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JUNG KYUu CANCI and LAURA PALADINO

On preperiodic points of rational functions defined over I7,(¢)

Abstract. Let P € P;(Q) be a periodic point for a monic polynomial with coeffi-
cients in 7. With elementary techniques one sees that the minimal periodicity of P is
at most 2. Recently we proved a generalization of this fact to the set of all rational
functions defined over Q with good reduction everywhere (i.e. at any finite place of
Q). The set of monic polynomials with coefficients in 7 can be characterized, up to
conjugation by elements in PGLy(7), as the set of all rational functions defined over
Q with a totally ramified fixed point in Q and with good reduction everywhere. Let p
be a prime number and let [}, be the field with p elements. In the present paper we
consider rational functions defined over the rational global function field I7, () with
good reduction at every finite place. We prove some bounds for the cardinality of
orbits in Fy(¢) U {oco} for periodic and preperiodic points.
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1 - Introduction

In arithmetic dynamic there is a great interest about periodic and preperiodic
points of a rational function ¢:IP; — ;. Let NN be the set of non-negative integer
numbers. For every n € N, we denote by ¢" the n-iterate of ¢ (in particular ¢’ is the
identity on P;). A point P is said to be periodic for ¢ if there exists an integer n > 0
such that ¢"(P) = P. The minimal number 7 with the above properties is called
minimal or primitive period. We say that P is a preperiodic point for ¢ if its

Received: December 31, 2015; accepted: February 29, 2016.
Laura Paladino’s work is supported by Istituto Nazionale di Alta Matematica trough
Assegno di Ricerca Ing. G. Schirillo.



194 JUNG KYU CANCI and LAURA PALADINO 2]

(forward) orbit O4(P) = {¢"(P) | n € N} contains a periodic point. In other words P
is preperiodic if its orbit O4(P) is finite. In this context an orbit is also called a cycle
and its size is called the length of the cycle.

Let p be a prime and, as usual, let IV}, be the field with p elements. We denote by
K a global field, i. e. a finite extension of the field of rational numbers Q or a finite
extension of the field [F)(¢). Let D be the degree of K over the base field (respec-
tively Q in characteristic 0 and [,(f) in positive characteristic). We denote by
PrePer(¢, K) the set of K—rational preperiodic points for ¢. By considering the
notion of height, one sees that the set PrePer(¢, K) is finite for any rational map
¢:IP1 — IP; defined over K (see for example [13] or [5]). The finiteness of the set
PrePer(f, K) follows from [5, Theorem B.2.5, p. 179] and [5, Theorem B.2.3, p. 177]
(even if these last theorems are formulated in the case of number fields, they have a
similar statement in the function field case). Anyway, the bound deduced by those
results depends strictly on the coefficients of the map ¢ (see also [13, Exercise 3.26
p- 99)). So, during the last twenty years, many dynamists have searched for bounds
that do not depend on the coefficients of ¢. In 1994 Morton and Silverman stated a
conjecture known with the name “Uniform Boundedness Conjecture for Dynamical
Systems”: for any number field K, the number of K-preperiodic points of a
morphism ¢: Py — Py of degree d > 2, defined over K, is bounded by a number
depending only on the integers d, N and D = [K : Q]. This conjecture is really in-
teresting even for possible application on torsion points of abelian varieties. In fact,
by considering the Lattes map associated to the multiplication by two map [2] over
an elliptic curve E, one sees that the Uniform Boundedness Conjeture for N =1
and d = 4 implies Merel’s Theorem on torsion points of elliptic curves (see [6]). The
Lattes map has degree 4 and its preperiodic points are in one-to-one correspon-
dence with the torsion points of £/{+ 1} (see [11]). So a proof of the conjecture for
every N, could provide an analogous of Merel’s Theorem for all abelian varieties.
Anyway, it seems very hard to solve this conjecture, even for N = 1.

Let R be the ring of algebraic integers of K. Roughly speaking: we say that an
endomorphism ¢ of P; has (simple) good reduction at a place p if ¢ can be written in
the form ¢([x : y]) = [F(x,y), G(x, y)], where F(x,y) and G(x,y) are homogeneous
polynomial of the same degree with coefficients in the local ring R, at p and such
that their resultant Res(#, G) is a p—unit. In Section 3 we present more carefully the
notion of good reduction.

The first author studied some problems linked to Uniform Boundedness
Conjecture. In particular, when N = 1, K is a number field and ¢ : P; — IP; is an
endomorphism defined over K, he proved in [3, Theorem 1] that the length of a cycle
of a preperiodic point of ¢ is bounded by a number depending only on the cardinality
of the set of places of bad reduction of ¢.
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A similar result in the function field case was recently proved in [4].
Furthermore in the same paper there is a bound proved for number fields, that is
slightly better than the one in [3].

Theorem 1.1 (Theorem 1, [4]). Let K be a global field. Let S be a finite set of
places of K, containing all the archimedean ones, with cardinality |S| > 1. Let p
be the characteristic of K. Let D =[K : I,(t)] when p > 0, or D = [K : Q] when
p = 0. Then there exists a number y(p, D, |S|), depending only on p, D and |S|,
such that if P € P1(K) is a preperiodic point for an endomorphism ¢ of P; defined
over K with good reduction outside S, then |O¢(P)| < 5(p,D,|S|). We can choose

70,D,|S]) = max{(zlﬁ\s\—8 +3)[121S] log (5|1, [12(S| + 2) log (5]S| + 5)]4D}
wm zero characteristic and
M np, D, |8)) = (pIS)* max {(p|S))*, 52}
i positive characteristic.

Observe that the bounds in Theorem 1.1 do not depend on the degree d of ¢. As a
consequence of that result, we could give the following bound for the cardinality of
the set of K-rational preperiodic points for an endomorphism ¢ of I; defined over K.

Corollary 1.1 (Corollary 1.1, [4]). Let K be a global field. Let S be a finite set
of places of K of cardinality |S| containing all the archimedean ones. Let p be the
characteristic of K. Let D be the degree of K over the rational function field ¥, (#), in
the positive characteristic, and over Q, in the zero characteristic. Let d > 2 be an
integer. Then there exists a number C = C(p,D,d,|S|), depending only on p, D, d
and |S|, such that for any endomorphism ¢ of P of degree d, defined over K and
with good reduction outside S, we have

#PrePer (¢, P1(K)) < C(p, D, d, |S|).

Theorem 1.1 extends to global fields and to preperiodic points the result proved
by Morton and Silverman in [7, Corollary B]. The condition |S| > 1 in its statement
is only a technical one. In the case of number fields, we require that S contains the
archimedean places (i.e. the ones at infinity), then it is clear that the cardinality of S
is not zero. In the function field case any place is non archimedean. Recall that the
place at infinity in the case K = I',(¢) is the one associated to the valuation given by
the prime element 1/¢. When K is a finite extension of I7,(¢), the places at infinity of
K are the ones that extend the place of [, (¢) associated to 1/¢. The arguments used
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in the proof of Theorem 1.1 and Corollary 1.1 work also when S does not contain all
the places at infinity. Anyway, the most important situation is when all the ones at
infinity are in S. For example, in order to have that any polynomial in I, (¢) is an S—
integer, we have to put in S all those places. Note that in the number field case the
quantity |S| depends also on the degree D of the extension K of Q, because S
contains all archimedean places (Whose amount depends on D).

Even when the cardinality of S is small, the bound in Theorem 1.1 is quite big.
This is a consequence of our searching for some uniform bounds (depending only
on p, D, |S|). The bound C(p, D, d, |S|) in Corollary 1.1 can be effectively given, but
in this case too the bound is big, even for small values of the parameters
p,D,d,|S|. For a much smaller bound see for instance the one proved by
Benedetto in [1] for the case where ¢ is a polynomial. In the more general case
when ¢ is a rational function with good reduction outside a finite S, the bound in
Theorem 1.1 can be significantly improved for some particular sets S. For ex-
ample if K = Q and S contains only the place at infinity, then we have the fol-
lowing bounds (see [4]):

o If P € P1(Q) is a periodic point for ¢ with minimal period %, then n < 3.

o If P € P1(Q) is a preperiodic point for ¢, then [O4(P)| < 12.

Here we prove some analogous bounds when K = [7,(?).

Theorem 1.2. Let ¢:P1 — PPy of degree d > 2 defined over I',(t) with good
reduction at every finite place. If P € P1(IF,(t)) is a periodic point for ¢ with
minimal period n, then

en<3 ifp=2;

en<T72 ifp=3;

en<(®—-1p ifp>5.

More generally if P € P1(I',(®)) is a preperiodic point for ¢ we have

« 04P) <9 ifp=2;

o [0,P) <288 ifp=3;

o [0,P) <(p+1(p*—1p ifp>5.

Observe that the bounds do not depend on the degree of ¢ but they depend only on
the characteristic p. In the proof we will use some ideas already written in [2], [3]

and [4]. The original idea of using S—unit theorems in the context of the arithmetic
of dynamical systems is due to Narkiewicz [9].
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2 - Valuations, S-integers and S-units

We adopt the present notation: let K be a global field and v, a valuation on K
associated to a non archimedean place p. Let Ry, = {x € K | vp(x) > 1} be the local
ring of K at p.

Recall that we can associate an absolute value to any valuation v,, or more
precisely a place p that is a class of absolute values (see [5] and [12] for a re-
ference about this topic). With K = I7,(¢), all places are exactly the ones asso-
ciated either to a monic irreducible polynomial in [7,[¢] or to the place at infinity
given by the valuation v, (f(x)/g(x)) = deg(g(x)) — deg(f(x)), that is the valuation
associated to 1/¢. In an arbitrary finite extension K of I",(¢) the valuations of K
are the ones that extend the valuations of I',(¢). We shall call places at infinity
the ones that extend the above valuation v, on I7,(¢). The other ones will be
called finite places. The situation is similar to the one in number fields. The non
archimedean places in Q are the ones associated to the valuations at any prime p
of 7. But there is also a place that is archimedean, the one associated to the
usual absolute value on Q. With an arbitrary number field K we call archime-
dean places all the ones that extend to K the place given by the absolute value on
Q.

From now on S will be a finite fixed set of places of K. We shall denote by

Rg :={x € K | vp(x) > 0 for every prime p¢ S}
the ring of S-integers and by
R§ .= {x € K" | vp(x) = 0 for every prime p¢ S}

the group of S-units.

As usual let ¥, be the algebraic closure of I,. The case when S = () is trivial
because if so, then the ring of S-integers is already finite; more precisely
Rs = Ry = K* NI,,. Therefore in what follows we consider S # 0.

In any case we have that K* N, is contained in R5. Recall that the group
Ry/K* N Fp has finite rank equal to |S| — 1 (see [10, Proposition 14.2 p. 243]). Thus,
since K N F, is a finite field, we have that R} has rank equal to |S|.

3 - Good reduction

We shall state the notion of good reduction following the presentation given in
[11] and in [4].
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Definition 3.1. Let @:P; — P; be a rational map defined over K, of the

form
X :Y)=[FX,)Y): GX,Y)]

where F',G € K[X, Y] are coprime homogeneous polynomials of the same degree.
We say that @ is in p—reduced form if the coefficients of F and G are in Ry[X, Y] and
at least one of them is a p-unit (i.e. a unit in R,).

Recall that R, is a principal local ring. Hence, up to multiplying the polynomials
F and G by a suitable non-zero element of K, we can always find a p—reduced form
for each rational map. We may now give the following definition.

Definition 3.2. Let @:P; — P; be a rational map defined over K. Suppose
that the morphism &([X : Y]) = [F(X,Y) : G(X,Y)] is written in p-reduced form.
The reduced map @y : P1 k) — P1 ) is defined by [Fy(X,Y) : Gy(X, Y)], where I,
and G, are the polynomials obtained from F' and G by reducing their coefficients
modulo p.

With the above definitions we give the following one:

Definition 3.3. A rational map &:P; — IP;, defined over K, has good re-
duction at p if deg @ = deg @,. Otherwise we say that it has bad reduction at p.
Given a set S of places of K containing all the archimedean ones, we say that @ has
good reduction outside S if it has good reduction at any place p ¢ S.

Note that the above definition of good reduction is equivalent to ask that the
homogeneous resultant of the polynomial " and G is invertible in B, where we are
assuming that @([(X : Y]) = [F(X,Y) : G(X,Y)] is written in p-reduced form.

4 - Divisibility arguments

We define the p-adic logarithmic distance as follows (see also [8]). The definition
is independent of the choice of the homogeneous coordinates.

Definition 4.1. Let P; = [x1 : y1], P2 = [x2 : y2] be two distinet points in
P1(K). We denote by
(2)  6p(P1,P2) = vy (012 — 2291) — min{vy (1), vp(y1)} — min{wy(a2), vp(y2)}

the p-adic logarithmic distance.
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The divisibility arguments, that we shall use to produce the S—unit equation
helpful to prove our bounds, are obtained starting from the following two facts:

Proposition 4.1 [8, Proposition 5.1]
0p(P1,P3) > min{o,(P1, P2), 0y(P2, P3)}

for all Py, P, P3 € P1(K).

Proposition 4.2 [8, Proposition 5.2]. Let ¢: P; — IP; be a morphism defined
over K with good reduction at a place p. Then for any P,Q € P(K) we have

o ($(P);$(Q)) = 0p(P, Q).

As a direct application of the previous propositions we have the following one.

Proposition 4.3 [8, Proposition 6.1]. Let ¢: P; — IP; be a morphism defined
over K with good reduction at a place p. Let P € P(K) be a periodic point for ¢ with
minimal period n. Then

o 5,(8'(P), ¢ (P) = 6,8 (P), ¢ (P)) for every i, j k € 7.

o Leti,je N such that ged(i —j,n) = 1. Then 5,(¢'(P), $'(P)) = 5,(¢(P), P).

5 - Proof of Theorem 1.2
We first recall the following statements.

Theorem 5.1 (Morton and Silverman [8], Zieve [14]). Let K, p,p be as above.
Let @ be an endomorphism of P1 of degree at least two defined over K with good
reduction at p. Let P € P1(K) be a periodic point for ® with minimal period n. Let
m be the primitive period of the reduction of P modulo p and r the multiplicative
period of (™) (P) in k(p)*. Then one of the following three conditions holds

1) n=m;
(i) n = mr;
(iii) n = p°mr, for some e > 1.
In the notation of Theorem 5.1, if (™)' (P) = 0 modulo p, then we set = co.

Thus, if P is a periodic point, then the cases (ii) and (iii) are not possible with
= 00.
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Proposition 5.1 [8, Proposition 5.2]. Let ¢:P1 — IP1 be a morphism defined
over K with good reduction at a place p. Then for any P,Q € P(K) we have

Op(¢(P),¢(Q)) = 6y(P, Q).
Lemma 5.1. Let
3) P=P_ , 1—P_ o~ ...—P_ 1—Py=[0:1]—[0:1].

be an orbit for an endomorphism ¢ defined over K with good reduction outside S.
For any a,b integers such that 0 <a <b<m —1and p ¢S, it holds

8) 8(P_y, Py) < 3,(P—q, Po);
b) Su(P_p, P—a) = S5(P_y, Po).

Proof. a) It follows directly from Proposition 5.1.
b) By Proposition 4.1 and part a) we have

Sp(P_p, P—q) = min{3y(P_y, Po), 5p(P—q, Po)} = 65(P_y, Po).
Let 7 be the largest positive integer such that —b + (b — a) < 0. Then
3a(P_p, Py) > min{y(P_p, P—0), 05(P—a, Py 20, -, 6P 1rpays P0)}
= 0p(P_p,P_y).
The inequality is obtained by applying Proposition 4.1 several times. O
Lemma 5.2 (Lemma 3.2 [4]). Let K be a function field of degree D over I'y(?)

and S a non empty finite set of places of K. Let P; € P1(K)withi € {0,...n — 1} ben
distinct points such that

(4) 0p(Po,P1) = 0p(P;, P;j), for each distinct 0 < 1,5 <n —1 and for each p ¢ S.
Then n < (p|S|)*°.

Since I7,(¢) is a principal ideal domain, every point in P1(I,(¢)) can be written in
S—coprime coordinates, i.e. for each P € P1(I)(¢)) we may write P = [a : b] with

a,b € Rg and min{vy(a),v,(b)} = 0, for all p ¢ S. We say that [a : b] are S—coprime
coordinates for P.

Proof of Theorem 1.2. We use the same notation of Theorem 5.1. Assume
that S contains only the place at infinity.
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Case p = 2.

Let P € P1(F,(®)) be a periodic point for ¢. Without loss of generality we can
suppose that P = [0 : 1]. Observe that m is bounded by 3 and » = 1. By Theorem 5.1,
we have n = m - 2%, with e a non negative integral number. Up to considering the
m~—th iterate of ¢, we may assume that the minimal periodicity of P is 2°. So now
suppose that n = 2¢, with e > 2. Consider the following 4 points of the cycle:

[0: 1] [ : g1l [o2 : yol—[wz 3], ..

where the points [«; : y;] are written S—coprime integral coordinates for all 7 €
{1,...,n —1}. By applying Proposition 4.3, we have d,([0 : 1], P1) = 6,([0 : 1], P3),
i. e. x5 = @1, because of Ry = {1}. From 0,([0 : 1], P1) = 6,(Py, P2) we deduce

X
(5) Y2 = =2 y1+ 1.
X1
Furthermore, by Proposition 4.3 we have 6,([0: 1], P;) = d,(Ps, P3). Since
xrg = &1, then
(6) Y3k — X3Y2 = X1.

This last equality combined with (5) provides ys = y1, implying [x; : y1] =
[x3 : y3)- Thuse < land n € {1,2,3,6}. The next step is to prove that n # 6. If n = 6,
with few calculations one sees that the cycle has the following form.

(7) [0: 11— [ : y1l—[Asxr = Y2l [Asxy - ysl— [Azar : yal— [21 : y51—1[0: 1],

where Az, A3 € Rg and everything is written in S-coprime integral coordinates. We
may apply Proposition 4.3, then by considering the p—adic distances 6,(P1, P;) for
all indexes 2 < ¢ < 5 for every place p, we obtain that there exists some S—units u;
such that

(8)  ye=Azy1 +uz; y3=Azyr +Azuz; Y4 =Asyr +Asug; Y5 = y1 + Asus.
Since R§ = {1}, we have that the identities in (8) become
Yo=Asy1 +1; ys=Asyr + Az ya=Asyr + A3 Y5 =41+ 42

where Ay, Az are non zero elements in I'y[¢]. By considering the p-adic distance
0p(Psg, Py) for each finite place p, from Proposition 4.3 we obtain that

Vp(A2w1) = 0p(Pa, Py) = vp(Aax1(A2y1 + A3) — Az1(Azy1 + 1)) = vy(A2431; — Aoy),

i. e. Agw; = AAszx; — Asxy (because Rg = {1}). Then A2Asx; = 0 that contradicts
n =6. Thusn < 3.
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Suppose now that P is a preperiodic point. Without loss of generality we can
assume that the orbit of P has the following shape:

9) P=P ,1—P_ o~ ...—P_1—Py=[0:1]—[0:1].

Indeed it is sufficient to take in consideration a suitable iterate ¢" (with n > 3), so that
the orbit of the point P, with respect to the iterate ¢", contains a fixed point Py. By a
suitable conjugation by an element of PGLo(Rg), we may assume that Py = [0 : 1].

For all 1 <j<m —1, let P_; = [x; : ;] be written in S—coprime integral co-
ordinates. By Lemma 5.1, for every 1 <¢ <j < m — 1 there exists T ; € Rg such
that x; =T} jx;. Consider the p—adic distance between the points P_; and P_;.
Again by Lemma 5.1, we have

Oy(P_1,P_j) = vy(wry; — w1y1/T1,5) = vp(@1/T1 ),

for all p ¢ S. Then, there exists u; € R such that y; = (y1 + uj) /T, forall p ¢ S.
Thus, there exists u; € R such that [x_;,y_;] = [x1,%1 + %;]. Since R§ = {1}, then
P_; = [x1 : y1 + 1]. So the length of the orbit (9) is at most 3. We get the bound 9
for the cardinality of the orbit of P.

Case p > 2.

Since D =1 and |S| = 1, then the bound for the number of consecutive points as
in Lemma 5.2 can be chosen equal to p2. By Theorem 5.1 the minimal periodicity n
for a periodic point P € PP1(Q) for the map ¢ is of the form n = mrp® where
m <p+1,r <p—1and e is a non negative integer.

Let us assume that e > 2. Since p > 2, by Proposition 4.3, for every
ke{0,1,2,....,p°2}andi € {2,...,p — 1}, we have that 6,(Py, P1) = 0p(Po, Prep1),
for any p ¢ S. Then P,y = [®1, Ykp+i)- Furthermore 0,(Po, P1) = 6y(Po, Pip+i)
implying that there exists a element u;.,,; € R such that

(10 Prpri = [21 1 Y1 + Wpepri)-

Since R} has p — 1 elements and there are (p° 2 + 1)(p — 2) numbers of the shape
k- p+ 1 as above, we have (p®2 +1)(p —2) <p — 1. Thus e =2 and p = 3.

Thenn < 72if p = 3and n < (p* — 1)p if p > 5. For the more general case when
P is preperiodic, consider the same arguments used in the case when p = 2, showing
[x_j,y—;] = [21, 91 +u;], with u; € Rg. Thus, the orbit of a point P € P1(Q) con-
taining Py € P1(Q), as in (9), has length at most |R§| + 2 = p + 1. The bound in the
preperiodic case is then 288 for p = 3 and (p + 1)(p? — 1)p for p > 5. O

With similar proofs, we can get analogous bounds for every finite extension K of
[,(¢). The bounds of Theorem 1.2, with K = I",(t), are especially interesting, for
they are very small.
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