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Formal period integrals and special value formulas

Abstract. Motivated by the conjectures of Gan-Gross-Prasad, we develop a
p-adic formalism for placing these conjectures in a p-adic setting which is suited
for p-adic interpolation.
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1 - Introduction

Suppose that #: H C G is an inclusion of algebraic subgroups (over Q, for
simplicity, in this introduction) such that H(R) and G(R) are connected and such
that G(R)/Sg(R) is compact, where S C Zg is the maximal split torus in the center
Z¢ of G. Let w be a unitary Hecke character and let " : H(A) — C* be a con-
tinuous character trivial on H(Q) such that wrSH(A) = wjgy(A)- Motivated by the Gan-
Gross-Prasad conjectures recalled below and other special value formulas, the pa-
per [6] investigates period integrals of the form

) L= [ o) @i, @),
H(A) sy

where f € L2(G(A)/G(F),w), [H(A)}SH:: Su(A)\H(A)/H(Q) (for Sy the
maximal split torus in the center of H) and the measures are normalized as in
§2. In particular, we refer the reader to (6) for the relation between the

MeASUre M (a)g,» H[H(a,)], O [H(Ar)]g,:= Su(Ar)\H(Ar) /H(Q) and gg,\ .o
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on Sy(R)\H(R). We set
Mgy\H,00 *= ﬂsH\H,m(SH(R)\H(R))-

It is proved there that, if we restrict I, to a suitable subspace of “algebraic auto-
morphic forms”, this rule extends to a morphism of functors from modular forms
defined over E-algebras to A', where E/Q is a Galois splitting field of G. Namely, it
is possible to express mgé\HmI , as a functor

2) Mool = Ty MG, p, ] g,y A (o)’

o) /B
where wy is an appropriate twist of wy and M[G, p, wo] is a suitable space of Gross’
style algebraic modular forms, as we are going to explain.

Let us write A(G(A), ) € L*(G(A)/G(Q), w) for the dense G(A )-submodule of
finite vectors: it is the space of functions f which are right G(R)-finite and such that
there exists an open and compact subgroup K C G(Af) such that f(ux) = f(x) for
every u € K (see [6, §2]). We may write

3) A(G(A),0) = P AGA), ) [ ],

U
o

where 7, runs over all unitary irreducible representations of G(IR) with central
character w_!. Let us suppose, for simplicity, that G(IR) is compact. Then the Borel-
Weil theorem implies the existence of (canonical) rational models p of 7%, over E and
the C-points of the source of (2) are identified, by means of an adelic Peter-Weyl
Theorem (see [6]), with

(4) MG, p, o0 5, (C) = A(G(A), ) [ ].

oo

When G(R) is possibly non-compact (as in our application to the interpolation
problem), i.e. S¢(IR) # {1}, it is important to take into account possible twists 7,
of m% .

As already remarked, our interest in (1) is motivated by the Gan-Gross-Prasad
conjectures and its refinements (see [9]). Roughly, for suitable algebraic groups of
the form G = Gy x Gy with Gy and Gy (the connected component of) symplectic,
orthogonal or unitary groups, they specify # : H C G for which the equality

2 1 AGVL(I/Z,ﬂv®7'Ew)
(5) el = 28 L(1L, iy, AD)L(L, 7y, Ad) 1:[“”%)

should hold. Here f = ®, f, € ny Ky, the o,’s are appropriately regularized in-
tegral of matrix coefficients which should be non-zero on 7y, ® nw, ® v, L up to
changing G by a pure inner form G/, (see [9, Conjecture 2.5 (2)]), 4, is a product of
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abelian L-values (attached to dual Gross motives) and f is an integer. The L-func-
tion L(s,ny K ay) (resp. L(s,ny,Ad) and L(s, nw, Ad)) is the complex L-function
attached to ny Xy (resp. 7y and myy) taken with respect to the standard (resp.
adjoint) representation of G (resp. Gy and Gyw). We refer the reader to the in-
troduction of [6] for the references where all of these terms are precisely defined.
Here we remark that the loeal terms «, are “almost” of the form

L7 AL 1, A
o\ Jv) = AGV_UL(I/ZJZV,UgT[W,v)

(v w(ho) fv00 ) (w0 (o) fiv o, v o) i, o0,

HV,v ( om)

when f, = fy, ® fw, is a pure tensor. “Almost” means that they are of these form
when the integral makes sense, but in general they need to be regularized. Formula
(5) is known in many cases (see the references in [6]).

The period integral (1) is studied in [6] which, together with (5), yields special
value formulas which are suitable for p-adic interpolation: p-adic L-functions arise
from p-adic variation of J, = mg}i\HmIW. More precisely, suppose we have given a
p-adic parameter space X, a subset 2 C X and a family {f;},., of automorphic
forms on G. Then one may ask if it is possible to extend the association k+— J,(f;)
on X to a continuous function x— J,(x) on X. Guided by this ideas, we develop
here a general formalism for placing these formal period integrals J, in a p-adic
setting. As explained at the beginning of § 5, this is obtained as a combination of
the special value formulas proved in [6] and Proposition 4.1 and yields a p-adic
avatar J, , of J,. Then we can consider k — J,(fi.) = J,, »(fi) on 2 and the problem
is, rather, to extend this association to a continuous function x— J; ,(x) on X. The
reason of this change is that, in order to fulfill our proposal, we first need to extend
the association k — f}, to an association «+— f,, i.e. we need p-adic families, and it is
Jyp(K) :=J, p(fi.) which makes sense for a general x € X, rather than J,(f.).

Indeed, motivated by the rationality result (2), we expect that these periods
could be frequently p-adically interpolated and we hope this formalism could be
useful in order to address this issue: we exemplify our philosophy in the classical
case [11] by constructing a functional on p-adic families of modular forms which
interpolates the functional I, in this case. The result is the p-adic L-function con-
sidered in [2], with the assumptions on the conductor of the character (arising from
use of the explicit Waldspurger’s formula by Hui and Hatcher in loc. cit.) removed
(because we use [11] and [6]). Hence we will consider p-adic variation of the weight
variable X := Hom (Z; , Gm) for p-adic families of automorphic forms on GLg, but
other variations, such as those of the Galois variable, are still interesting. Examples
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of these kind of variations can be obtained (under our assumptions) considering p-
adic families of automorphic forms on the algebraic group attached to a quadratic
imaginary field, i.e. p-adic families of Hecke characters attached to such a kind of
fields. Of course, one can combine the two variations in order to obtain two variable
p-adie L-functions. Another example of our methods is provided by [6].

2 - Automorphic forms and the period integrals

In this section and the following, we recall the theory from [6]. Let G be a re-
ductive algebraic group over a field F' with adele ring A = Ay x F, and let Zg be its
center. We write K = K(G(Ay)) for the set of open and compact subgroups of
G(Ay). For a closed, algebraic subgroup Z of Zg, set

[G(A)]zi= Z(ANG(A)/G(F) and  [G(Ar)] 4= Z(A\G(Ar) /G(F).

Setting PGy = G/Z, we make the following assumptions on the pair (G, Z): (A1)
PGz(F ) is compact, (A2) 4g s embeds G(F') as a discrete subgroup of G(Af) and
(A3) G(Af)/G(F) is compact. Let us remark that, when Z = Sg, is the maximal
split torus in the center of G, and /' = Q, it is proved in [8, Proposition 1.4] that (A1)
is indeed equivalent to (A2) and to (A3).

For the remainder of this paper, we suppose that we are given two pairs (H, ZH)
and (G,Z) = (G, ZG) as above and a morphism of algebraic groups

n:H—G

such that n(ZH) c Z°%. We assume (A1), (A2) and (A3) for the pairs (H, ZH) and

(G,ZG). In addition, we impose the following normalizations to the measures

obtained from the couple (H, ZH) (see [6, §2] for details). We may normalize the

non-zero left H(Ay)-invariant Radon measures i A) OD H(Ay), Fu(a,) ey OD

H(As)/H(F) and ()], on [H(Af)], sothat fy(a,) (K) € Q for some (and hence
. \

every) K € K(H(Ay)), Fa(a,) ) satisfies
| @iy = [ fendun,o
H(Ay) H(Af)/H(F) !
and restricts to ()], o0 Z(Ay)-invariant functions
CUH(A,)],) © COH(A) /H(P)

(here C(X) is the set of continuous C-valued functions on X). Furthermore, it easily
follows from (Al) and (A2) that we may normalize the left H(A)-invariant (resp.



[5] FORMAL PERIOD INTEGRALS AND SPECIAL VALUE FORMULAS 221

H(F )-invariant) non-zero Radon measure g ), (tesp. iz p ) on [H(A)] (resp.
Z(F)\H(F)) so that the following formula is satisfied:

/ f(x)dﬂ[ﬁ(,\)]z ()
(H(A)],

(6)
= / / I (7 %00) Atz p o0 (Tc) dﬂ[H(,\f)]Z ()
()], \ZF-)\HE)
. . . Z8(A)
Fix once and for all a continuous and unitary character w : 76 F — C*. We

write A(G(A),w) C L2(G(A)/G(F),w) for the dense submodule of finite vectors,
a right G(A)-submodule due to the compactness of PGz(F) (we follow the
conventions of [6]). In particular, if 7% € Irr"(G(Fx),w;!) (the set of iso-
morphism classes of complex unitary irreducible representations of G(F,) with
central character w_!), it makes sense to consider the n% -isotypic component
A(G(A), w) [ ] of A(G(A), ).

We suppose that there is a character o’ : H(A) — C* such that o is trivial on
H(F) and w?z“(;x) = W01, ). We write o := ()L,

Definition 2.1 (Global period integral). Define the global period integral
I, : A(G(A)/G(F),w) — C

by the rule

() I,(f) = / F ()™ () dpage )y ()-
[H(A)] a

As explained in the introduction, the n-isotypic part A(G(A),w)[r%] of
A(G(A), w) has an algebraic interpretation via (4). Let us assume, for simplicity,
that F = Q and suppose that £'/F is a field extension with the property that £’
contains the values of oy and there is an algebraic representation (p, V') defined over
E'’ with the property that the base change pi ) = 7. Then we say that p is a
model of 7% over E’. A slightly more general notation which works for arbitrary
fields F" has been introduced in [6]; when F is totally real it is also shown in loc. cit.
that one can always take £’ = E(wy) and these models exist. Once again assuming
that ' = Q for simplicity, it makes sense to consider, for every Q-algebra R, the R-
modules

M[Gv/)a wO]/E/(R) = pj\é ®R M(G(‘&f%pR?wO)a
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where M(G(Ay),pr,wo) is the space of functions ¢:G(As) — V such that
9 (zagr) = wo(2)p()p(goo) for every z € Zg(Ay) and g € G(F) and such that there
exists K € K such that p(ux) = ¢(x). The character w, is a twist of wy (see [6]),
which equals oy in case G(RR) itself is compact. Then (4) is true.

In the next section we will recall the definition of the formal period integral J,,
satisfying (2) of the Introduction; the reader should keep in mind that the triple
(G(F),G(Af),Zg(As)) considered in this section corresponds to the triple
(I', Gy, Zy) in the next section.

3 - Profinite groups I: the co-adic formalism

3.1 - Vector valued modular forms and the formal period integral

In this section, we consider a data of the form
(I',Gy. Zf) = (I, Gy, Zf)

subject to the following assumptions. We suppose that Gy is a locally profinite un-
imodular group, let I" C Gy be a discrete subgroup such that Gy/I" is compact and
let Zy C Zg, be a closed subgroup. We may normalize the Haar measures following
the conventions of [6, §3.1]. We write K = K(Gy) to denote the set of open and

compact subgroups of Gy. If V is a Gy-module, then we define V* := J VX.
Kek
Let G, be a group and let I' — G, be a group homomorphism, so that

I' C Gy x G =: G. If g € G, we write gy € Gy and g, € G for its components. Let
(V, p) be aright representation of G, with coefficients in some commutative ring E.
When p is understood, we simply write vg., for vp(gs). If wo:Zs — R* is a
character, we let S(Gy,p,wy) be the space of maps ¢:Gr — V such that
p(zx) = wy(2)p(x) for every z € Z; and « € Gy, endowed with the (G,Gy)-action
given by

(gpu)(x) := p(uxgy)p(g9r), where g € G and u € Gy.

We set
S(Gr /T pyrn) =S (G, p.on)
and, the group I" usually being understood,
M(Gy.p,n) = Mr(Gy.p, ) = S(Gy/ T, pyr )"

We omit wy from the notation when Z; = 1 and write M (Z;\Gy, p) := M(Gy, p, )
when wy is the trivial character of Z;.
The following remark is easily verified.
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Remark 3.1. Suppose that y, : Gr — R* is a character with the property that
x0(K) = 1for some K € K and that v : G, — R* is a character with the property

that o = xoo/r-
(1) If ¢ € M(Gy,p, ), then the rule (zo9)(x) := zo(x)p(x) defines an element
10v € M(Gr,p(; oo)’XO|Zw0)'
(2) We have y, € M(Gf,R()(oo)7X0\z)-

The formation of these spaces satisfies obvious functoriality properties. If
v : p — p' is a morphism of representations of I, then we get

(8) Ve M(Gfapa C!)()) —>M(Gf,/),,w())
by the rule w,(p) :=w o ¢. In the opposite direction, suppose that we are given
another triple (4, Hy, H) satisfying the same assumptions made for (I, Gy, G).

Definition 3.1. A period morphism
7 (A,Hf,Hoo,zjﬂ) = (r, Gf,GOO,Z]g>

is a couple 7 = (7, 7,,) of group morphisms 7, : Hy — Gy and 5, : Hy, — G both
mapping 4 to I” and such that 7, is continuous and maps Z}? to Z};.

Writing #7_(p) for the H.-representation obtained by restriction from 7., and
setting 777 (o) = wo o 77y, 71> We get

9) N = (np,ny)" : Mr(Gy,p,m9) — MA<Hfa’720(p)a’Z;(w0)>'

3.1.1 - Trace maps

For x € Gy and K € K, define I'x(x) = I'N 2 1Kx. Being discrete (as I” is) and
compact (as K is), the set I'g(x) is finite. For each K € K and each set Rx C Gy of
representatives of K\Gy/I', define

(10)  Tg =Trgy: M(Gf,R)K — R by Tr(f):=ug (K Z

reERg

|FK

It is easy to see that this is a well defined quantity, i.e. it does not depend from the
choice of the double coset representatives R, and that it is independent from the
choice of K, i.e. we have T, (f) =T, (f)if K1 C K; and

feM(Gr,R)c M(G,R)™
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(see [6, §3.3.1] for details). We can therefore define R-linear functionals

(11) Te,r: M(Gs,R) — R and Ty, /r : M(Z\Gf,R) — R

where T, r( f) = Ti(f) for f M (G, R)" and Tr\6,r = To, a1y )
Observe that

Mr(Gy,C) = C(Gy/D)* and Mp(Gy,C,1) = C(Z\Gy/ )"

Since in [6, §3.1] one of the assumptions on the measure was that uz ¢/ is nor-
malized so that it agrees with Hg,/r On C(Z\Gy/TI") C C(Gy/T), we see that

(12) 1)~ [ Fopdn, o
Z\Gy/T

for all f € M(Gy,C,1) (see [6, §3.3.1]).

3.1.2 - Pairings, n-linear forms and the formal period integral

We also have a natural map
(13) ®: M(Gf7p7 CU()) ®R M(Gf7p/7 606) - M<Gf7p ®R pla CUOCUE))

defined by the rule (¢ ® ¢')(x) := p(x) ® ¢'(x). In particular, writing p¥ for the R-

vV

dual representation (v'y)(v) = v"(vy~!), we may define
<'7'> : M(Gf>p7w0) R M(nyl)vJUO_I) ﬁM(Gﬂ/’@RPV)
Tpr
(14) — M(2\Gr,R) 2 R.

Definition 3.2. We let X(Gf,Gu,w0) = X1 (Gr,Goo, Zr, ) be the set of
couples (xo,x,) With the property that y,: Gy — R* is a character such that
x0(K) =1 for some K € K, ygz, = wo and y,, : G — R* is a character such that

Xor = Xoo|I'*

Suppose that we are given a period morphism #: (4, Hy,Hy) — (I', G, G),
say n = (qf,nw), that (V,p) is a representation of G, with coefficients in some
ring R and that wy : Z — R* is a character. If (yg, 7)€ XA(Hf,HOO,iy;(wo)) and

we are given

A€ Hompg (', (0), R(220)) = p" (1s0)™

then we get

Mi;n,xoc (A) € Homg (M(Gf'7/’7 w0)7R)
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by the rule

T _ A(p(ny(x))) 25" ()
M2 (A)(9) = puy, (K) xEK\ZHfM | A ()]

if p € M(Gy, p, wO)K. Alternatively, we have

M;O‘XX(A) : MF(Gf7P7600)77*—>MA(H;”’W&(p)aﬂ}(wo))
A, . (1)
where (-, ;') is the pairing (14), which makes sense thanks to Remark 3.1 (2):
it follows from this description that M7"*~(A) is well defined. We write
Moot = M~
In this case, we may define

(16) JP A0 p\/ (XOO)GOC ®RM(Gf7p7 CO()) —R
by the rule
J1T (A @p p) = MO (4)(p).

Finally, suppose that we are given a family {p;},.; for representations, characters
{woi},., and 4 € Homp j(p,R(x,,)), Where p := @p jerp;. Then, assuming that
[[®o; = wo we generalize (14) as follows:

i

fordo ‘ MK 70 ()
(17) A% @p et M(Gy, p;, a0 Z M(Gy,p,00) ——— R

If pr7= - VY — (1.(p) (1) is a projection, setting pj)”*~ := p/7~ @ ;i* and
Mr |Gy, p,ax] == VY @r Mr(Gy,p,ax), we can define the formal period integral:

s X oo

P

s s Mr[Gy.p,an] —
15 (P), 20+ Zoo
(18) (7 (0)" o)™ @ Ma(Hp o ) (o)) 2 R

3.2 - The special value formulas and an example

Let us assume now for simplicity that ' = Q and that p is a model over £ C C of
the unitary and irreducible representation 7% which appears in the decomposition
(8). Then, up to changing G by a pure inner form G/, in the setting of the Gan-Gross-
Prasad conjectures, (5) is in force and, hence, (7) becomes interesting.
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Let X (H(Ay), H, 7, (o)) be the set of pairs
(ro - H(Ay) — B, 1 : Wy — Gy

such that (xo,7z) € Xuwr) (H(Af),H(E),nf&f (wp)). Setting yop:=@oy, and
wor :=powy gives, for every E-algebra ¢:E — R, an element (yop.1z) €
Xury(H(Ay), H(R),wor). Since H g is a reductive group over a characteristic
zero field, there is a canonical projection p/z2z : Vi — n}(pR)V(XR)H(R) for every
E-algebra R. We write J;*"*"% for the period morphism (18) obtained from
p’eZr, 1t is proved in [6, Cor. 7.3] that, for a suitable choice of (xg,x.) €
X(H(Af),H, T, (w0)), we have the equality

-1 K0 Co K PO X0C s Koo
(19) mSH\H,ooIﬂ =Jy =Jy .

Without further details, let us remark that (xg, z.) is of the form y, = w{N{ and
Xoo = 0N (we set « :=xon), with N=1 when G(F.) itself is compact. It
turns out that, in the setting of Gan-Gross-Prasad conjectures, #°(p)" (x)" should
always be one dimensional.

Let 5 : K—B be an embedding of a quadratic imaginary field K in a definite
quaternion Q-algebra B (so that B*(R)/Sgx(R) is compact). This embedding in-
duces j” : Resg,o(K*) € B*, where B* (resp. K*) is the algebraic group attached
to B (resp. K). We consider

n:=j" x1:H:=Resg,o(K*) € B* x Resgo(K*) = G

(so that Sy = Gy). Let m, be the automorphic representation in the space
A(B*(A),¢)[ny ] obtained as the Jacquet-Langlands lift of the representation 7, of
GL; attached to a modular form g of weight k& + 2 and let y : Resg o (K*)(A) — C~
be a Hecke character of K. Let the assumptions be as in [11, III, §3]: 7, is
unitary, g, =¢=1 (ie. g has trivial nebentype) and y is a finite order
character. Then 7, x 771 € A(G(A),1)[n] where 7o = 7y X 15 = mg00. We fix
Bk ~ My g inducing B/XK ~ GLgy/k and can take E/Q any Galois extension such
that K C E.

If k € 2N we let Py be the left GLg/z-representation on two variables poly-
nomials of degree k, the action being defined by the rule (¢gP)(X,Y) = P((X,Y)g).
We write V; g for the dual right representation, that we may also view as a re-
presentation of Gz letting H g acts trivially.

Consider the (normalized) absolute value functions |—|,: Q) — Ri,
|—=[a: AF — QF and |—|,: A — R} and define N := [—|.}|—|,,. The maximal
split toric quotient of G (resp. H) is

nrg := (nrd, nrg;o) : G = B” x Resgo(K*) — Gy x Gy, (resp. nrg o).
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Hence the algebraic characters of G (resp. H) can be describes as follows: if
(k,1) € 72 = Hom(G

m?

Gy), we set nri'(g) :=nrg(g)* (vesp. nr%/o(h) =
an/Q(h)l). We define Nré‘l =N onré’l (resp. Nré{/Q :=No nrf,{/o), so that
Nrg' oy = Nrjil,. Then [6, Thm 7.6] applied to 7., = V;(C) implies that (19) is in
force with N = Nri/*", so that (yg,7.) = (Nrf{//%’f,nrf{//zo).

Let Qj/r € Py/g be defined as in [7, § 2.3.2 ] (which applies with no changes when
K is imaginary), then the evaluation at Qf/ Ze P/ gives (see [7, (3.5)])
Ajr/p € Homp,, (Vi, 1(k/2)).

It follows from [7, §2.3.2] that there are models V; and A4;; over Q for the re-
presentation Vi and 4;;/. In this case, the identification (4) becomes

£ Ve @0 M(BF, Vio, Nf) [Nrd 7, ] ~ AB* (A),1)[r],
where (—)[0] means taking the 6-component. Hence, if K,, € K(H(Ay)) is such
that #(K,,) C K, x K, and
px e M(B*, Vo, NI @ M(B*,1,1)%

KV’-Z
< M(G(Ay), Vie, Nef20 (‘,,\f)) :

we have

V(w.,NI‘k/2 .,nrk/zJ -
fol((o) — qu K/Q, [ K/ (Ajﬁlc ® ((0 X ¥ 1))

) 2 (@) 4 (0(j()))

%2 :
weK,,\H(A;)/H(0) 'k, (x) ’NrK/Q,f(x)

= Hu(ay) 0:099

Let 7,1 be the representation attached to the theta lift 6,1 of y~'. Then (19) to-
gether with (5) (which is [11, Prop. 7], in this case) gives (note that J, () = J,-1(p)):

_ 1 Ag, L (1/2, n’g X ”x*l)
_ZﬁmSH\H.oo L(l T Ad)L(l -1 Ad) H“U((ov)

s g s s

(20) I, 1(0),(9)

In the next section we introduce the general p-adic formalism which is needed to
place (18) in a p-adic setting. We will exemplify (20) in § 5.

4 - Profinite groups II: the p-adic formalism

In this section, we consider a data of the form

(I',Gy,Gp, Z, K3) = (T, Gf,Gp,zf,K;’G)
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where (I',Gy,Zy) is a triple as in §3.1 and the following further assumptions are
satisfied. We suppose that we may write Gy = G}’ x Gp and Zy = Z}” x Z, topolo-
gically, where Z{ C Zg and Z, C Zg, are such that Gy — Gf (vesp. Gy — G)) maps

Zy to Z}’ (resp. to Z). If g € Gy, we let g, € G, be its component. With an abuse of
notation, we will implicitly consider I" C Gy — G as an inclusion. We also suppose
that we are given an open subgroup K; C Gp. Let K¢ := IC(Gf,K;j) be the set of
open and compact subgroups K = K? x K, with K? C G}’ and K, C K, open and
compact. If V' is a K (Gy) := Gf x K;-module, then we define

Ve = U VK.

Kek®

Suppose now that (V,p) is a right 2,-representation with coefficients in R for
some subsemigroup K, C X, C Gp, and set X, (Gy) := Gf x Zp. If an pp : Zy — R* is
a character, we let S, (Gy, p, wo ) be the space of maps ¢ : Gf — V such that

p(zx) = wo p(2)p(x), for every z € Z; and x € Gy,
endowed with the (G, 2),(Gy))-action defined by the rule
(gpu) (%) := p(uxgs)p(uy), where g € G and u € X,(Gy).

When p is understood, we simply write v, := vp(u,). We set

S, (Gf/F,,D/p,wo_p) — S(Gf,p, wo,p)(F’l)

and, the group I” usually being understood,

MP(Gfap7 w(),p) = MP.F(vapv wo,p) = ‘S’P(C-;j"/l—v7/7/1"760040)/C<>

We omit wp, from the notation when Z; =1 and write M,(Z/\Gy,p) =
M, (Gy,p, w0, ) when ay, is the trivial character of Z;. Sometimes we will abu-
sively replace p with the underlying subspace V in the notation. These spaces are
naturally right 2, (Gy)-submodules of S, (Gy, p, w9 ;). By a p-adic period morphism

7 (A,Hf,Hp,ZH,K;’H) — (I, Gf,Gp,ZG,K;’G)

we mean a continuous group morphism 7, : Hf — Gy of the form 7, = ;7;.’ X 1,
with ¢ : HY — G{ and 1, : H, — G, such that 7 maps 4 to I', 5/ maps Z;?’H to
ZJ’Z’G and 7, maps Z,y to Z,¢ and K;# to K¢, Then there are analogues of
(8) and (9), the first

(21) Y, Mp(GfJ?, CUO,p) — M, (Gfa/)law&p)

being induced by any morphism of Kj-modules. We note that y, respects the K-
level structures M, (Gy, —, wp )" obtained from any K € K°.
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We remark that, since Gy = G]f’ x G, topologically, K° C K is a cofinal fa-
mily, from which we deduce that, when (V,p)=R, we have M(G;,R) =
M, (Gy,R) (resp. M(Ze\Gy,R) = M, (Z¢\Gy,R)) on which we have defined a
trace map T,/ (vesp. Tz,g,/r) by means of (10). The formula (¢ ® ¢')(x) :=
p(x) ® ¢'(x) defines an analogue of (13), so that we may define the analogue
of (14):

() = My(Gr,p.0,) @r MP(Gf’/’vvw&}o) = M, (Gr,p @R p")

Tapapir

(22) — M, (%\Gy, R) —— R.

In order to define an analogue of (15) in this setting, it is convenient to give the
analogue of Remark 3.1.

Remark 4.1. Suppose that y, , : G — B* and y, : K — R* are characters
such that there is some K € K° satisfying the condition y () = x,, () ! for every
u € K and yo, = 1.

(1) If 9 € M, (Gy,p,0,p), then the rule (xy ,0) () := 1o ,(2)p(x) defines an ele-
ment ¢ € Mp (Gf: XpP> X07p|wa0ﬁp)'

(2) We have Yo.p € M) (Gf7R()(p) ,Xo,p|zf).

Definition 4.1. We let X, (Gy, K;,a0.p) = X, r(Gy, K, Zf, ) be the set
of couples (x,,%,) With the property that y, , : G — R* and z, : K; — R* are
characters for which there is some K € K° satisfying y, ,(u) = , (u,,)fl for every
u € K, yopr =1 and g7, = @op.

Suppose that we are given a p-adic period morphism 7, as above and that
wy: Zf — R* is a character. If (x,,%,) € X, (Hy, Ko™, i (w0)) and we are
given

Ae HomR[K;.H] (7,(p). R (1))

then we get
M35 (4) € Homg (M (Gy, p, o), R)
by the rule
- Ap (np())) 0.5 ()
23) M) = i) Y 2Oy

©eK\Gy/T |4k ()|
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if p € M, (Gy, p, a)o)K. Alternatively, we have

£0,p>Xp }7; * *
M;?éf% (A4): M) (Gfal)» wO,p) - Mp(Hfa’?p(P)a’?o (wO.p) :Xo,p\zﬁ)
A, (o 5h)
(24) —>Mp(Hf,R()(p),a)07p) —— R,
where (-, 77,) is the pairing (22), which makes sense thanks to Remark 4.1 (2)
as§erFing that 57, € M, (Hf’R(Xz:l)’X(I;qu |
Mi/;?,‘z‘;’lf’ (A) is well defined. We set M{;‘f,‘,?"” = M;;‘ff"“’.

In this case, we may define

): it follows from this description that

o,

H
(25) T p ()™ @r My(Gropony) — R

by the rule
J;JO’?”X” (A®gp) = sz'p% (A)(p).

Finally, suppose that we are given a family {p;},.; of representations, characters
{wopi};, and 4 € HomR[K;] (p,R(x,)), where p := g ic1p;. Then, assuming that
[[®op.i = wo,p we generalize (22) as follows:

i

" ® MZO.])‘Z[’ (A)
(26) A)]CMU: “ : ®R,i€IMp (Gfapu wO,i) - Mp (Gf7p7 COO) p—-_’ R.

o, H
Starting with a projection p’% :p — (nl*)(p))v()(p)K” and  (xo.%p) €
X4 (Hf,Kj_}‘p,n;(wo)), we can define the analogue of (18) (where the source is
defined in a similar way):

by P Dy,
P A0 Xp I
szf " My r [Gf"/’a wO,p] -

Jn;(ﬂ),zo_p.z;;

@) 50) ()" @ Mya (Hy, 5 0), 7 (0,)) Tt R

We note that Hecke operators act on VX for any X,(Gy)-module by double
cosets. If K1, Ky € K° and 7 € X,(Gy), the space K;\KinKj is finite’ and we may

write KinKo = L] Kjx. As usual we may define
OCEKl\KlﬂKZ

(28) [KinKs) - VE — vk

! Tndeed note that K nK, is compact, being the image of K; x K» by means of the
continuous map given by (x,y) — xny. Since K is open, K1nKy = | | Ki7; is an open covering
which, by compactness, admits a finite refinement. E
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by the rule v | [KinKs] = >  wvx. We can define in this way an action of the
wek\Ki7K;

Hecke algebra H (2, (Gy)) of\ double cosets on X, (Gy). When K; = G, we have
VX" = VX and we have an action of H(2,(Gy)) = H(Gy). Let K C K° be the
subset of those groups such that K;, = K and write H(Zp) for the Hecke algebra of
double cosets Kn,K with = € 2, and K € £*°. Then (28) defines an operator on
VE” = (VE')% by means of the formula vT, := v | [KzK] if v € VK where K € K,
i.e. it does not depend on K € K. It follows that V*" is endowed with an action of
G x H(Zp)-

We now investigate the relationship between the oo-adic and the p-adic
formalism, assuming that we are given a period morphism 7, as above. Suppose
now that, as in §3.1, we have also given a group morphism I' — G, (resp.
A— H,), so that I' C G}’ x Gp x G =: G and that we are given wy : Zy — R*
and coefficient rings i, : R C By and i, : R C B,. For a character y of some
group with values in B*, we let ¢,.(x) := tp 0 y and i (¥) := % © 1. Suppose we
are given characters y,: Hr — R*, y, : Hy — R; and y : Ho — RZ such that
X 7= Xpla = Xoojs © 4 — R*. We also assume that we are given a representation p,
(resp. p.) of G, (resp. G) with coefficients in R, (resp. B.) with the property
that

P = Ppir = Pooir € Pps Po

with coefficients in R. Finally, suppose that (/lp,/loc) is a couple of elements
4y € Home[Hp] (15 (pp) Ry (1)) and Ao € Homp g (15, (Poc)s Roc (1)) With the
property that A := 4, , = 4, with coefficients in R.

Proposition 4.1. With the above notations the following facts hold.
(1) The rules

M(Gy.py) — My(Gr.p,) — My(Gy,py) — M(Gy.py)

Py, @) =@t oy, 0,@) =y,
set up a right X, (Gy)-equivariant bijection and M(Gy,p) C M(Gy,p,) is
identified with the submodule of those w € M, (Gyr,p,) such that y(x) €
p C p, for every x € Gy. Furthermore, if p, has central character w,, and
(=)p: Zy — Zp s the projection induced by Gy — G, then the bijection
mduces

M(Gy,p,n) € M(Gy.pp,ipi(en)) = My(Gr.py. )

with wy,, = ip*(a)o)w;pl((—)p). These identifications and inclusions are
H(Z,(Gy))-equivariant.
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(2) With 5y =1 we have (iso(%0) Xoo) € X (Gf, G loex(w0)) if and only if
(XO,p>Xp) €Xp (va G, Q’O,p)’ where wy,p(2) 1= ip*((UO)(Z)X];l (zp) and yo (%) =
ips (10) (@)1, " (). Im this case,
has image toox (1) and

Xo € M(GfaR(X)a CO()) C M(vaRp (Xp)a Zp*(w()))
~ M, (G, Ry (1), @0.)

has tmage 1, (}(p) via the first inclusion and this maps to y, , via the bi-
Jjection in (1).

(3) Suppose that the conditions in (2) are satisfied for
(x0.p: ) € Xp(Hy, K;’Hv g (@0,p))-
Then (15) is compatible with (24), i.e. they both agree on
M(Gy,p,a0) C M (G, pa,s ooi(an)),
M (Gy, p,an) C My(Gy, pp, @0,p)

and (17) is compatible with (26), meaning a similar statement. If we are
given projections pP~"*~ (see the lines before (18)) and p”»*» which agree on
pY, then (18) agree with (27) on M (Gy, p, ax).

Proof. Assertion (1)ischecked by a direct computation and (2) is a special case
of it, in view of the definitions of X (Gy, G, ioox (0)), X, (Gr, Gp, @0, ) and Remarks
3.1and 4.1. As far as the statement (3) is concerned, let us remark that the definitions
of (15) (resp. (24)), (17) (resp. (26)), (18) (resp. (27)) relies on (14) (resp. (22)). In view
of the compatibility that we have assumed before the statement and that between
pP=%< and p’r % we are reduced to comparing (14) and (22) up to the identification
provided by (1). But it follows from their definition that we only need to compare the
®-product (13) and its p-adic analogue. It is easy to see that the identification in (1)
preserves this operations. O

4.1 - Pairings and adjointness

We now state a generalization of the adjointness formula of [5, §2.3], which
plays a crucial role in loc. cit. It will play no role in the sequel and could be
skipped. Suppose that we have (xy ,,x,) € X, (Gy, K;,0.p) and that D (resp. E)



[17] FORMAL PERIOD INTEGRALS AND SPECIAL VALUE FORMULAS 233

is a Xp (resp. 2g) module, where Xp (resp. Xg) satisfies the assumption that
was done on X, and we let wy p p,wo p 5 : Zf — R* be characters such that
Wo,p,DW0, p,E = W0 p-
Suppose that we are given
<—, —> S HOW&R[K;] (D & E,R(Xp))-
Then (26) gives

<7v 7>}1i40,;’}~/ﬁ: MP (vaDa wOJo,D) ®R MP (Gf’Ev wOJO:E) —R.

Suppose that we are given an anti-automorphism : of Gy which respects the
decomposition Gy = G x Gp, i.e. a homeomorphism of G onto itself such that
(9192)'= 959, and 1' = 1 We further assume that g'g = gg' € Zy for every g € G
(so that the same is true for the p-component) and then we note that the rule
n(g) := ¢g'g (resp. n, (g,,) = ¢,,9p) defines a continuous character n : Gy — Zs (resp.
n, : G, — Zp). Then we suppose p = %), X =2}, and (K;)' = K7 C 2, N 2.
Another piece of data that we need is an open and compact subgroup Z7 =
ZP x Zy C Zy N Ky such that nyg.: K) — Z7. Assuming that E has central
character xz, we can consider the second of the following compositions:

Wo.p.E 1)\ 0 70

nes : Gy = Zp —% R and 0% : KS — Z<> . R

Suppose that y, : K; — R~ (resp kg) extends to a character y,: G, — R~
(resp. Kz : Zy — R*). Then n"E =kgon, is an extension of nrcE and we let

HomR[sz;] (D@ E,R(x,)) be the set of those pairings such that
(vo,w) = 7,(0)n, () (v, wa") for every o € X,.
We remark that, for every element u € K; ,
(v, wu) = 7, ()0, (1) (0, wu') = 7, (1) (v,0),

so that HomR[ZP’E” (D®E,R(z,)) C HomR[Klﬂ (D®E,R(y,))-

Remark 4.2. Suppose now that D C D and E C E, where D and E are Gp-
modules, the above inclusions are 2}, and, respectively, 2 -equivariant and that
E has central character kg = kg extending xg. If

(-,") € HOWLO[KO] (D ®E,R()(p))
extends to (-,-)"€ Homg ](D ® E,R(7,)), then

() € Homo[z,,,z;] (D@ B R(1,)).
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Indeed we have®:

(vo,w) = (vo,wo'a)” = i, (0)(v,ws ")~

= [p(a)ng’?’f (0)(v,wa")"= y,(0)n,"* (a) (v, wa").

In the following proposition we suppose that we are placed in the setting outlined
above: it then follows from Definition 4.1 that we have (y, ,,7,) € X,(Gy, Gy, w).

Furthermore, we need to assume that = € 2, that I — GJ’? is injective (it will be
G(F) — G(A7) in our applications) and that y, ,u = ,,, for every u € K (indeed

we will have y,,u =y, for every K e (G(Ay))). Also, we suppose that
f € My,(Gy,D, wOﬁD)K; and g € M, (Gy, E, coo,j(,E)K'f (and make a similar assumption
in the oo-adic case). Finally, we suppose that

<_v _> € HomR[zp’z;)] (D ®E>R(j{;7))

(resp. (—,—) € Hompgp(D ® E,R(y,)) in the co-adic case and E does not need
to have central character xg). Having introduced the appropriate setting, the
proof of the following result can be copied from [5, Prop. 2.6].

Proposition 4.2. We have the following formulas, in the p-adic case:

(F 1 Tasg) = 7 () 20, ()0, (mp )™ 25 () ( f 9 | T
In the oco-adic case {f | Tr,g9) = xo(m){f,9 | Tr1) and, whenever E has central
character kg, (f | Tz, g) = xo(m)n "= (n)(f,g | Tr)-

5 - p-adic automorphic forms and p-adic interpolation

The theory we have developed allows us to place the general period integrals (7)
in a p-adic setting by means of (19) and Proposition 4.1. More precisely, fix em-
beddings o, : £ — C and o), : E — K, with £, C C,, the completion where E is as
in §3.2. We have inclusions

MG, p, ] (E) CM[G, p, ) (C) ~ M[G(Af),noo,wg],
M[G,p, 600] (E) CM[G,/), 600] (Ep) ~ Mp [G(/kf),[)Ep,w()’p} .

% Note that ¢~ = n,(s) o because
n,(0) 'o'c = n,(c) 'ny(o) = 1.

This is used in the third of the following equalities.
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Then (19) and Proposition 4.1 (3) imply that
mé;\H.,ooI n=d ﬁ;;(wf No,p (@™ N,
on M[G, p, ] (F'). Here
((wj’ZN;)&p, (w"’N”)p) and (wj’ZNj?, (0 "N)1)

are associated as in Proposition 4.1. Hence, the p-adic L-functions can be obtained
by deforming the quantities appearing in the definition of
(! Ny (" N"),
ngﬁ,(wf (o, pr(@ ),,’

as illustrated in the example below.

Let the notations be as in the example of §3.2 and fix a prime p such that
B ®u Q, is split and which is prime to the discriminant of K/Q. Setting
(NrK/Qvf)O‘p := Nrg/o,f,p, by Proposition 4.1

Vi N /2 7 /2
J;le () = 7y kN o Mg 0 (Aj,k ® (p x ){))
corresponds to
v ,\",Nrk/z 7nrk/2‘ -
Sip(9) = Ty e (g (px27))
3 7 (@) Ak (p((x)))

k2 :
Ik, () |NrK//Q.f,p(x)

(29) = Hu(ay) (Ko.z)
weK, \H(As ) /H(Q)

This is the p-adic avatar of (20) produced by Proposition4.1 (3). Writing ¢ = ¢, inorder
to emphasize the dependence from the weight, we have to interpolate the functions
kv— o, k— Nrf{//zo‘ i () and k — A; .. The first problem is solved using the theory of p-
adic modular forms as developed in [3] or, for more general algebraic groups, replacing
the coefficients valued in representations (the above Vi, ¢, ’s) with the Ash-Stevens
modules D constructed in [1] (see also [4]). The second problem is easy because
Nrgo.r.p(2) € 7, and the solution of the third problem yields the p-adic L-functions.

Set X := Homes (7, , Gm>, the rigid analytic weight space which contains 7 via
k— [t — tk], and fix a character k : Z; — (O which corresponds to some open
affinoid U C X, so that O = O (U) (we use the exponential notation t* := k(t)). We
refer the reader to [6, § 5] for the notations employed here. In particular, we take
Xy = Zo(p7yp) (vesp. Ky = I'y(p7y)) of loc. cit. and we form the space of locally
analytic distributions D(W) on W := 77 x 7, which are homogeneous of degree
k. Noticing that Nj,(x) € 7, we see that we can define the spaces of p-adic families
of modular forms on B* via (see [6, Examples 5.1 and 5.2]):

M, =M, (Dk(W), N‘;) =M, (B; , Di(W), N‘;).
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The elements of Dk (W) naturally integrates locally analytic functions F': W — O
such that F(tw) = t*F(w) (where t* := k(t)), that we denote Ay (W). If k € U is an
integer, there is a specialization map Dy (W) — Dy (W); the inclusion Py, o, C Ax(W)
yields Dp(W) — Vi, by duality. Setting M, (Vy, NK) := M, (B}, Vi0,,N§) (and
similarly for M), the resulting arrow Dy (W) — Vi o, yields

Pk :Mp(,Dk(W)ng) (Vko ) NM(Vk Q1 )

for every k € U even and classical. This solves the first interpolation problem and
er;{//zo fp( x) = NrK/(Jvﬂp(x)k/Q, which makes sense because Nrgq (%) € 7,
solves the second interpolation problem (see [6, §4.3] for the definition of k/2).

From now on we let f be a Coleman family of finite slope and let ¢ € M,y be its
Jacquet-Langlands lift: we set f;, := p,(f) (resp. ¢, := p.(p)), which is the p-sta-
bilization of a unique f]c (resp. ¢j #) for almost every classical (i.e. even integer)
weight k. We let 7, be the automorphic representation of GLy attached to f}c . We
suppose the tame level of f and the conductor of y to be prime to p.

We now explain how to interpolate k — A;;. We view Q; € Ay(W) and set
W;:=Q; Y(7,) € W;then Q;w, € Ao (W;) take Value in 7,7 and we can consider the
element QF € Ak( 7). We may write W = W; U W as the disjoint union of open
and compact subsets, inducing Dy (W) = Dy (W) o Dk (W5). If i € Di(W), we let
Hyw; € Dx (W,) be its component. We may normalize j in such a way that K stabi-
lizes j so that, setting K/ := j~! (K}), the association x — py, (P) € O defines

Ay, € Homepyee i (Di(W), O(k/2).

We can define

Di(W), Nt k/2 ar/?

Lopr=Tnp (A @ (= xx 7)) s My(Di (W) N) = ©.

pxt =

When p is inert in K we have W = W; and L, ,1(¢p)(k) = J,-1 ,(p;); when p is
split we have W; ~ A; X A; (see [7, Lemma 5.3]). For an element o« € O, let
M;,k C M), be the submodule of those ¢ such that U,p = ap (there are plenty, by
the theory of eigencurve). When p is split the same computations carried on in [2,
Lemma 3.9] allow one to relate £, ,-1(p)(k) and J -1 ,(¢,) assuming that ¢ € M7 ..
Further expressing J,1 ,(¢;) in terms of J 1, (@f) as in [2] yields, together with
(20), the interpolatlon formula

Lpy1(9) (k)ﬁp,z(cﬂ) (k)

. gp7171(k) (1/2 T, X T, 1
2P ( 7, Ad)L(1,7,, Ad) H“” Per)

» g s Mol
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for every p € Mj ., k € U even and classical and the Euler factor £, 1 (k) as in [10,
Thm. 4.17 and 4.18].
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