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VALERIO TALAMANCA

On canonical heights on endomorphism rings
over global function fields

Abstract. We present a construction of a canonical height on the endomorphism
ring of a finite dimensional vector space over a global function field. We also prove a
limit formula analogous to the Tate’s formula defining the canonical heights on
abelian varieties.
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1 - Introduction

Canonical heights appeared in the mid 50’s independently in the work of A.
Néron (cf. [6]) and J. Tate (unpublished, see [7] where Tate’s method first appeared
in print) on abelian varieties. Since then canonical heights have been constructed
and studied in several settings, such as Drinfeld modules (cf. [3]), varieties with
morphism (cf. [2]), endomorphism rings of vector space (cf. [9]) and finite sets of
matrices in GLg(Q) (cf. [1]), just to mention a few. While Néron’s construction is
local, i.e., he defines the canonical height as a product of local factors, Tate’s method
is global and is more suited to be applied in different contexts. We briefly recall
Tate’s method. Let A be an abelian variety defined over a number field F.
Let [2] : A — A denote the duplication map on A. Let ¢ be a linear equivalence class
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of divisors on A containing a symmetric ample divisor D and choose ¢ : A — Py so

that D is the pull back of a hyperplane via ¢. Let Ay, : Py(Q) — R denote the ab-
solute logarithmic Northcott-Weil height and set 24(P) := hy,, (P). Then the limit

~ 1
(1) he(P)i= lim o hy((2"1P)

exists for each Pc A(Q) and is independent of ¢. The function ﬁc is called the ca-
nonical height associated to c. Not only is Toe independent of ¢ but also of the choice of
D. Moreover, if we perform the limit in (1) using any other multiplication map we
obtain the same function (cf. [8, Lemma 3.1.]). The equality between Néron’s and
Tate’s definitions is achieved as follows: first it is shown that there is a unique
function % satisfying the following two properties:

a) hg and h are in the same class modulo bounded functions;
b) W(2]1P) = 4(P);

then, it is shown that both Neron’s and Tate’s height satisfy both a) and b).

Let £ be a finite dimensional vector space over a global function field k. In this
paper we present a construction of a canonical height (called the spectral height)
on Endg(Z). Our construction is closer to Neron’s one (albeit more elementary) as
we define the spectral height as a product of local factors (the local spectral radii,
cf. Section 5). We then prove a limit formula (cf. Theorem 5.1), analogous to (1),
relating the spectral height and heights on Endy (%) associated to adelic vector
bundles over k.

The paper is organised as follows: in Section 2 we introduce adelic vector bundles
and their associated heights. In Section 3 we prove an interesting auxiliary in-
equality between the height relative to a sub-bundle D and the minimum of the
height on a coset of D on E, cf. Proposition 3.1. Section 4 deals with heights on
Endg(£), while the spectral height is introduced in Section 5 where we prove our
main theorem (cf. Theorem 5.1).

Notation. Throughout this paper k O I¥,(f) is a global function field of
characteristic p > 0. We let M, be the set of places of k. Given v € My we denote
by k, the completion of k with respect to v and by C, the completion of the al-
gebraic closure of k,. The maximal compact subring of k, is denoted by O, and
we let n, = [k, : [¥,(t),,], where w is the restriction of v to I',(¢). For each v € My
we fix an absolute value ||, in the class of v, by requiring that |a|,” coincides with
the modulus, with respect to the Haar measure on the locally compact group k,,
of the automorphism x — ax. With these normalizations the product formula

reads: [] la|,” =1. Regarding vector spaces we will employ the following
veE Mg
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notation: given a vector space E, E* denotes the set of non-zero vectors in £ and
(e1,..., e.) denotes the subspace generated by ey, ..., e, € E. Lastly if £ is a
vector space over k, we set £, = K ® k,.

2 - Adelic vector bundles

In this paper we use heights associated to adelic vector bundles. Adelic vector
bundles have been recently introduced and studied by E. Gaudron (see [4] and [5]).
An adelic vector bundle £ = (E, {|| - I »}ve,) (over speck or over k for short) of
dimension 7 consists of the following data (cf. [4, Definition 2.1]): a k-vector space
E of dimension n (called the support of E) and a family of ultrametric norms
Il - ”Ev : B @k C, — R, satisfying the following conditions:

1) there exists a k-basis {e;,...,e,} of £ over k, such that for all but finitely
many v € My we have

n
E 0;€;
i=1

where | - | is the unique extension of | - |, to Cy;

= lrgiagxn{|oci|cﬂ} Yoy, ...on) € C,y

Ew

2) let Gal(C,/k,) denote the set of continuous automorphism of C, which leaves
the elements of k, fixed, then || -
Gal(C,/k,) on £ ®x C, .

||z, is invariant under the standard action of

An adelic vector bundle is called v-pure if ||x[/7 , belongs to the value set of | - |,
for all x € E and it is called pure® if it is v-pure for all v € M. Let E =
#E Al Iz, }oerr,) be a pure adelic vector bundle over k. It is possible to perform
several algebraic constructions with adelic vector bundles, such as exterior pow-
ers, symmetric powers and so on. We refer the reader to [4, Section 3.3] for details
and briefly recall the few that we need. The absence of archimedean places sim-
plifies some definitions. We say that D is an adelic sub-bundle of £ if D c E, and
for every v the norms of D are the restriction of those of E. If D C E is a sub-
bundle then E/D inherits an adelic vector bundle structure (denoted by E/D)
where the norms are the quotient norms of those of E. If F = (F, {|| - |7, }ye ae)

! Tt is not difficult to prove that there is a one to one correspondence between pure adelic
vector bundles over k having E as support and coherent systems of k,-lattices belonging to £
as defined by A. Weil in [11].
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is another adelic vector bundle over k, we set

177,

eck; He||f,v

1Tz 7., =

for all T € Homyg(E, F) ® C, and all v € M. It is straightforward to verify that
Homy(E,F) = (Homy(E, F),{|| - 1770
Homy(E, F) as support. Note that if F is the trivial bundle this gives the structure
of adelic vector bundle to E* the dual of E. Next E @y F is the adelic vector bundle
having support E ®x F and norms induced by the isomorphism E ®yF ~
Homy (E*, F). Lastly we denote by A" E = (\" E. || - ||=5,,) the adelic vector bundle
having A" E as support and whose norms are the quotient norms of £ o,

Let B = (E.{| - 1Z.0}vers,) be an adelic vector bundle over spec k. The height
function H : £ — R, relative to £ is defined by setting:
(2) Hy@) = T lell,

vE My

}oear,) i an adelic vector bundle having

for all 0 # e € E. As usual we set H5(0) = 1. It follows from the product formula
that Hy is constant on one dimensional subspaces of E. The height of a subspace
D Cc E, is defined as follows: choose a basis dy, ..., d,, of D over k and set
Hz (D) = HATE(d1 A -+ Ady), which does not depend on the choice of the basis by

the product formula (see [5, Introduction]). Lastly if B is a subset of £ we set

E .
J5(B) = inf Hyx).

3 - Comparison between H /5([e]p) and ZIE([e]D)

Let D be a subspace of E. If e € E — D we denote by (D, e) the subspace gener-
ated by D and e, and by [e]p the coset of e modulo D. In this section we obtain a
comparison result (Proposition 3.1 below) for H /5([e]D) and ;uf (lelp). One of the
main constituents of the proof of Proposition 3.1 is the uniform Sigel’s lemma re-
cently proved by E. Gaudron in [5]. The lower bound obtained in Proposition 3.1is a
key ingredient for the results of the next section.

The quotient height H /D

_ . /(|
lelp— Hgplleln) = ] | nf ez,
veE My

is defined as

if [e]p # [0]p, as usual we set Hy 5([0]p) = 1.
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Proposition 3.1. Let E be a pure adelic vector bundle over k. Let D be a
subspace of dimension d and suppose e € E — D. Then

JE(D, e))"

(3) W)I{E@ if([e]D) < HE/E([e]D) < Afv([e]D)’

where q is the cardinality of the constant field of k and g(k) is the genus of k.

Proof. The inequality H /5([e] p) < )»E([e] p) follows immediately from the
definitions. To prove the other inequality we need the following lemma which gives a
decomposition for the heights of a subspace®.

Lemma 3.1. Let E = (B, {|- |G ve ) be a pure adelic vector bundle. Let
D C E be a sub-bundle of dimension d. Then

Hz((D,e)) = HE(D)HE/E([e]D)-
Proof. Letdi,..., d; be a basis for D. Clearly it suffices to show that

||d1/\~--Add/\eH =||d1/\"~/\dd||

: /
A w0 it €],

for all v € M. Fix v € M. Since E is pure we can find, by [11, Ch. II-2 Thm. 1], a
basis fi, ..., f, of E, such that

(l) ||y1f1 + ynfﬂHEv = sup |y7',|’z;’ for all Y1soosPn € kl’
1<i<n
(i) disy € (... £pp) forall k=0,...,d—1 and e€ (£,,....£, q).

Write d;, = .Xk:(xkifn,lq,] fork=1,...,d and e = Ogjlﬂi f,_ii1, then an easy cal-
culation shows EJllat (ii) implies that -
[di A~ A dd”mm = |oydgz - - - Oadl,
and
[dy A~ Adg A e||m’v = Jog1oze - - - %gafig 1 ,-

It remains to show that | .|, = inf ] l|€’[|z - To this end, note that by construction
e cle ’

2 The same result, although stated in terms of orthogonal projection was first proven over
number fields for the standard L?-height by J. Vaaler, see [10, Lemma 4].
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lelp, = [B4;1fn—alp, and hence in{ : l€'llz., < |B4i1l,- On the other hand any d € D,
e cle ’

d
can be written as > 7;f,_;;1 and so
i=1

d+1 d

le=dlz, = | Y Bifuin = nfuiaa] = 1Baals.
i=1 i=1 ’ O

Now we can quickly finish the proof of Proposition 3.1. By the uniform Sigel’s
lemma for global function fields, see [5, Corollary 3.3], there exists f belonging to
(D, e) but not belonging to D such that

2Ad+D9® [F_((D
oy < T 5D, &)

E(D, e))!

By definition /1? (lelp) < Hz(f) and hence Lemma 3.1, yields

2@+t Hy(D)H /5([e]D)
E(D, e))! |

JE(elp) <

4 - Heights of linear transformations

Let us start by recalling the definition of the operator height for linear trans-
formations and compare it with H5 := H Hom (B.F)" So let E and F be two adelic
vector bundles over k-vector spaces. Given T' € Homy (E, F), set:

H=(T(e H=(T(e
HZ(T) := sup 7’?( ©) = sup 7_F( ©)
’ eckE Hﬁ(e) [elp e E/D }uf(D +e)
where D = ker (7). The function H%p 7 18 the operator height on Homy(E, F)
associated to E and F. If E = F we will use H%p (respectively Hy) instead of
Hg’ E (respectively HE,E)' The main goal of this section is to prove a comparison
result between H%" 7 and Hy 7, which will be used in the proof of Theorem 5.1.
Clearly H"Ep D) gVHEAF(T), so our next objective is to prove a reverse in-
equality where, for non invertible linear transformations, some arithmetic
constants, such as the height of the kernel, will appear, see Proposition 4.2. We
start with a preparatory result that not only establishes a useful alternative
description for Hy; i but also proves that Hy (T) = H”Ep F(T) if T is an injective
linear transformation. ’



[7]  ON CANONICAL HEIGHTS ON ENDOMORPHISM RINGS OVER GLOBAL FUNCTION FIELDS 253

Proposition 4.1. Let E and F be pure adelic vector bundles over k. Given T
m Homy (K, F), set D =ker T C E. Then:

Hy(T(e))
H +(T) = I
570 [e]seug/n Hy, p(lelp)

In particular if T is injective we have Hg +(T) = H%p 7T

Proof. Clearly
IT@ll, I 0)

Hz 5D = [ sup

vei ek lellgy e, czp Hzpleln)

To prove the reverse inequality we need the following:

Lemma4.1. Under the hypotheses of Proposition 4.1 there exists a finite set
of places S C My and a subspace G C E of dimension equal to the rank of T such
that for all vé¢ S we have

a)  inf "Iz, = 1&gz, for all g € Gy;
®) g < lglp, ”gHE” ”gHE” gty

(b) ||T(g)||F_v = ||g||E’v for all g € G,.

Proof. From the definition of adelic vector bundles and the fact that we are
proving a statement for all but finitely many places, it follows that we can assume
that Z = (6", {Il l,} e s F = ", {1 - l,}c xg,)» Where || - |, is the sup norm on
k and k. If m = n and T is invertible (a) is trivial and (b) is equivalent to say that an
invertible # x % matrix with coefficients in k actually belongs to GL,,(O,) for all but
finitely many v € My. In general let » = rank (T'), and choose ¢ to be an auto-
morphism of k" such that ker T = ¢(U) where U is the subspace generated the last
n — 7 vectors of the standard basis of k”. Moreover choose  to be an automorphism
of K™ mapping W = Im (T) onto the subspace generated by the first » vectors of the
standard basis of k™. Finally we let G be the image via ¢ of the subspace generated
by the first r vectors of the standard basis of k". Since ¢ is invertible there exists a
finite set Sy C My, such that ¢ preserves|| - ||, forallv¢ Sy. Forge G, and v ¢ Sy, we
have:

: no_ s 1oy 11 _ 1N _
Lt g, = inf 67 - ¢ @)= inf (¢ - ul, =@,

proving (a). To prove (b) let S,, C My be the finite subset such that y preserves || - ||,
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forallv ¢ S, and set S = Sy U S,,. Given g € G and v € My, — S, we have:
Ig1-1T@ ]y, = l¢" @I, = ll(,,, 0T 3,10 &' @)l

But I To 45\?,,1((;) : gb_l(G) — w(W)is an invertible linear transformation between

vector spaces of the same dimension, and so (b) follows. O

Let G C F and S C My be as in the conclusion of Lemma 4.1. Given e € E write
e =d + g with g€ G and d € D. By Lemma 4.1 we have that

7@z, 1T®lp, _ 7@, _ I7®lF,
e, lels, ~ mf Telz, e,

for allv ¢ S. Hence ||| 7, = 1forallv ¢ S, and so

(4) Hy w0 = [T 1715 7, -

ves

A second consequence of Lemma 4.1 is that for all e ¢ D we have

_ T(e)||%
) H7(T(e) 1 1T,

= — .
HE/E([e]D) veS dl(lg’lg?, ||e + d”E’v
. Ny M —
Now given -0 choose 00 so that T |17l <+ v]gs(nanv 5). By the
strong approximation theorem we can find e € £ such that
Ny Ny
T IT@Il7, IT@Il7,

BP0 elly, ol e+l
v ’

Taking the product over v € S and using (4) and (5) yields

Hy(T(e))

He=D=[ITII%. <e+ T —5) <et+ L2

o= [ Mlp, <o TL(1Mlp, =) <o)
completing the proof of the proposition. O

Corollary 4.1. Let E and F be pure adelic vector bundles over k. Suppose T
in Homy(E, F) is injective. Then Hg +(T) = H"EPF(T).

We are now in the position to prove the main result of this section.

Proposition 4.2. Let E and F be pure adelic vector bundles over k. Given
TeHomg(E, F) let D =ker T and d = dimy D.
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(@) If 1<d<n — 1, then

2d-+090) [ ()
HY_(T) < Hy #(T) < q_—E()H%OF(T).
) ’ if:(E)d )
JE(B-D)H-
(b) If d =n — 1, then Hy 7(T) = % HY (D).

Proof. (a) We have:

HysT)— sup 2@

T TP by Proposition 4.1
(elp « 5/0 Hg 5 (elp) y Frop

< sup qZ(dil)g(k)HE(D) HE(T(e))
B/ JE(D, e))?  I¥(elp)

by Proposition 3.1

2(d+1)g(k) 7 _ _
4 D o Hr (T(e))

L £ for 1 (&) < ¥ (D, e))
BB tebeEn JE(elp)

2d+DgM) [y ()
= q_—E() H%I’F(T)
iy &)Y ,

proving (a). To prove (b) note that since dimk(D) =7 — 1 we have (D, e) = £ for
any e ¢ D. It follows from Proposition 3.1 and Proposition 4.1 that for any e € E — D
we have Hy(E)Hy, (1) = Hy (T(e))Hz(D). On the other hand /lf(E - D)H%ITF(T) =
Hy(T(e)), proving (b). O

5 - The spectral height

The goal of this section is to define the spectral height on the endomorphism ring
of a k-vector space E and prove the analogue of the spectral radius formula for op-
erator heights associated to adelic vector bundles over spec k having £ as support.
Let (X, || - |]) be a finite dimensional normed space over C,. Given T € Endc, (X), the
spectral radius of T is:

po(T) = sup |2¢,
Lesp(T)

where sp(7') denotes the set of roots of the minimal polynomial of 7'
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Proposition 5.1 (Local spectral formula). Let (X,| -|) be a finite dimen-
sional normed space over C,. For all T € Endc,(X) we have:

(©) Tim |7 = (D).

Proof. This result should be well known, but since we could not find a re-
ference for it, we provide a sketch of its proof. First, note that if 7" is nilpotent both
sides are 0, and so there is nothing to prove. Hence we may assume that 7 is not
nilpotent. Since all norms on X are equivalent we only have to prove the limit formula
for one norm. We are going to use the operator norm relative to the sup norm at-
tached to a basis of X. The key point being that for such a norm the corresponding
operator norm of 7' is simply the maximum of the absolute value of the entries of the
matrix representing T with respect to the chosen basis. If p,(T") > 1 we choose a basis
B having the property that the matrix of 7 with respect to B is the Jordan normal
form. Clearly (6) follows. If p,(T) < 1, we choose a basis in such a way that non-zero
entries not on the diagonal have absolute value strictly smaller than p, (7). Again (6)
follows at once. |

Now we go back to global function fields and define the spectral height:

Definition 5.1. Let T € Endg(E), where E is a finite dimensional k-vector
space. Let T, denote the linear transformation induced by 7' on £ ®y C,. If T is
not nilpotent then the spectral height of T is

(7) HyD) = [ pT"

vE Mg

while if 7' is nilpotent we set H (T) = 0.

It is straightforward to verify that the spectral height enjoys the following
properties, as their proof follows directly from the analogous properties of the
spectrum of linear transformations:

(S1) H,(T) = Hy(T), for all 2 € k*;

(82) H(T) > 15

(83) H (T™) = H ()™, for all m > 1;

(S4) if T, T" € Endyx(X) commute, then H (TT") < H(T)H(T");

(S5) Hj is invariant under conjugation.
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Asit is apparent from (S5) the Northeott finiteness theorem does not hold for H.
The main result of this section is the following:

Theorem 5.1. Let k be a global function field, and E = (E, {|| - 1z vea)
be an adelic vector bundle over k. Let T belong to Endk(E), then

@) lim Hg(T™)"" = H,(T);

(b) lim H%”(T”l)l/m = HT).

Proof. First of all note that (a) follows directly from the local spectral for-
mula. (b) If T is nilpotent there is nothing to prove since both sides are zero. Let
D,, = ker T™ and d,, = dimyD,,. If d; = 0 then HOE”(T"L) = Hz(T™) for all m, and
so (b) follows. If d; = n — 1 then by Proposition 4.2.(b) we have

_Hy(T")Hy(E)
JY(E — D) H5(D,,)

— [or L
— HY(T™)

for all m > 1. Since D, = D, for h,k > n we have that (b) follows from (a). Lastly
suppose that 0 < d < n — 1. By Proposition 4.2.(a) we have

H—(Tm)i?(—E)d < HZ(T™) < Hz(T™)
E q2<dm+1)gHE(D’m/) - E B ?

for all s > 1. As we noted before D), = D, for all h,k > n and hence

_ 1/
; 2@y "
e\ @A D,y | T

Again (b) follows from (a). O
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