 7], the group A(K)
contains a subgroup of finite index that is analytically isomorphic to the product
O% where Oy is the ring of integers of K and, as before, d is the dimension of A.
Since O is compact, it follows that A(K) is compact. O

Remark 4.2. Proposition 4.1 holds for arbitrary (not necessarily modular)
abelian varieties. Actually, the result of Mattuck that is used in the proof of
Proposition 4.1 is a special case of a structure theorem of Serre for compact p-adic
manifolds ([29, Part II, Ch. I1I, Appendix 2, Theorem 2]).

Now set Hy := H1(A(C),Z), choose a sign ¢ € {£} and write H, for the ¢-
eigenspace for complex conjugation acting on Hy. Thus H is a free abelian
group of rank d. Since 4 is a quotient of J'™", it follows that 1% is a quotient
of H. The ring O acts by functoriality on I, and, since F is totally real, on I}
as well. For every field /C, this endows [} ® IC with a canonical Oy ® K-module
structure.
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Lemma 4.1. If K is a field of characteristic 0 then U @ K is free of rank 1
over Oy ® K.

Proof. Asremarked above, [} is an Oy-module that is free of rank d as an
abelian group, and then Y ® Q is free of rank 1 over Oy ® Q because Oy @ Q=F
and [F' : Q] =d. The claim for a field K of characteristic 0 follows immediately. O

From here on we fix an isomorphism
3) Ha ® Qp ~ O ® Qp,

which exists by Lemma 4.1. Of course, (3) induces an isomorphism Hy ® K ~ Oy ® K
for every extension K of Q.

4.2 - Darmon points on A
Let 99, € (Q; )d denote the Tate periods for A at p and write
(4) Brage.a - (O /gy, .q,) — AC))

for Tate’s analytic uniformization of A at p, which is defined over K, (see §A.1 and
§A.3).

Remark 4.3. With aslight abuse of notation, we shall sometimes write @pae 4
for the map on (C; )? obtained by pre-composing (4) with the projection onto the
quotient. Furthermore, we embed C; diagonally into (C; )¢, so that we can evaluate
Drate, 4 at points of ‘C;.

Set T4 := T[;[j4 and recall the Hecke-stable lattice Lf := LUZ inside 7%(Q,) ~
(@; ). By Theorem A.1, the lattices L and (¢ g d) of (Kzf )¢ are commensurable;
set n:= [L : Ly N(g,,-,q,)]- Raising to the n-th power and composing with
Drate, 4 yields a Galois-equivariant isogeny
(5) ¢ TH(Cp) /LYy — A(C))

defined over K, (see §A.3). In fact, the proof of [17, Theorem 1.1] shows that ¢ can
be chosen to be equivariant with respect to the actions of the relevant local Galois
group (see [17, §7.1]). Similarly, we fix a Galois-equivariant isogeny

9t AC,) — T5(C)) /LY.
Finally, for every w € Emb(O,, Ry) we define
f4,(// = (054 (P[ Z[j’q‘w) € A(Kp)
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These are the Darmon points of conductor c on A. Since the sign ¢ € {£} isregarded
as fixed, from here until the end of this section we drop all superscripts “&” from our
notation (i.e., we write L, for L%, g, for ¢, ¢, for ¢, P4, for Pj;w and [H4 for HY).
By Proposition 3.1, P4, = P4, whenever y and y' are I'o-conjugate. In the next
subsection we will give an integral expression for a suitable logarithm of the Darmon
points P4, on A.

4.3 - Logarithms and L-invariants

Let C, be the completion of O, and let G be a finite-dimensional commutative
Lie group over C, (see [4, Ch. III, §1]). The Lie algebra Lie(G) of G is the
tangent space of G at the identity and is a C,-vector space of dimension dim(G).
Let Gy be the smallest open subgroup of G such that the quotient G/Gy is tor-
sion-free. As explained in [4, Ch. III, §7.6], there is a canonical analytic homo-
morphism

log : Gy — Lie(G).

The map log is a local diffeomorphism and its kernel is the torsion subgroup
of Gf.

Proposition 4.2. If K is a complete subfield of C, then Lie(A(K)) is a free
Oy ® K-module of rank 1.

Proof. Denote by Lie(A) the Lie algebra of A viewed as an algebraic
group over (), so that Lie(4) is a d-dimensional vector space over Q. The ring
Or embeds into Endp(A), hence it acts by functoriality on Lie(4). This endows
Lie(A) with an Oy ® (Q-module structure, and then Lie(A) is free of rank 1 over
Oy ® Q because O @ QO = F and [F: Q] = d. By base change, we deduce that

(6) Lie(4 ) = Lie(A) @0 L ~ 05 @ L

for every field £ of characteristic 0. Now let K be a complete subfield of C,. As
remarked in [34, p. 2744], the Lie algebra of the K-analytic Lie group A(K) coincides
with Lie(A k), and the proposition follows from (6). O

From now on we fix an isomorphism
(7 Lie(A(Qy)) ~ O ® Qp,

which in turn induces isomorphisms Lie(A(K)) ~ Or @ K for all IC as in Proposition
4.2. In fact, we shall often implicitly view (7) as an identification.
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In the special case where G = A(C,), if U is an open subgroup of A(C,) then
A(C,)/U is torsion ([6, Theorem 4.1]), hence Gy =G and we get a surjective
logarithm

8) log, : A(C,) — Lie(A(C))) ~ Oy @ C,,

that is a Cp-analytic homomorphism. The kernel of log, is the torsion subgroup
of A(C,). As noted in [34, §1], if £ is a complete subfield of C, then
log 4 (A(K)) = Lie(A(K)), hence (7) gives an isomorphism

9) log, : AK)® Q0 — Or® K
that turns A(K) ® Q into a free Oy ® K-module of rank 1.

Remark 4.4. It is known that log, essentially coincides with the logarithm
map introduced by Bloch and Kato in their paper [3] on the Tamagawa number
conjecture for motives (cf. [3 Example 3.11]).

Let Ef be the L-invariant introduced in [17, Definition 3.2]. Since Hy is Hecke-
stable, we can consider the endomorphism L4 of {4 induced by /.Zzl,) . As a con-
sequence of [17, Theorem 7.1], we know that the map

(10) id‘[j{A & logp —LA® OI‘dp Ha ® ‘C; —Hy ® ‘Cp o~ Of & ‘Cp,

where log,, is the branch of the p-adic logarithm such that log,(p) = 0 and ord, is the
p-adic valuation, vanishes identically on Ly. Hence (10) induces a C,-analytic
homomorphism

log,, : A(C) 25 Ta(Cp)/La — Or ® €,

that we may call the L-invariant logarithm (or, better, the L-invariant logarithm
with sign ¢) of A. In fact, since the logarithmlog, on A(C,) is uniquely determined by
the property that its tangent map is the identity ([4, Ch. III, §7.6]), a computation
shows that there is 1 € (Oy ® C))” such that log, = 4 -log,. We shall not use this
formula in what follows; rather, we shall implicitly view it as a justification for ex-
tending the arguments of [17] and [21] in the way that we describe below.

Composing log, with the map ¢, introduced in (5) gives an analytic homo-
morphism

Yy = IOgA O Py : TA(Cp)/LA — Of X ‘Cp

that is Oy ® Kp-valued on T4(K),)/L,. By pre-composing it with the projection onto
the quotient (respectively, with the diagonal embedding and the projection onto the
quotient) we may also view ¥4 as defined on 7'4(C,) (respectively, on C;).
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4.4 - A formula for Darmon points on A

Our goal is to describe an integral formula for Darmon points on A (or, rather, for
their p-adic logarithm). With notation as in §3.3, we set iy := ji;,. Now let
w € Emb(O,, Ry) and recall the Darmon point P4, € A(K,) defined in §4.2.

The first main result of this article is

Theorem 4.1. logs(Pa,) = —t1- /?’A(ac—z,,,y)duA} (c, y).

As in §3.1, the integer ¢ is the exponent of I'™. Note that the integral on the
right does indeed make sense, as the function 4| K is bounded thanks to the
compactness of A(K,) ensured by Proposition 4.1, the measure A, takes values in
Ha ® 7, C Ha ® K, the function ‘PA|KPX takes values in Oy ® K, and Hy ® K, ~
Or ® K, by (3).

Proof. First of all, by definition of the point P, ,, there is an equality
logA(PA,t//) = YIA(,P‘,[ [Aﬁl//)-

Moreover, x —z,¥y € (’),X(p when (x,%) € X; here Ok, is the ring of integers of
K,. Define the 1-cochain p on Iy with values in T4(K,) by the formula
= — f Ya(r — z,y)djy, . Keeping the notation of §3.3, define also the 1-co-

cham D on Iy with values in Ta(K,) by

- / Palw — 2, y)djLy, + / W — 2,)d(my —my)

[ a2 - mo).
PXatr
Following verbatim the proofs of [17, Propositions 7.10 and 7.13] after replacing the
branch log, of the p-adic logarithm with ¥4, we see that p and p split the restrictions
of Y4(d) to I'g and Iy, respectively. Thus P4 (d.) = A4(p — p) where 4is the connecting
map in the Mayer—Vietoris exact sequence and p — p is the class of p—p in
HY(I'1, Ta(Kp)). We know that ¥, (Elz) is split by Ya(B,), so 6(Pa(B,) = Alp — p)
where ¢ is the connecting map on cochains. Since I" = Iy #r, Iy and t annihilates "%,
we conclude by applying the group-theoretic result of [21, Lemma 3.4]. O

At this point it is important to observe that the validity of the formula in
Theorem 4.1 is independent of the isomorphisms fixed in (7) and (3). In fact, any two
isomorphisms of the form (7) or (3) differ by multiplication by an element of
Oy @ Kp)™.
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Remark 4.5. It would be desirable to perform our computations directly via

a pairing of the form
Lle(A) ®Endu(A) F[A — Lle(A),

without needing to fix isomorphisms Lie(A(K))) ~ Or® K, and Iy ® K, ~
Of ® Kp .

Now let o be an endomorphism of A, and let o, : Lie(A(C,)) — Lie(A(C))) be
the linear map induced by o. By [34, §1], the maps log, and « commute, in the
sense that

(11) logy o o = o, ology.

As a consequence of Theorem 4.1, we obtain
Corollary 4.1. logy(«(Pay)) = —t~oc*< /‘I’A(x - zy,y)dﬁA_.},w(oc,y))
X
Proof. Apply o. to both sides of the formula in Theorem 4.1 and use
equality (11). O

While the validity of Corollary 4.1 is unconditional, now we describe a refine-
ment that depends (at least in part) on a technical assumption. By [4, Ch. III, §7,
Proposition 10], there exists an open subgroup V of A(C,) such that log,(V) is
open in Lie(A(C,)) and logy | is the right inverse of the restriction of the ex-

ponential map
exp, : Lie(A(C,)) — A(C))

to the open subgroup log, (V). Furthermore, expy (Lie(A(IC))) C A(K) for every
complete subfield K of C,.

Corollary 4.2. Let V C A(C,) and o be as above.
1. If u(Pa,,) € V then

u(Pa,,) = expy (—t <Oy < / Pa(e — 2y y)dity,, (@, y))) .
X

2. There exists an integer m > 1 such that
mPy, = epr(mt~ / Yale — zwy)dﬁAﬁ},w(x, y))
X

Jfor every w € Emb(O,, Ry).
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Proof. To prove part (1) apply exp, to both sides of the equality in
Proposition 4.1. As for part (2), observe that V' := A(K,) NV is an open subgroup
of A(K}). On the other hand, by Proposition 4.1, the group A(K),) is compact, so V’
has finite index, say m, in A(K}). But P4, lies in A(K,), hence mP,, belongs to
V' c V. The desired formula follows from part (1) by taking as o the multi-
plication-by-m map on A(C,). O

In other words, part (1) of Corollary 4.2 says that if (P, ) is “sufficiently close”
to the identity of A then we can exhibit a formula for «(P, ) itself.

Remark 4.6. It is worth stressing that the integer m appearing in part (2) of
Corollary 4.2 depends exclusively on the Lie structure of the group A(C,) of p-adic
points of A, and not on the Darmon point P4, . It would be very interesting to
calculate m, so as to be able to compute an explicit multiple of P4, for any
v € Emb(O,, Ry).

Setting @ := <g1, g d>, it is convenient to introduce the homomorphism
Prate, - lo, . -
(12) logg : (C)7/Q —% A(C,) =2 Lie(A(C))) ~ Op @ C),

where log, is the logarithm on the p-adic points of A introduced in (8) and the
isomorphism on the right is a consequence of (7). Recall from §4.2 that
n:= [La:LaN{(q,,--,q,)]- One has the formula

(13) log, (¢ () = nlogg () forallw e Ty (Q,)/L3 .

-

We will also denote by logq the map on (C ) obtained by pre-composing log, with
the canonical projection. Finally, we evaluate the function logg, at points of Q; by

embedding Q; diagonally into (C] )¢ and projecting onto (G ) /Q.
Corollary 4.3. logA(Pjﬁw) =—nt- /logQ(.oc - z,,y)dﬂj#w(x, Y).
X
Proof. Immediate from Theorem 4.1 and formula (13). O

In the rest of the paper, set
(14) m = [A(Kp) : V’}
where V' = A(K,) NV is the subgroup of A(K,)) defined in the proof of Corollary 4.2.

In order to interpret the statement of the following lemma, one should keep
Remark 4.3 in mind.
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Lemma 4.2. Ifxe (K;)d then «™ ¢ ‘I”falte,A(V)-

Proof. Since the map @Prue 4 is Galois-equivariant and defined over K, if
x e (pr)d then @ryte 4(x) € A(K}). On the other hand, one has
¢Tate,A(xm) = mquate,A(x) € WLA(Kp) cV,

and we are done because V’ is a subset of V. O

5 - Hida families and rational points on abelian varieties

The goal of this section is to extend the results of [1] to the case of a newform of
weight 2 whose Fourier coefficients are not necessarily rational integers. As most of
the arguments of [1] carry over mutatis mutandis to our more general setting (as
was already anticipated in [1, Remark 5]), we will content ourselves with highlighting
the main novelties occurring here.

5.1 - Hida’s formal q-expansion

Embed 7 into the weight space
(15) X :=Hom(7Z;,7;) ~7/(p - D7 x (1 +pZy)

by sending k € Z to the map (x+ «*~%). Hida theory associates with f a neigh-
bourhood Uy of 2 in X’ and a formal g-expansion

ku)

(16) foo =Y au()q"

n=1
where a; =1 and a, is a rigid analytic function on Uy such that " a,(k)g"

for an even k € Uy N 7>y is the g-expansion of a p-stabilized (in thg_éense of
[11, Definition 2.5]) weight k eigenform f; on I'¢(N) and f; =f. In fact, we
choose Uy small enough so that the results of [21, §3.3], which are based on a
suitable “control theorem” ([20], [21, Theorem 3.1]), hold. We explicitly remark
that none of the computations with Hida families and L-functions of cusp forms
performed in [21] (in particular, those of a cohomological nature contained in
[21, §4.2] and the elaboration on Popa’s work [24] described in [21, §4.3]) uses
the assumption made in loc. cit. (and in [1]) that the Fourier coefficients of f are
rational. This means that these results apply word for word to our present
setting, so we shall not duplicate the arguments here but rather refer (espe-
cially in Section 6 below) to the relevant sections of [21] for details.
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5.2 - Mazur-Kitagawa p-adic L-functions

As in [1, Definition 1.11], to a primitive quadratic Dirichlet character y and
the formal g-expansion f, in (16) one can attach the Mazur-Kitagawa two-
variable p-adic L-function L,(fx, x,k,s) in which the pair (k, s) varies in Uy x X.
This function is defined in terms of the measure-valued modular symbols that
were studied by Greenberg and Stevens in [11, Section 6] and satisfies an in-
terpolation property with respect to the special values of the classical L-func-
tions L(f, x,s) that is described in [1, Theorem 1.12].

5.3 - Heegner points

Suppose that we can write N in the form N = pN*TN~ where p is, as before, a
prime, N~ is the square-free product of an odd number of primes and the integers p,
N and N~ are pairwise coprime. Denote by X the Shimura curve over Q of dis-
criminant N~ p and level N* and let J denote its Jacobian variety. Fix a (surjective)
modular parametrization

a:d — A

defined over Q, whose existence is ensured by the Jacquet—Langlands cor-
respondence and Faltings’s isogeny theorem. Now let K’ be an imaginary
quadratic field that is admissible in the sense of [1, Definition 3.1], let Hyg
denote its Hilbert class field and write Gg := Gal(Hg /K') for the corre-
sponding Galois group over K'. Finally, let y be a quadratic character of Gx and
let H, = Q(/dy, /dz) be the biquadratic (respectively, quadratic) field cut out by
x if x is non-trivial (respectively, trivial). Let y; and y, denote the quadratic
Dirichlet characters associated with y; order them in such a way that y;(— N) =
wy and yo(— N) = —wy where —wy is the sign in the functional equation
for L(f,s).

Proceeding asin [1, §4.3], one can introduce a Heegner divisor PX of degree 0 on X
and define P, := nA(lBX) € A. It turns out that P, belongs to A(H,)* (respectively,
A(K') ® Q) if y # 1 (respectively, y = 1).

Theorem 5.1.  The point P, is non-torsion if and only if L'(f/K', x,1) # 0;
in this case, the group A(H,Y has rank one. Furthermore, the image of P, in
A(H,) ® Q belongs to (A(Q(vdy)) ® Q).

Proof. The first assertion is a consequence of Zhang’s formula of Gross—
Zagier type for Shimura curve parametrizations ([36, Theorem 1.2.1]), while the
statement about the rank follows from the methods of Kolyvagin, as extended by



60 MATTEO LONGO and STEFANO VIGNI [22]

Kolyvagin and Logachév to the case of modular abelian varieties ([14], [15]; cf. also
[35, Theorem A]). Finally, the last claim can be proved as [1, Theorem 4.7]. O

Let L,(fx/K',z,k) be the analogue of the p-adic L-function defined in [1,
Definition 3.5]. As in [1, §4.4], one has the formula

& 2log,y (P2 if 71(p) = ap(f),
(17) & Lo(f /K 1, ) :{
di? ™ =2 i 11(p) = —ap(f),

which is the counterpart of [1, Corollary 4.10] and is used in the proof of Theorem 5.2.
Thanks to isomorphism (3), the square on the right hand side of (17) is to be un-
derstood as a product in Oy ® Q.

5.4 - Factorization of p-adic L-functions

We are interested in the following factorization result, which can be proved by
means of the arguments described in [1, §5.1].

Proposition 5.1. For all k € Uy there ts a factorization
Lp(foc/K/7X7 k) = n(k)Lp(fooaXhk7k/2)Lp(fOC7X27k7k/2)a

where 1 1s a p-adic analytic function on Uy such that n2) € F*.

Remark 5.1. The Jacquet—Langlands (JL, for short) correspondence es-
tablishes Hecke-equivariant isomorphisms between classical and quaternionic
modular forms (see, e.g., [1, Theorem 2.4]). In fact, the JL correspondence between
modular forms is a consequence of a canonical isomorphism between the corre-
sponding Hecke algebras (see, e.g., [13, Section 2.4] and [19, §6.3]). Let ¢, be a
quaternionic form associated with f via the JL correspondence. As in [1, p. 395], one
can use the Bruhat-Tits tree of GL2((Q),) to define the Petersson norm
(@9, ¢5) € F*. With notation as in Proposition 5.1 one has #(2) = (¢,, ¢,).

5.5 - Hida families and rational points

The main result of this section is the following theorem, which extends [1,
Theorem 5.4] to the case of modular abelian varieties.

Theorem 5.2. Suppose that there are at least two distinct prime numbers of
semistable reduction for A. Let x; be a Dirichlet character of conductor prime to N
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such that y;( — N) = wy and y,(p) = a,(f). Then

1. the p-adic L-function L,(f«, x1,k, k/2) vanishes to order at least 2 at k = 2
2. there exist a global point P, € (A(Q(v/d1)) ® Q)" and a numbers € F* such
that
d2

W Lp(fOC7X17 k? k/z)kzz = SlogA(P){l )2;

3. the point P, is of infinite order if and only if L'(f/Q, x1,1) # 0;
4. the image of s in F* /(F*)* is equal to that of L*(f,w,1), where w is any
quadratic Dirichlet character satisfying
@) w0) = y1(0) for all primes ¢ dividing N' = N /p;
b) w(p) = — 1)
(©) L(f,y,1) #0.

Proof. The main ingredients needed here are provided by Theorem 5.1,
formulas (17) and Proposition 5.1 and then one can argue as in the proof of
[1, Theorem 5.4]. O

6 - Rationality results for Darmon points over genus fields

In this final section we extend the rationality result of [21] to the case of
higher-dimensional (modular) abelian varieties. In order to avoid indulging in
arguments that have already been expounded elsewhere, we freely refer to defi-
nitions and computations in [21] whenever they carry over to our more general
setting without significant change; the reader is advised to keep copies of [1] and
[21] close at hand.

6.1 - p-adic L-functions over real quadratic fields

Let Uy be the p-adic neighbourhood of 2 in X introduced in [21, Proposition 3.2].
Let (x) denote the principal unit attached to x € 7, which is defined as the unique
element of 1 + p7, such that x = p&@¢, (x) where {, is a (p — 1)-th root of unity.
Let y : K — B be an optimal embedding of Ok into Ry and let @, be the quadratic
form defined in §3.2. Let m > 1 be the integer defined in (14), then for allk € Uy and
all pairs (x,y) € X set

k—2

18)  QW(x,y) = epr( logg ((Qy(x, y)>m)> € AK)) ® Q~ O @ K,

where logg, is the map defined in (12). Observe that Q®(x,) lies in A(K,) ® Q

v
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(and not just in A(C,) ® Q) because the argument of exp, belongs to Lie(A(K),)).
In fact, Qg“) is naturally A(K,)-valued: here we are implicitly composing the
exponential exp, with the natural (localization) map A(K,) — A(K,) ® Q. This
shows, by [22, Theorem 7], that Q" is p-adically bounded.

Remark 6.1. Recall from (15) that the weight space X is the disjoint union of
p — 1 copies of the disc in Q, of centre 1 and radius 1 and that Uy is an open
neighbourhood of 2 in X. In light of this, for any fixed pair (x,y) € X the map
sending k € Uy to ny’“)(oc, y) € A(K,) may be interpreted, from a Lie-theoretic point
of view, as a suitable restriction of a one-parameter subgroup of the p-adic Lie
group A(K)).

In the following definition, the measure jij , is as in §4.3.
"y

Definition 6.1. The partial square root p-adic L-function attached to f.., K
and y is

£l i= [ QPG s, @
X

where k varies in Uy.

When k € Uy is kept fixed, in Definition 6.1 we are integrating the function Q"
defined on X with values in A(K,,) ® Q against the Hy ® Z,-valued measure ﬁif/w'
This does indeed make sense, as we fixed in (3) (respectively, in (9)) an isomorphism
Ha ® Qp ~ O ® Q) (respectively, A(K,) ® Q ~ O ® Kp). Geometrically, what we
are doing here is to exploit the natural action of Endy(A) on the homology Hy. In
other words, Definition 6.1 gives a function

‘C;):(foml/h_) : Uf—>0f®Kp

As in [21, Proposition 4.16], it can be checked that E;( foos ¥, k) is independent of
the choice of a representative i of iy and only depends on the I'p-conjugacy class
of w. Analogous considerations apply to the L-functions of Definition 6.2 below.

Remark 6.2. By Lemma 4.2, the power (@, (x, y)>m lies in qb{‘;te,A(V) for all
(x,y) € X. Therefore if k > 2 is an integer in Uy then Q,(f)(ac, y) is the m(k — 2)/2-
fold self product of @, (x, %). This justifies the restriction of Uy to the residue class
of 2 modulo p — 1 in X, and also explains the appearance of the exponent m in (18).

Let Hj = H{ denote the narrow Hilbert class field of K and write G :=
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Gal(H;g/K) for its Galois group over K. Let Pic™(Og) denote the narrow class
group of K, so that Pic*(Og) ~ Gy, via the reciprocity map of global class field
theory. As in [21, §2.5], fix a set {WJ}JGG;{ of representatives of the I'g-conjugacy
classes of oriented optimal embeddings of Ok into Ry (for the notion of oriented
embedding see, e.g., [21, Definition 2.4]).

Definition 6.2. Let x be a quadratic character of Gj; of sign —¢ and let k
vary in Uy.

1. The square root p-adic L-function attached to f,, and y is
Lp(foo/ K 7. 0) =Y (0L (foor 0y, B

"
oeGy

2. The p-adic L-function attached to f,, and y is

Lp(fm/Kv)(vk) = Ep(foo/K7X7 k)z

Of course, the square in part (2) of Definition 6.2 is to be interpreted as a
square in Oy ® K. Note that

L%f(ﬂw/]{7W72)::L/ndﬁjb@ = /[ dn*<ﬂiJW) ::0
X

Ph(Q,)

for all v € Emb(Ok, Ry), hence
(19) Ly(foo/ K 1:2) = D> 1L foo, 5 k) = 0.

}
ocGy

As in [21], we shall also have use for p-adic L-functions attached to real
quadratic fields in which p splits (such functions play a crucial role, for instance, in
the proof of Theorem 6.2 below). In this case the definitions are somewhat more
involved, and we refer the reader to [21, §4.5] for all details and results that are
needed here. In particular, the interpolation formulas given in [21, Theorem 4.19]
and [21, Theorem 4.25] apply without change.

6.2 - Review of genus characters

A genus character of K is an unramified quadratic character of Gj. Let
ok € Gy denote the image of the class in Pict(Ok) of the ideal (v/dx) via the re-
ciprocity map; the sign of a genus character y is y(ox) € {£1}. A genus character
x of K cuts out the genus field H, of K given by

H, = @(\/‘717 \/‘72)
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where dg = didy. Since y is quadratic, the extension H,/Q is either biquadratic
or quadratic, the latter case occurring precisely when y is trivial (and then, of
course, H, = K). Let y;, x» and ex be the characters associated with the quad-
ratic fields Q(v/d;), Q(v/dz) and K, respectively, so that ex = y; - y5. It is well
known that the genus characters of K are in bijection with the factorizations of d
into a product of relatively prime discriminants d; and dy or, equivalently, with
the unordered pairs (x;, y») of primitive quadratic Dirichlet characters of coprime
conductors satisfying ex = y; - xo (the trivial character corresponds to the fac-
torization d = 1 - d). For more details see, e.g., [5, Ch. 14, §G].

6.3 - Derivatives of p-adic L-functions and Darmon points

The rationality results we are interested in will concern the Darmon points
Pjﬁw of conductor ¢ =1 introduced in §4.2. For every w € Emb(Og,Ry) set
Jj = logA(Pj‘W) € Lie(A(K))) ~ O ® K, then for a genus character y of K of
sign —¢ € {£} define

I, =3 20, =log,(P))

“
ocGy

with P, := Zae(;;{ 1(@)P;,, € A(Kp). Recall the integers 7 and ¢ in Corollary 4.3.

Theorem 6.1. With notation as before, there is an equality

wypyx(—MD) -1
2nt

d
%[’p(foo/Kv;{ak)k:QZ J}{-

Proof. Mimic the proof of [21, Theorem 4.31]. O

Corollary 6.1. There is an equality

T2ty if 11— MD) = —wyp ;
0 Z:f Xl(_MD):wMD~

dZ
m Lp(foo/KaXa k)k:Z =

Proof. The second derivative of L,(f./K, k) evaluated at k =2 is equal
to the sum

d g d?
2 (Wcﬁp(foo/Ka)f»k)kz) +2£p(foo/KaXa2) W »Cp(foo/KaXak)kzz .

But £,(f«/K, x,2) = 0 by (19), and the result follows from Theorem 6.1. O



[27] QUATERNIONIC DARMON POINTS ON ABELIAN VARIETIES 65

6.4 - A factorization formula for p-adic L-functions

For j =1,2 let Ly(f, x;,k,s) be the Mazur-Kitagawa p-adic L-function asso-
ciated with f, and y;; we refer to [1, §1.4] for its definition and main properties.
The following factorization result is the counterpart of [21, Theorem 4.33].

Theorem 6.2. There exist a meighbourhood U C Uy of 2 and a p-adic
analytic function n on U such that

1. 5(k) £ 0 for all k € U and 5@) € (F*);

2. for all k € U there is a factorization

Lp(fOO/K7X7 k) = n(k)Lp(fDC7X17 kv k/z)Lp(fosza kv k/Z)

Proof. Proceed as in the proof of [21, Theorem 4.33], keeping in mind that,
with notation as in loc. cit., (¢y, ¢,) € F'* (cf. Remark 5.1) and, by construction,
L,,(foo/KZf’j,)(;j,2) is a square in F’* (see [1, §3.2]). O

6.5 - The rationality result

The rationality result we want to prove is the following

Theorem 6.3. Let x be a genus character of K corresponding to a pair (yq, xs)
such that y;,( — MD) = —wyp fori=1,2.

1. There exists a point P, € A(H,Y and a number ¢ € F* such that
J, = clog,(P,).

2. The point P, is of infinite order if and only if L'(f /K, x,1) # 0.

3. A suitable integral multiple of P, belongs to the natural image of A(H,)
m A(K,). In particular, P, coincides with the tmage of a global point in
AKy) ® Q.

This result extends [21, Theorem 5.1] to the case of higher-dimensional abelian
varieties. As will be clear, we follow the proofs of [2, Theorem 4.3] and of [21,
Theorem 5.1] closely.

Proof. Order yy, x» in such a way that sign(4, y;) = —1. Then y,(p) = —w, =a,
and Theorem 5.2 ensures that there are a global point P, € A(Q(y/dy))", which is
torsion if and only if L/(f/Q, y;,1) = 0, and a number s € F* such that

dz

a2 Lo(Foe 10,k I/ 22 = s1oga (P,)?

(20)
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and
(21) s=L*(f,y,1) (mod (F*))
for any primitive Dirichlet character w for which L(f,y,1) # 0, w(p) = —x(p) and
w(l) = x(¢) for all primes ¢|MD. Here the algebraic part L*(f,y,1) € F of the special
value L(f,w,1) is defined as in [2, eq. (24)].

From Theorem 6.2 and the fact that, again by Theorem 5.2, L,(fx, x1,k, k/2)
vanishes of order at least 2 at k = 2, it follows that

d? d?
(22) W Lp(fOC/K7X7 k)k:2 = '7(2) W Lp(foov)(la ka k/z)kZZLp(fOC7X27 27 1)
First suppose that L'(f/K, x,1) # 0. In this case
Lp(fDOaXsza 1) = 2L*<fa%27 ]-) S FX‘
Set u :=L*(f,ys,1). By (21), there exists r € F* such that 7*> = s/u. Define
P, :=P, in this case. Setting v :=ntru € F'*, a combination of (20), (22) and
Corollary 6.1 yields

J2 = n@mtPsu log, (P, = (v /n@))” log, ()%,

from which we obtain the desired result for ¢ := + v /5(2) € F’* (recall that, by
Theorem 6.2, (2) is a square in F'*).

Now suppose that L'(f/K, y,1) = 0. In this case

Lp(foov;{Za27 1) = ZL*(fv){Za 1) = 07

and the result is a consequence of (22) and Corollary 6.1 upon setting P, := 0. This
completes the proof of parts (1) and (2).

Finally, write ¢ = a/b with a € O and b € 7. Since J, = log,(P,), part (1) and
the commutativity relation (11) give the equality
(23) log,(bP,) = log,(aP,).
Asremarked in §4.1, the elements of O act on A as endomorphisms defined over Q,

hence aP, € A(H,). Therefore, since the kernel of log, is the torsion subgroup of
A(C)), part (3) follows from (23). O

A - The p-adic uniformization of abelian varieties

Wereview the p-adic uniformization theory of abelian varieties A over Q with purely
multiplicative reduction at p and explicitly describe the isogeny ¢% appearing in §4.2.

A.1 - Review of Tate- Movrikawa-Mumford theory

Let A, be an abelian variety of dimension d with purely multiplicative reduction
at p. This means that the identity component of the special fibre of the Néron model
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of A over Zj is a torus over ['y; if this torus is split over [, (which we do not assume)
then we say that A has purely split multiplicative reduction at p. Such an abelian
variety is a higher-dimensional analogue of Tate’s p-adic elliptic curve (see, e.g., [30,
§A.1.1]). Thanks to results due to (among others) Tate, Morikawa and Mumford,
which now we briefly describe, this condition guarantees that A admits an analytic
uniformization locally at p. Details can be found in [26, Section III], while the rigid
analytic point of view is nicely exposed in [23, Section 4].

Set Go, = Gal(i@p /Qp). There are free abelian groups M and N of rank d
and an admissible (in the sense of [26, Section III, §2]) homomorphism o : M —
Hom WV, @;) that fit into a short exact sequence

0— M % HomW, Q) = A(Q,) — 0

of GQp—modules (with M and N being regarded as trivial Galois modules). In other
words, there is a Galois-equivariant analytic uniformization

0 : Hom(W, Q;)/M = A(Q))

that expresses the geometric points of A, as a quotient of a d-dimensional p-adie
torus by a sublattice of full rank. Reversing the roles of M and N, one obtains an
analogous parametrization for the dual abelian variety of A.

Choose Z-bases {x1,...,xq} and {y1, ...,yq} of M and N, respectively, and for
every j=1,...,d define q; = (oc(acj)(yl), .. .,oc(acj)(yd)) € (Q;)d. It follows that 0
induces, by continuity, an analytic isomorphism

Drate, 4 (‘C;)d/<gl, . ’gd> = A(C))

of Go,-modules. The vectors g, ..., ¢ , are the d-dimensional analogue of the period
q that appears in the theory of Tate’s elliptic curves (see, e.g., [30, §A.1.1]); they will
henceforth be referred to as the Tate periods for A at p.

Remark A.1 If the reduction of A at p is split then the map ®ryie 4 is defined
over (Q,. On the other hand, if the reduction of A at p is purely multiplicative but
not necessarily split then a result of Mumford and Raynaud shows the existence of
an unramified extension H of (Q, such that ®rye 4 is defined over H (cf. [26,
Theorem 3.2.2]).

A.2 - Modularity and commensurable lattices

Assume that the d-dimensional abelian variety A, has conductor MDp and is
modular. As remarked in the introduction and in §4.1, it is known that A has purely
multiplicative reduction at p and is a quotient of J} ™.
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Recall the d-dimensional p-adic torus 7% and the Hecke-stable lattice L’ inside
T%(Qp) defined in §4.1. Two lattices 4; and A4z in (Kg )d are commensurable if A; N As
has finite index both in 4; and in As.

The following result, asserting that L’ is commensurable to the lattice of Tate
periods for A at p, extends [17, Theorem 7.16] from elliptic curves to abelian varieties
of higher dimension.

Theorem A.l.  The lattices Ly and (q,,...,q ) are commensurable in (K )

Proof. By multiplicity one, A is, up to isogeny, the unique quotient of J/™"
on which the action of the Hecke operators 7', for primes /{ N factors through ;.
Similarly, 7%(C,) is the unique quotient of Tx(C,) on which the Hecke action
factors through As and complex conjugation acts as ¢l. Then [17, Theorem 1.1]
implies that 7% /LY and A are isogenous over Kj,, which amounts to saying that L’
and (g,,...,q,) are commensurable in (K )7 d

A.3 - The isogeny ¢

For simplicity, we set J := J'™". As pointed out before, 7 is the maximal
quotient of J; having purely multiplicative reduction at p. Since the p-adic uni-
formization of 7 can be explicitly described in terms of the abelian group of degree 0
divisors on the supersingular points of X, in characteristic p (see, e.g., [17, §3.5]; cf.
also [8, pp. 448—-449], which treats the case of Jacobians of modular curves), it turns
out that the map ®ryee 7 is defined over K,,. Keeping in mind that A is a quotient of
J7Y, it follows that the p-adic uniformization @rye 4 of A is defined over K, as well.

By Theorem A.l, LjnN (Ql, . ’Qd> has finite index in Lj; set n:=
[le L4 N (gl, g d>]. Raising to the n-th power gives a Galois-equivariant
isogeny of p-adic tori

(24) GO Ly — (C) /gy, 4,)

over (,, and then composing (24) with @y 4 yields a Galois-equivariant iso-

geny
¢ - TH(Cp)/ Ly — A(C))

defined over K,. This gives an explicit construction of the isogeny introduced

in (5).
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