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VINCENZO MANTOVA

Algebraic equations with lacunary polynomials

and the Erdos-Rényi conjecture

Abstract. In 1947, Rényi, Kalmar and Rédei discovered some special polynomials
p(x) € Clx] for which the square p(ac)2 has fewer non-zero terms than p(x). Rényi
and Erd6s then conjectured that if the number of terms of p(x) grows to infinity,
then the same happens for p(x)?. The conjecture was later proved by Schinzel,
strengthened by Zannier, and a ‘final’ generalisation was proved by C. Fuchs,
Zannier and the author. This note is a survey of the known results, with a focus on
the applications of the latest generalisation.
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1 - The original conjecture

1.1 - Sparse square polynomials

The problem we are going to discuss starts with a question of Rédei: is there a
polynomial p(x) such that the number of terms of p(x)? is less than the number of
terms of p(x)? For the sake of notation, given a field K and a polynomial p(x) € K[x],
let M(p) be the number of non-zero terms of p(x). In other words, N(p) is the
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minimum natural number such that

Np)
p@) = a,
=1

where a; € K and n; € IN.
In [8], Rényi, Kalmar and Rédei gave the following explicit example in O[x]

Rog(x) = (da* + 4 — 22 + 20 + 1)( — 84a** + 28247 — 10210 + 4’ — 22® + 2% + 1)

which satisfies NV (Rg9) = 29, while N (R3,) = 28 < N (Ryy), answering affirmatively
the question of Rédei. A polynomial with this property is often called a “sparse
square polynomial”.

Examples of smaller degrees appeared later in literature:

o Rig(x) = (2% + 2 — 2)(xc!® + 412 — 89 + 3245 — 16043 + 896) is such that
N(Rig) =18 and N (R%S) = 17 (Chaudry, 1988 [2]; an example with the same
number of terms was also given by Freud, 1973 [4]);

o Ri3(®) = (1258 + 502° — 10 + 4o — 222 + 22 + 1)( — 1102° + 1) is such that
N(R13) =13 and NV (ng) = 12 (Coppersmith and Davenport, 1991 [2]).

In 2002, with the aid of the computer algebra system CoCoA, Abbott showed that if
p(x) € C(x) has degree at most 11, then N (p?) > N (p) [1]. Therefore, Ry3 is a sparse
square polynomial of minimal degree. Apparently, it is still not known if the list of
polynomials of degree 12 given in [2] contains all sparse square polynomials of
minimal degree.

1.2 - Asymptotic behaviour of N on squares

Using the polynomial Rgg, one can easily construct a sequence of polynomials
such that the number of terms of their squares is asymptotically infinitesimal with
respect to the number of terms of the polynomials themselves. Indeed, we may
define

Rog(@) = Rao(w) - Rag(@™) -+ Rog@® ).

We have NV (Ryq) = 29" and N (Reg) < 28, so

2
lim NBy) _

=0.
l—o0 N(Rggl)

With additional adjustments to the polynomials R,y , Erdos proved the following.
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Theorem 1.1 (Erdos, 1949 [3]). There exist constants ¢ >0 and 0 <c¢; <1
such that for all | € N*, there is a p;(x) € Clx] satisfying

Np) =1, N@) < el

In the same year, Verdenius proved that one can take ¢; = log;5(8) [11], and also
produced a sequence (g;) where N(¢?) < ¢41%, again with ¢4 > 0 and 0 < ¢3 < 1.

Although N (p?) may be way smaller than A(p), Rényi and Erdés conjectured
that for any sequence p; of polynomials, if N'(p;) — oo, then N'(p?) — co. We re-
formulate this as follows.

Conjecture 1.1. For all 1 € N there exists ¢ = c(l) with the following
property: if px) € Cla] is such that N (p*) <1, then N(p) < c.

Informally, we shall say that a polynomial p is lacunary (or sparse, or few-
nomial) if N'(p) is bounded, whereas the degree of p may be arbitrarily large. In this
language, Conjecture 1.1 says that if the square of a polynomial p is lacunary, then p
itself is lacunary.

2 - Known results on lacunary polynomials
2.1 - Schinzel’s and Zannier’s theorems

Conjecture 1.1 was proved by Schinzel, who actually obtained a stronger and
explicit result. For the sake of exposition, the bound is slightly simplified with re-
spect to the original one proved by Schinzel.

Theorem 2.1 (Schinzel, 1987 [9]). For all d,l € N*, and for all p € Clx], if
N(ph <1, then N(p) < (4d)*°.

This includes the original conjecture for d = 2. Moreover, in the same paper
Schinzel proved that the conjecture does not hold if one replaces C with a field of
positive characteristic: if d is not a power of the characteristic of the field, one can
construct polynomials with an arbitrarily large number of terms whose d-th powers
have at most 2d terms. In 2009, Schinzel and Zannier improved the bound of
Theorem 2.1 to 1 + (4d)'* [10].

Always in [9], Schinzel also put forward a new conjecture: fixed a polynomial
fy) € Clyl, if N(f(p)) <, is there a bound for N (p)? This specialises to the pre-
vious conjecture for f(y) = y®. This was proved by Zannier in two steps. Again, for
the sake of exposition, the conclusions are slightly simplified.
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Theorem 2.2 (Zannier, 2007 [12]). For all 1€ XN, and for all f € Cly]\ C,
p € Clal, if N(f(p) < I, then:

o cither N(p) < 2,
e ordeg(f) <2l —1).

Theorem 2.3 (Zannier, 2008 [13]). For all I € N there exists c; = c5(l) such
that for all f € Clyl\ C, if N(f(p)) <, then N(p) < cs.

We remark that the central argument in the proof of Theorem 2.3 yields a bound
that depends on [ and deg(f), which is already sufficient to answer Schinzel’s ori-
ginal conjecture; however, when combined with the conclusion of Theorem 2.2, it
yields a bound that is completely uniform in f. Moreover, the proof is constructive,
so the bound c; is effective, although it is not explicitly calculated.

2.2 - Rational functions

C. Fuchs and Zannier applied a similar reasoning when the polynomial p is re-
placed by a rational function g. We define the number of terms of g(x) € C[x] as the
minimum number of terms required to write g(x) as the ratio of two polynomials,
possibly not coprime. Formally, we define

NHg) = min{N(p) LN ¢ pog e Cliel, g@) = %}

The fact that p and ¢ may not be coprime is crucial and makes A" and N7 take
different values on polynomials; for instance,

1—x

NA+ ... +a2"H=n NA+ .. +x"1)N#<1_xn> —4.

Fuchs and Zannier proved an equivalent of Theorem 2.2 for rational functions,
using N'* in place of A. The statement is simplified for the sake of exposition.

Theorem 2.4 (C. Fuchs-Zannier, 2012 [6]). For all [ €N, and for all
feC\C, geCw, if N*(fg) < then:

o cither N*(g) <6,

e ordeg(f) <2016 - 5.

The equivalent of Theorem 2.3 holds for rational functions, and it was proved
later as a special case of a much more general theorem on lacunary polynomials.
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Theorem 2.5 (C. Fuchs-Mantova-Zannier, 2014 [5]). Foralll € N there exists
ce = ce(l) such that for all f € C(y) \ C, g € C(x), if N(f(9) <, then N(g) < ce.

2.3 - Arbitrary algebraic equations

It turns out that the above statement are special cases of the following
theorem.

Theorem 2.6 ([5]). Foralld,l € N there exists c; = c;(d, ) such that for all
f € Clx,yl,p € Cla], iff is monic of degree d in y, N(f) < I, and f(x, p(x)) = 0, then
N <cr

(Note that here A/(f) means that we think of f as a polynomial in C(y)[x].) The
above statement says that if p(x) is algebraic and integral over some lacunary
polynomials, then p is lacunary as well. Again, the proof of the theorem is con-
structive, but no explicit bound is given. Apart from explicit constants, one can
recover the previous theorems on taking f(x,y) = ¥ — h(x) or f(x, ) = g(y) — h(x).

Note that the assumption that f is monic is crucial. As soon as we admit / non-
monic in y, we have the counterexample

fa,p=0-ay—0—a"), p@) =1+ ... +2" ' flx,p) =0.

On the other hand, in the above example we have N #(p) = 4. Indeed, with a stan-
dard variable substitution, one may easily deduce the following statement from
Theorem 2.6.

Theorem 2.7 ([56]). Foralld,l € N* and forall f € C(x)lyl,g € C(x), if f has
degree d in y, N*(f) <1, and f(x,g@) = 0, then N*(g) < ex(d,1%) + 1.

Together with Theorem 2.4, the above statement implies Theorem 2.5 as a
special case.

3 - Applications

3.1 - A non-standard interpretation

The last theorems of the previous section have a rather natural non-standard
interpretation. Recall that in non-standard analysis one has a map * which sends the
standard objects, such as N or R, into non-standard counterparts, in a way that
preserves all the first-order formulas.
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Given a map * such that *N # IN| our informal notion of lacunary polynomial can
be given a precise meaning. We define the ring L of lacunary polynomials in
*(C[x]) as the subring of polynomials whose number of terms is actually finite:

L={mx™ + ... +ax™ : leN, a; € *C, n; € "N}

Note how the number of terms [ is a standard, hence finite, natural number, while
the degrees n; are non-standard, hence possibly infinite. One can easily verify that
the original Erdés-Rényi conjecture is equivalent to saying that if p(x) € *Clx]
satisfies ]{)(ac)2 € L, then p(x) € L.

Similarly, Theorem 2.6 translates to the following.

Theorem 3.1 ([6]). The ring L is integrally closed in *(C(x)).
The translation of Theorem 2.7 is the following.

Theorem 3.2 ([6]). The fraction field of L is relatively algebraically closed
m *(Clx)).

The above statements had been proposed independently by Fornasiero.

3.2 - Integral points

A crucial observation in [5] is that one may think of a lacunary polynomial p(x) as
the specialisation in (x™,...,a™), for some arbitrary n; € N, of a polynomial
P(ty,...,t) of bounded degree in each variable. In turn, we may think of the
polynomial f(x,y) of Theorem 2.6 as the specialisation of a polynomial in several
variables. This yields the following result about covers of G .

Given f € C[ty,...,t;,y]\ C monic in y, let W be the quasi-projective variety
defined by f(t1,...,t,y) =0and t; ---- - t£0. Letn: W — ‘an be the projection
onto the first [ coordinates.

If we think of C(x) as a function field over C, and let S = {0,000} be the set
containing the zero and the pole of x, then the S-integral points of W are precisely
the points of the form

(g™, ..., o™, p(x)),
with o; € C*, n; € 7 and p(x) € Clx*1], such that
floga™, ... o™ p(x)) = 0.

Note that an integral point can be also seen as regular map p : Gy, — W.
Theorem 2.6 then implies the following.
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Theorem 3.3 ([5]). There exists a finite set ¥ of regular maps
w:Vx Gy — W, with V=V, a quasi-projective variety and s =s, a natural
number, such that for all regular p: G, — W, there exist w € ¥, £ €V, and a
regular y : Gy — G¥ such that

plx) = w(&, y(x))

for all x € Gy,

This implies Vojta’s conjecture for the special case of the S-integral points on W.
Indeed, if the S-integral points of positive height are Zariski-dense in W (equiva-
lently, if the union of the images of the non-constant regular maps p : Gy, — W is
Zariski-dense in W), then one may find a finite regular dominant map V- x G, — W
with s > 0. This implies that W is not of log-general type (see e.g. [7]).

3.3 - Bertini for covers of multiplicative groups

Via a standard argument involving symmetric functions, one can show that
Theorem 2.6 also yields information about the irreducible factors of f(x,y), rather
than just its roots as a polynomial in y. Using the same formalism of the previous
subsection, one can prove a form of ‘Bertini irreducibility theorem’ for covers of an.

Indeed, let f € C[ty,...,t,y]\ C monic in y, W be the quasi-projective variety
defined by f(t1,...,t,y) =0and t; ---- - tt#£0,and : W — Gﬁn be the projection
onto the first [ coordinates. Let e be the degree of 7. Let [e] : G!, — G! be the map
taking each point to its e-th power. Theorem 2.6 then implies the following.

Theorem 3.4 ([5]). Ifthe pullback [e]'W is irreducible, there exists a finite set
& of proper algebraic subgroups of an such that for all H connected algebraic
subgroups of G!. and all 0 € G! , if =\ (0H) is reducible, then H C | E.
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