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A few remarks on a Manin-Mumford conjecture in

function field arithmetic and generalized Pila-Wilkie estimates

Abstract. We present here the natural extension of our Pila-Wilkie type esti-
mates on the number of rational points of the trascendent part of a compact analytic
subset of ', ((1/T))" (see [D1]) to analogous subsets of K", where K is a general local
field of any characteristic. That would integrate the analogous estimate provided by
F. Loeser, G. Comte and R. Cluckers in [CCL, Theorem 4.1.6]. We remind in the
first two sections the main ideas of our construction by correcting two minor mis-
takes we made in [D1]. We then generalize the strategy to any local field.
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1 - Introduction

Most of the notations we use come from [D2] and [D1]. In particular we put
A :=1¢[T] and k := [((T). The completion of k with respect to the place at in-
finity, represented by the 1/7—adic valuation, is then k. := [,((1/7)). By
choosing k., an algebraic closure of k. and calling C := (ks)s, We let k be the
algebraic closure of k in C.

Definition 1.1. A T—module of dimension m and degree dis a couple
A = (G}, @), where (i, is the algebraic additive group over C and & the F,—algebra
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—m,m

homomorphism defined from I,[T]to k" {t} (see [D2, Definition 1.5]) such that

©) H(T)(D) = dg + a1t + ... + a7°

—m,m

where ay, ...,a; € k""" and ag = T1,, + N , for some nilpotent matrix N e k.

The constant coefficient matrix ag is called the differential of @(T') and it is
denoted as d®(T). We define similarly d@®(a(T)) for any a(T) € A. Therefore it is
clear that d(®(a(T))) = a(T)1,, + Nyr) for a nilpotent matrix Ny ). We also remind
that a T—module A is abelian if its rank (see [D2, Definition 1.12]) is finite. We also
denote by k(®) the definition field of A: it is the finite field extension of k in &
generated by the entries of the coefficients of &(T).

Definition 1.2. Let A = (G4, ®) be a T—module. A connected reduced al-
gebraic subgroup B of A of dimension mpg < m 4, isomorphic to Gj'¢ is called a
sub—7T—module of A if &(T)(B) C B. If B is a subring of A and &(a(T))(B) C B for
every a(T) € B, we call B a sub—B—module of A (see [D2] for more details).

The main purpose of our work in [D1] was to outline a possible strategy for proving
a general adaptation of the Manin-Mumford conjecture to the context of abelian and
uniformizable 7'—modules (we introduce such a special class of 7—modules in the
next section). We showed in [D2] that a naive version of this statement is false in
general and we exhibited several counterexamples by remarking firstly that a the-
oretical statement must involve, as analogues of abelian subvarieties, all the possible
sub—B—modules of the given A (see [D2, Proposition 2.5]). Moreover, as we showed
in [D2, Proposition 2.12], one may still find counterexamples produced by an in-
sufficient “degree of abelianity” of A (see the discussion after [D2, Proposition 2.12]).
We had therefore to strenghten the hypotheses on the finiteness of the rank of the
T—motive associated to A (see [D2, Theorem 2.13] and [D2, Proposition 2.15]). The
final statement we propose is the following one.

Conjecture 1. Let A= (G}, @) be an abelian uniformizable T—module,
such that there exists i € N — {0} such that the leading coefficient of the form &(T")
is an invertible matrix. Let X be an algebraic subvariety of A not containing
translates by torsion points of A of nontrivial sub—B—modules of A for any B
subring of A. Then X contains only finitely many torsion points of A.

The strategy we follow to prove such a statement is described in [D1] and is based
essentially on the ideas of U. Zannier and J. Pila (see [PZ]) to provide an alternative
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proof of the Manin-Mumford conjecture (M. Raynaud’s theorem) in the setting of
abelian varieties over number fields. As we will see in the next section, there exists a
particular class of abelian T—modules, called uniformizable, which presents several
analogies with abelian varieties. In particular, a 7—module A = (G, @) of such a
class is endowed with a homeomorphic I';[7T]—module isomorphism between .4 and
the quotient of C" by a I'y[T']—lattice 44 := A of rank equal to the rank of .A. Such an
isomorphism is called the exponential map associated to .A. The tangent space of A
at 0 is the Lie algebra of G and is therefore denoted by Lie(A).

In [D1] we use the properties we have described right above to establish a re-
lation between the set of torsion points of A and the set of k—rational points of
Lie(A)/ A. As we have remarked in [D1, Proposition 5], if d&(T) is diagonal, we have
the analogous situation we know already for abelian varieties, that is the two sets are
in bijection via the exponential map. More precisely, we remarked that by assuming
the rank of A to be d, we have that Lie(A) is, as k., —vector space, the direct sum of a
d—dimensional subspace in which A is cocompact and a free subspace. Up to a change
of basis, we may therefore assume A to be A? and Lie(A)/A ~ (k.. /A)d @ Free(k.,).
This means that the exponential map induces a homeomorphism of A—modules

@) Lie(A)/ A ~ A

which puts the torsion points of A in bijection with the z € Lie(A) such that
d®(a(T)) - z € A. Our strategy requires the proof of several intermediate statements
(see [D1] for more details). The first of them is the main result in [D1] and will be
recalled in the next section (see Theorem 2.4).

Such a theorem provides an upper bound estimate for the number of k—rational
points in the transcendent part of an analytic subset of Lie(A)/A and will be gen-
eralized in the present paper to a unified statement holding for a non-Archimedean
local field of any characteristic.

We thus call (K,v) such a field. It is well known that K is the completion with
respect to v of a global field which is a finite extension of Q if char(K) = 0, or a finite
extension of I',(T) if char(K) = p. Then K is either a finite field extension of (O, for
some prime number p, or it is isomorphic to a field of the form I,((x)) for some power
q of p, where the variable x is a I\, —rational function of 7'/" for some n € N — {0}.
Letuscall Zg := Zand Qg := Qif char(K) = 0and Zg = [\g[T]and Qg := [ (T)if
char(K) = p. Since in all cases |Zk|, C N, if we define a height function on Q%
(m e N —{0}) as
3) H@ = H(Z—i , Z—n) = max {max{ail. bi],}}

then we obviously have H(z) € N. We then prove the following statement.
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Theorem 1.1. Let W be an irreducible K—analytic subset of K™ for some
m € N —{0,1}. We define, for any t € N — {0}, the following number

(4) NW — W 1) .= |{z € (W — W)(Qx), HE) < t}].
For each real number ¢ > 0 there exists c = ¢c(W,¢) > 0 such that
(5) NW — W ) < ct*.

We prove Theorem 1.1 in the third and last section. The next one will be devoted
to correct two minor mistakes we made in [D1], giving us the opportunity to recall the
main tools and ideas on which our arguments in [D1] were based and to present a few
remarks and examples related to the intrinsic nature of the algebraic and arithmetic
objects involved in this setting.

2 - Manin-Mumford conjecture in function field arithmetic
We begin by recalling the crucial definition of the exponential map.

Theorem 2.1. Let A= (G, @) be an abelian T—module. We call Lie(A) the
tangent space associated to A Now, given a sub—T—module B of A, having
dimension mg < m (so not necessarily different from A), let Lie(B) be the vector
subspace of Lie(A) defined as the usual Lie algebra of B. Then there exists a unique
IFy—linear k(P)—analytic map

(6) es: Lie(B) — B
such that
(7) D((1))ep()) = ep(dd((T)) - 2)

for all a(T) € A and for all z € Lie(B). Such a map is called the exponential
function of B.

Proof. The proof of this very important result was provided by G. Anderson
and it can be found in [Goss, Chapter 5, Section 9]. O

Proposition 2.1. The exponential map e, : Lie(A) — A of an abelian
T—module A restricts to Lie(B) to the exponential map ez : Lie(B) — B for any
B sub—T—module of A.
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Proof. By [D2, Proposition 1.14], we know that ¢ 4(Lie(B3)) C B. As ¢4 and e
respect the same properties we previously listed in Theorem 2.1, the statement
follows from the uniqueness of the exponential map. O

Corollary 2.1. Given an abelian T—module A = (G, @), the vector sub-
space Lie(B) of Lie(A) is invariant under the differential d®d(T) of A for every B
sub—T—module of A. In other words

dd(T) - Lie(B) C Lie(B).

Proof. As eg(dd(T)z) = e, (dd(T)z) for all z € Lie(B) and ep is defined on
Lie(B) only (while on the contrary e, takes values in B on the a priori bigger set
é;ll(B)), it follows that for all z € Lie(B) one has that d®(T)z € Lie(B). Indeed
otherwise the exponential map ez could not be defined on such values, as it has to
since eg(dP(T)z) = &(T)(es(?)). O

The kernel of the exponential function of an abelian 7—module 4 is an A—lattice
Ain C™. We know (see [D2, Lemma 1.15]) that if the exponential function is sur-
jective, then the rank of A is precisely the rank d of A. An abelian 7—module A
respecting such a condition is called uniformizable.

As announced in the introduction, we shall now correct two mistakes we
made in [D1]. The first of them is related to the uniformization properties of
the sub—B—modules of an abelian uniformizable 7—module. By the cathe-
gorical anti-equivalence between T—modules and T—motives given by the
contravariant functor Hom(.,G,) (see [D1]) the abelianity easily holds for
sub—B—modules of an abelian 7'—module. But the uniformization requires, as
we are going to see, more attention. We start by stating the following im-
portant result of J. Yu.

Theorem 2.2. Let A= (G}, ®) be an abelian T—module defined over k. Let
w e Lie(A)(ko) such that e@) e A(k). Then the smallest vector subspace of
Lie(A) (k) defined over k which contains w and it is invariant under the action of
the matrixz d®(T) is the tangent space at the origin of a sub—T—module of A.

Proof. See[Yu, Theorem 3.3]. O
Lemma 2.1 (Correction of [D1, Remark 3]). Let A be an abelian uniformiz-

able T—module of dimension m 4 and let B be a sub—T—module of A of dimension
mp. Then B and A/B are abelian and B is uniformizable.
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Proof. The fact that B and .A/B are abelian has already been proved in [D1,
Remark 3]. As the exponential map is continuous (see the proof of [D1, Lemma 3])
and Lie(5) is a vector space, we have that e(Lie(3)) is closed with respect to the
1/T—adic metric. By assuming that B — e (Lie(B)) # 0, it follows that this com-
plement set cannot contain isolated points in B. Moreover, since k is dense in k.., k
is dense in k., and in C, we might assume without loss of generality that there
exists & € B(k) such that & ¢ e(Lie(B)). On the other hand, even though e(Lie(B)) is
not a sub—7—module of A (not being an algebraic variety in principle), it is an
A—module and one can see that in particular .4 /e(Lie(B)) is still a T—module, and
it is abelian by the same argument of [D1, Remark]. Therefore, since A is uni-
formizable, there exists % € € 1(B) such that its coset [%] € Lie(A/e(Lie(B))) — {6}
satisfies [e]((u#]) = [x] € (B /E(Lie(B)))(E) (note that [e] is, by the uniqueness
property, the exponential map associated to .4 /e (Lie(B))). Therefore by Theorem
2.2 there exists a sub—7—module B’ of B such that

JA)-1

(8) @ {C-(dD(TH[m])} = Lie(B Je(Lie(B)))
i=0
being j(A) the smallest positive integer such that d@(77Y) = TVA1 (see [D2,
Theorem 2.7]). It follows that
9) u € Lie(B') C Lie(B)
contradiction. O
Theorem 2.3. Let A= (G}, ®) be an abelian T—module and let B be a
sub—T—module of A. Then
(10) e 1(B) = A4+ Lie(B).
Proof. By classical theorems of group homomorphisms one has that
(11)  e(Lie(B)) ~ Lie(B) /(AN Lie(B)) ~ (A + Lie(B))/ A ~ & '(e(Lie(B)))/ A.
By Lemma 2.1 we have now that
(12) e '@(Lie(B)) = e (B)
which proves the statement. |
We remark that these two apparently innocuous results (which are in fact
equivalent: indeed it is easy to see that Theorem 2.3 implies Lemma 2.1) can not rely

just on the fact that the exponential map is a local homeomorphism, as one may
expect, but actually require a deeper proof. While for a number field K, endowed
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with the usual Archimedean absolute value, it is very well known that two home-
omorphic analytic sets defined over K have to have the same dimension, this is no
longer true in non-Archimedean settings. This is an immediate consequence of the
fact that the E. L. J. Brouwer’s Fixed Point Theorem is false for local fields, as all
polydises are closed, compact, convex and invariant under translation by one of their
elements, which is clearly a continuous injective map. We present here an example of
this phenomenon, which is in particular a counterexample to the Invariance of
Domain Theorem, by using G. Anderson’s theory of 7—modules.

Remark 2.1. Given ¢ € k such that |c|;; <1 and T = ¢ + ¢, we consider
the T—module A = (Gi, @) such that

B 0 1ot e 0 o
(13) HTY7) =T 12+<1_Cq 0 )H( 0 al

Then the two-dimensional C—vector space Lie(A) is homeomorphic via the ex-
ponential map to a k—entire subset of C? of dimension 1 (see [D1, Definition 16]).

Proof. The T—module A we have chosen is a non uniformizable nontrivial
abelian T—module, and the exponential map associated to it has to be injective (a
very elegant example provided by G. Anderson and R. Coleman, see [Goss, Example
5.9.9]). In such a situation, Lie(A) is homeomorphic via the exponential map to a
proper subset of A. Since the exponential map is invertible and the logarithm is
E—analytic as well, such a subset e (Lie(A)) is a proper k—entire subset of C2. Thus its
dimension is the same at each point in which é(Lie(A)) is a k—analytic space (see
[D1, Definition 13]). By Tate theory, it is easy to see that this dimension is 1. O

We now correct a second mistake we made in [D1], which led us to uncorrectly use
the isomorphism given by the exponential map between an abelian uniformizable
T—module A and the quotient Lie(A4)/4 in counting the torsion points of A as
k—rational points of Lie(A)/A. By calling j(A) € N — {0} the smallest natural
number such that d@(TVW) = TiA1, (see [D2, Theorem 2.7]), it is clear that the set
of T7“—torsion points of A is therefore in bijection with the set of IF,[ 7VY]—rational
points of Lie(A)/ A. Our results in [D1] still apply by considering A as a 7Y —module
or, equivalently, for the [Fy[77“Y]—torsion points of .A. By the way, even if this was
not explicitely written and [D1, Proposition 5] is false for non diagonal differentials
dd(a(T)), it is easy to see that the estimate we provided in [D1, Theorem 10] still
applies to all the a(7T)—torsion points of an algebraic subvariety X of A exactly in the
way we intended, without any real change. We firstly recall here the statement of
such a theorem, which is the main result in [D1]. Let L be a finite field extension of
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k+ with degree n, defined as in [D1, Theorem 8]. For a subset S of Lie(A)(L) ~ k"
and a(T') € A we put

(14) Sk, a(T)) := {z € Sk), H@ < |a(D)]y7}

where H is defined in equation (3).

Theorem 2.4. Let X be an algebraic subvariety of a T—module A = (G, @)
abelian and uniformizable. Let Y :=e Y(X). Let W :=Y@L)N{(z1,...,2um) €
KM 2401 = ... = Zym = 0}. Let us call W — W the trascendent part of W (see
[PW] for a detailed definition). For each real number ¢ >0, there exists
¢ =c(Y,e) > 0 such that, for each a(T) € A — Iy, we have

(15) (W — W)k, a(D))| < ela(D; -

Proof. See[D1, Theorem 10]. O

Because of a misinterpretation of the action of an element a(T) € A — I, on
Lie(A) via the associated differential d®(a(T)) and the trivial multiplication by a(T")
of the elements z € Lie(A), we have to restrict the statement of [D1, Proposition 5]
to the diagonal case.

Proposition 2.2 (Correction 1 of [D1, Proposition 5]). Let a(T) € A — .
Let X be an algebraic subvariety of A We assume that dd(a(T)) = a(T) - 1,,,. Then
the set X N Ala(T)] of the a(T)—torsion points in X is in bijection with the
Sfollowing set

(16) Wk, [a(T)]) .= {z € W[a(T)], H®) < (D)7}
where

— Jr 7 — %1 %d .
(17) WIa(T)] := {z - (/),—1, /),—d) e Wk), z(:ml:l,,“ﬁd{ﬁi}m(T)}.

Proof. Theproofof [D1, Proposition 5] can be repeated without problems as by
our assumption on d@(a(T")) the action of this matrix on the points of Y is precisely
the scalar multiplication by a(7). O

We remark that
(18) Wk, [a(D)])| < |W(k,a(T))]

for every a(T) € A — I
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Remark 2.2 (Correction 2 of [D1, Proposition 5]). Let X be an algebraic
subvariety of an abelian uniformizable T—module A as before. For each ¢ > 0 there
exists ¢ = ¢(X, A, &) > 0 such that for each a(T) € A — I, we have that

(19) X N Ala(D)]| < cla(D)f; 7.

Proof. Let j(A) be the smallest natural number such that do(TY™Y is a
diagonal matrix (see [D2, Theorem 2.7]). Such a number is a power of the
characteristic p. Therefore, up to taking j(A) to be a power of ¢, we may assume
that a(TVA) = o(T)’™. Now, a torsion point of A is clearly a F [T/Y]—torsion
point too. Therefore, the set of the a(T)—torsion points of X is contained in the
set of the a(T9“)—torsion points of X. Since d®(a(T))’™ = a(T/Y)-1,,, by
Proposition 2.2 we have that

(20) IX N Ala(D]| < |X N Ala(T7)]|

< (W, [a(T")D)| < [W(k,a(T72))| = [W(k, a(TY).
By Theorem 2.4 we therefore have that
(21) X N Ala(D]] < el

Up to taking ¢/j(A) instead of ¢ the statement is proved. O

3 - Pila-Wilkie estimates for general non-Archimedean fields

The aim of this section is to prove Theorem 1.1. We start by showing a general
Implicit Function Theorem for a local non-Archimedean valued field K.

Theorem 3.1. Let F : K" — K™ be a vector of analytic functions on some
open set of K"*™, such that its Jacobian matrix J, (F) at some pointzg € Z (F) has
rank m. Up to a permutation of the columns we can divide such a matrix in two
blocks as follows

(22) JEO (F) = (Jn.m(F(EO)) ‘Jmm(F(EO)))

with Jpm(F@o) a square invertible matrix. Then there exists an open neigh-
borhood Uz, x V;z, C K" x K™ and a vector of analytic functions

(23) f : Ugo — Vgo
such that for each z, € Us,, we have
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Proof. This is a generalization of [D1, Corollary 1]. The proof follows pre-
cisely the same steps once one has proved the scalar case m = 1. The same sys-
tems of equations of hyperderivatives of F appear again and the same argument
holds, since it only uses the ultrametric nature of the involved norm. The proof of
the m =1 case is as in [D1, Theorem 4]. The formal construction of the inverse
function clearly holds for any possible field. The convergence argument, on the
other hand, only uses the fact that the norm is ultrametric and the construction of
a bounding series is exactly the same. O

The notion of analytic space, regular point and dimension we provided in
[D1] hold for any non-Archimedean local field. The arguments and the results
of [D1, Section 2.3] and [D1, Section 2.4] hold here as well. We would like to
note that the proof of [D1, Theorem 7] is much simpler in characteristic 0 since
all the involved field extensions become separable and this removes the main
difficulty. We thus have the following result.

Theorem 3.2. Let X be an irreducible affinoid space in the unit polydisc
BY(K) which contains 0. Then, the regular points of X are dense in X.

Proof. By [D1, Theorem 7] we have this statement proved if X is absolutely
irreducible in the perfect closure of K. By the same argument of the proof of
[D1, Theorem 8, part 4] we are able to remove this additional hypothesis. O

As we have seen in the proof of [D1, Theorem 10] we may assume without loss of
generality that W is contained in the unit polydisc B}*(K): indeed forz € W — B}*(K)
we have that H G hH= H (%), where the inversion function z — z ! is defined in the
discussion after [D1, Proposition 5]. Moreover, by the same argument at the be-
ginning of the proof of [D1, Theorem 10] we see that

(25) (W N BIME)™ U (W — BI"K)™o- ¢ Wlo
and

NW — W t) < N(W N B{(K)) — (W 0By ()™ 1)
(26)
+ N(W — Bj(K)) — (W — B (K)™ 1),

Therefore we can assume that W is contained in BY"(K) to prove Theorem 1.1. Hence
we assume W is an analytic space. By Theorem 3.1 and Theorem 3.2 we now easily
have a K—analytic cover of W (see [D1, Definition 19]) and, since W can be assumed
to be compact, this allows us to assume W to be the image, by some K —analytic map,
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of a unit polydisc B} (K) for some given % < m (up to multiplying c(W, ¢) by a positive
integer only depending on W).
We now state a result which allows us to treat this situation.

Proposition 3.1. Let h <d and 6 € N — {0}. There exists a real number
e=e(h,d,d) > 0 such that, for each analytic function

(27) @ : BMK) — K
if
(28) S := &(B"(K))

and t € N — {0}, then there exists a real number C = C(h,d,d, BY(K), ®) > 0, such
that the set S(Qg,t) is contained in the union of at most Ct* hypersurfaces in K¢
having degree at most 6. Moreover, if 6 approaches + oo, then & converges to 0.

Proof. The proofs of [D1, Lemma 4] and [D1, Proposition 7] apply here with
no relevant changes. O

Proof of Theorem 1.1. This is close to the proof of [D1, Theorem 10] and we
refer to it for the details. For each ¢ > 0 we choose ¢ > 0 big enough so that
&(0) < &/2, where &(0) > 0 is associated to ¢ as described in Proposition 3.1. By our
previous discussion we have that W can be assumed to verify the hypotheses we gave
on the set S in Proposition 3.1: hence W(Qg,t) is contained in the union of at most
C(W, &)t*/2 hypersurfaces in K™ having degree at most ¢, for some C(W, &) > 0 only
depending on W and ¢ (as we have chosen ¢ depending on ¢). Let P,;(X) be the set
which parametrizes the family of all hypersurfaces with degree at most din K. For
each r € Py we define

(29) S, :=WnH,

where H, is the hypersurface in K™ associated to 7. By the same induction argument
we used in [D1, Theorem 10] we have that

(30) N(S, — 8% 1) < e(S,, e)t/2.
Now, it is clear that S¥ = (W N H,)"" = W™ N H,., so that

W-wir = ] (W-W"%)nH,)

7Py (K)

= |J WnH)-Wn H,)").

'V'EP‘,((;)(K)

(31)
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Let S be the set of » € P,(5)(K) which represents the family of hypersurfaces with
degree at most d which cover W as described before. So S is finite and its cardinality
is at most C(W, ¢)t7/2. Let

(32) KW, ) := max{c(Sy, )}

By choosing

(33) c(W,e) .= K(W,e)C(W,¢)

the statement follows. d
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