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Generalized Nadler G-contraction in cone metric spaces over

Banach algebras endowed with a graph

Abstract. In this paper, we introduce the generalized Nadler G-contractions in
cone metric spaces endowed with a graph and defined over a Banach algebra. A fixed
point result for such mappings is proved. Our result generalizes some known results
in metric and cone metric spaces. An example is presented which verifies the sig-
nificance and usability of the result proved herein.
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1 - Introduction

In 2007, Huang and Zhang [5] reviewed the notion of cone metric spaces and
gave a generalization of metric spaces. They defined the Cauchy sequences and
convergence of sequences in such spaces in terms of interior points of the un-
derlying cone. They proved some basic fixed point theorems with the assumption
that the underlying cone is normal. Rezapour and Hamlbarani [15] showed that
the results obtained by Huang and Zhang remain true if the assumption of
normality is dropped. In the papers [2-4, 9] authors showed the equivalency of
fixed point results in cone metric spaces and the corresponding fixed point results
in ordinary metric spaces.
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Recently, Liu and Xu [12] introduced the study of cone metric spaces over Banach
algebras and proved some fixed point theorems on such spaces. They introduced the
generalized Lipschitz mappings on cone metric spaces over Banach algebras. In such
mappings the Lipschitz factor (constant) is taken as a vector of underlying cone
instead a real constant. They showed that the fixed point results in cone metric
spaces over Banach algebras are not equivalent to the corresponding results of
metric spaces in view of the existence of the fixed points of the generalized Lipschitz
mappings. However, in the fixed point results of Liu and Xu [12] a strong condition
that the underlying cone is normal was used. Later on, Xu and Radenovié [20]
removed the condition of normality of cone and generalized the results of Liu and
Xu [12] in cone metric spaces over Banach algebras with the cones not necessarily
normal.

Nadler [14] generalized the Banach contraction principle for the set-valued
mappings, i.e., for the case when the mappings on a metric space can have a value in
form of a nonempty subset of space. Wardowski [19] (see also, [11, 18]) generalized
the Nadler’s theorem in the setting of cone metric spaces.

In 2008, Jachymski [6] considered the Banach contraction principle in the spaces
endowed with a graph. He introduced the Banach G-contraction and unified several
recent fixed point results on metric space by proving the fixed point result for
Banach G-contraction. Motivated by the result of Jachymski [6] and the fact that the
generalizations of fixed point theorems in cone metric spaces over Banach algebras
cannot be obtained by the corresponding results of the ordinary metric spaces, we
introduced the Nadler G-contractions in cone metric spaces endowed with a graph
and defined over a Banach algebra and prove a fixed point theorem for such con-
tractions. The result of this paper generalizes and unifies the results of Nadler [14],
Jachymski [6], Wardowski [19], Liu and Xu [12], Xu and Radenovié [20] and several
other results. An example is presented which shows the significance and usability of
the result proved herein.

2 - Preliminaries

First, we recall some definitions about cone metric spaces and graphs.

Definition 2.1. Let B be areal Banach algebra, i.e., 8 is a real Banach space
with a product that satisfies

L. x(y2) = (xy)z;
2. x(y +2) = xy + xz;
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3. alxy) = (ax)y = x(oy);
4. eyl < llllflyll,

for all x,y,z € B, € R.

The Banach algebra 3 is said to be unital if there exists an element e € 5 such
that ex = xe = « for all & € *B. The element e is called the unit. An x € ¥ is said to be
invertible if there is a y € B such that xy = yx = e. The inverse of x, if it exists, is
unique and will be denoted by 1. For more details, see [16].

Proposition 2.2 ([16]). Let B be a Banach algebra with a unit e and x € B. If
the spectral radius p(x) of x is less than 1, i.e.,

1/n 1/n

plx) = lim ||«"||"" = inf ||2"||/" < 1,
n—00 nelN

then e — x is invertible and (e — x) ™' = Z .
i=0

Let 8 be a unital Banach algebra. A non-empty closed set P C 8 is said to be a
cone (see [12, 13]) if

l.ecP,

2. P+PCP,

3. aP Cc Pforalla >0,

4. P2 C P,

5. PN (— P) = {6}, where 6 is the zero vector of 5.

Given a cone P C B one can define a partial order < on B by « < y if and only if
y —« € P. The notation ¥ < y will stand for y — x € P°, where P° denotes the in-
terior of P.

The cone P is called normal if there exists a number K > 0 such that for all
a,b e B,

a =<b implies |a| < K]b|.

The least positive value of K satisfying the above inequality is called the normal
constant (see [5]). Note that, for any normal cone P we have K > 1 (see [15]).

Lemma 2.3 ([8]). Let P C 8 be a solid cone and a,b,c € P.

(@) Ifa 2 band b < ¢, then a < c.
(b) Ifa < band b < ¢, then a < c.
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(e) If 0 2 u < c for each ¢ € P°, then u = 0.

(d) Ifc € P° and a,, — 0, then there exist ny € N such that, for all n > nywe have
a, < c.

(e) If 0 <X a,, X b, for each n and a, — a, b, — b, then a < b.

Henceforth, we will assume that the real Banach algebra 8 is unital and that the
cone P C B is a solid cone, i.e., P° # ().

Lemma 2.4. Let B be a Banach algebra with a unit e, P be a cone in B and
a,b,ceP.

@) If p(a) < 1, then p(a™) < p(a) < 1 for each m € I\.
(i) If p(a) < 1 and b < ac, then b < c.

Proof. (i): Since p(a) < 1 and m € IN is fixed, it follows that
. nil . mt . n\m
pla™) = lim [|@")'|[" = lim [|@)"||* < lim (o)

=(lim o )" = ()" < 1.

n—00
(ii): Suppose b < ac, then we have ac — b € P. Now
c—b=c—ac+ac—b=cle—a)+ac—b.

Since p(a) < 1, we have e — a € P (see, [20]) and so by the above equality ¢ — b € P,
ie,b=<c. O

Definition 2.5 ([5, 12, 13]). Let X be a non-empty set. Suppose that the
mapping d: X x X — B satisfies:

1. 0 < d(x,y) for all &,y € X and d(x,y) = 0 if and only if x = y.

2. d(x,y) =d(y,x) for all x,y € X.

3. d(x,y) = dx,2) + dz,y) for all x,y,z € X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space over

the Banach algebra 8.

For some examples of cone metric space over a Banach algebra we refer [12, 13, 20].

Definition 2.6 ([5, 12, 13]). Let (X, d) be a cone metric space over the Banach
algebra®, x € X and {x,} be a sequence in X. Then:
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(@) {x,} is said to be converges to x if for every ¢ € B with 6 <« ¢ there exists a
natural number n such that d(x,,x) < c for all » > ny. We denote this by
lim %, = x or &, — x as n — oo.

nN—0o0
(i) {w,} is called a Cauchy sequence if for every ¢ € ¥ with < ¢ there exists a
natural number %y such that d(x,, x,,) < c for all n,m > ny.

(iii) (X,d) is called complete if every Cauchy sequence in X converges to some
point in X.

Definition 2.7 (see also [19]). Let (X, d) be a cone metric space over a Banach
algebra B and let A be a collection of nonempty subsets of X. Amap H: A x A — B
is called a H—cone metric with respect to d if for any A;,A, € A the following
conditions hold:

(H1) H(A1,A2) =0 = Ay = Ay;

(H2) H(Ay,A2) = H(A2,Ay);

(H3) Veer o< Voea, Iyea, d@,y) = HA1,A2) +¢;
(H4) One of the following is satisfied:

® V(:EE',H<<C erAl VyeAg H(A,Az) < d(%,y) +¢;
(ii) VeeE 0<c Tuea, VyeAl H(A;1,Ar) < d(x,y) +c.

It is obvious that each H—cone metric depends on the choice of the collection .A. The
following are some natural examples of H—cone metrics on cone metric spaces over a
Banach algebra (see also [19]).

Example 2.8 ([19]). Let (X,d) be a cone metric space over a Banach algebra
0 and let A = {{x}:« € X}. Then the mapping H: A x A — E given by the formula

H({x}, {y}) = d(x,y) for all x,y € X,

is a H—cone metric with respect to d.

Example 2.9 ([19]). Let (X,d) be a metric space, B = R with usual product
and norm, P = R" = [0, c0) and let A be the family of all nonempty, closed bounded
subsets of X. Then the mapping H: A x A — B given by the formula

H(A,B) = max{sup d(x,B), supd(y,A),A,B € A}
reA yeB

which is called a Hausdorff metric, is a H—cone metric with respect to d.

The following definition about the graphs can be found in [6, 7, 17].
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Let X be a nonempty set and by 4 denote the diagonal of the cartesian product
X x X. Let G = (Vg, E¢) be a graph such that the set of vertices Vg = X and the set
of its edges E ¢ D 4, thatis, E; contains all loops, then we say that X is endowed with
the graph G = (V, E¢). We assume that G is without parallel edges, and so we can
identify G with the pair (Vg, Eg). The conversion of graph G is denoted by G~ and it
is defined by:
Vo1 =Vgand Eg = {(x,y) € X x X: (y,x) € Eg}.

By G, we denote the undirected graph obtained from G by including all the edges of
G~!. More precisely, we define

VE =V and Ea =HEqUEqg.

Ifx and y are vertices in a graph G, then a path in G from x to y of length £ € Nisa
sequence {x'}¥_ of k + 1 vertices such that ° = 2, 2% = y and (¥'!,a") € E for
1=1,2,...,k. A graph G is called connected if, there is a path between any two
vertices of G. The graph G is weakly connected if, treating all of its edges as being
undirected, there is a path from every vertex to every other vertex. More precisely,
G is weakly connected if, G is connected. Two vertices x and y of a directed graph are
connected if there is a path from « to y and a path from y to . Obviously, in case of
undirected graph the existence of path from « to y is sufficient. For k € I\, we denote

[oc]’é = {y € X: there is a directed path from « to y of length k.

Throughout this paper, we assume that the graphs under consideration are di-
rected and are with nonempty sets of vertices and edges.

3 - Main results

In this section, we define the set-valued G-contractions and prove some fixed
point theorems for such contractions in cone metric spaces endowed with a graph
and defined over a Banach algebra.

Definition 3.1. Let (X,d) be a cone metric space over a Banach algebra 8
and let A be a nonempty collection of nonempty subsets of X. A set-valued mapping
T:X — Ais said to be a generalized Nadler G-contraction with contractive vector a,
if for all x,y € X with (x,y) € Eq:

(i) there exists @ € P such that p(a) < 1 and H(Tx, Ty) < ad(x,y);
(ii) if u € Tx, v € Ty are such that d(u,v) < d(x,y), then (u,v) € Eg.

Next, we state the main result of this paper.
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Theorem 3.2. Let (X,d) be a complete cone metric space over a Banach al-
gebra B, P the solid cone in Banach algebra B and let A be a nonempty collection of
nonempty closed subsets of X. Suppose, T:X — A be a generalized Nadler G-
contraction with contractive vector a and there exist k € IN, xg € X such that:

@ [aolg; N T # 0;
(1) for any sequence {x,} € X, ifx,, — x and x, € [xn,l]’é NTx,_1foralln € N,
then there is a subsequence {x,, } such that (x,,,x) € Eg for all j € N.

Then there exists a sequence {x,} € X such that x,, € [xn,l]lé N Tx,_ 1 forallm € N
and it converges to a fixed point of T.

Proof. 1In view of (I), let a1 € [900]’(‘; N Txy. Then there is a path (yi)é“:0 in G
from x to w1, i.e., ¥° =, ¥* = and (¥, y’) € Eg for i=1,2,... k. Since
21 € Txo = Ty°, from the definition of H—cone metric there exists y1 € T%! such
that

d(r,y}) = HTY', Ty") + ¢,

where ¢! € P° is chosen so that p(c}) < 1. Since (4°, ') € E and T is a set-valued
G-contraction, it follows from the above inequality that

d(ey, y}) < ad@®,y*) + ci.

Since P is closed, letting ¢} — 0 we obtain from the above inequality that
d(ay,y}) < ad@®,y') < d@°,y"), and so, by assumption (1, y}) € E¢. Again, since
y! € Tyl there exists y? € y* such that
dy1,yD) < HTy', Ty) + i,
where ¢Z € P° is chosen so that p(c}) < 1. Since (y',%?) € E and T is a set-valued
G-contraction, it follows from the above inequality that
Ay, ) < ady',y*) + cf.

Letting ¢ — 6 we obtain from the above inequality that d(yi,%?) < ad(y!,y?) <
dy',y?), and so, by assumption (y},%%) € Eg. In a similar way, we obtain: for
i=2,3,...,k there exists y} € T%' such that (yi,%}) € E; and

1) Ayt y) < ady™,y) + ¢,

where ¢! € P° is chosen so that p(c}) < 1. Thus, {y}"_, is a path from 2; = 3¢ to
Y = xp (say), where y* = 1z € Ty* = Tay. Thus, @ € [11]5 N Tay.
Now, since @ € [211f; N Ty, there exists y} € Ty} such that

(@, y3) = H(Txy, Tyd) + ¢ = H(TyY, Tyd) + ¢,
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where ¢} € P° is chosen so that p(c}) < 1. Since (49, y}) € E and T is a set-valued G-
contraction, it follows from the above inequality that

d(ws, y3) < ad@l, y}) + ca.

Letting ¢} — 0 we obtain from the above inequality that d(xz,%}) < ad(y?,y}) <
d?,y1) and so d(xs, y}) € Eg.

In a similar way, we obtain: for i = 2,3, ...,k there exists y} € T} such that
(5 ',yb) € Eg and

@) Ay yh) < ad@ ) + é,

where ¢} € P° is chosen so that p(c}) < 1. Thus, {%3}" , is a path from @ = 33 to
yk = w3 (say), where y& = w3 € Ty" = Tas. Thus, @3 € [22]f N Ty

The above process leads us to a sequence {x,} € X such that x,, 1 € [acn]’é N Tx,
with a path {y! } from x,, = ¢ to 2, ;1 = ¥* and the following inequality is satisfied:
fort=1,2,....k

(3) Ay, 'y, = ady, ) + ¢,

where ¢/, € P° is chosen so that p(c}) < 1.
For simplicity, set dl dy'~1,y") and d, = d(y’', ). Then, successive appli-
cations of (3) yield

d(yn 7yn) = a’d(yn 1 yn 1) + C
=ad, | +c,
= d’d,, 5 +ac, , +c,

3
_<a‘dn 3+acﬂ Z—I—CLC% 1+Cn

n Ji n—1 1 n21 ) )
2a"dy+a" ey +a" e+ - Fac,_; +c,.

Thus, for i =1,2,...,k we have

n—1
(4) d, = a"dy + Z a’c, ;.
=0

We shall show that {«,,} is a Cauchy sequence. For n € IN we have,

k k
A, @) <A@, Y8 <D d@yl L yl) = dl,.

i=1
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Using (4) in the above inequality we obtain

k n—

k
(5) (@, Cpp1) =< Z(l”(f Z (Z7Cn y

=1 =1

—_

<.
Il
(=]

Note that, since p(a) < 1, by Lemma 2.4, we have p(a™) < 1 for all € IN. Therefore,
fori=1,2,.. .,lcwecanchoosecf1 =a? foralln € N,i=1,2,... kandsoby (5) we
obtain

=

n—

a2

k k
Ay, i) < Y0y + ) 3

i=1 i=1

k
< a”Zd%—l—kan

i=1 j

N 1M
S

LM
S

LML

i
<)

a’.

Sinee p(a) < 1, it follows from Proposition 2.2 and the above inequality that
(6) d(@y, %,11) < a"Dy + (e — a) 'ka",
where Dy = Zk: di.

Letn,m L:N and m > n. Then, using (6) we obtain

m—1
d(xnyxm) = Z d(xbxiJrl)
=N
m—1 . )
<> [a'Do+ (e — ) 'ka']

i=n

fDOZa +(—a)” lkZa

i=n

< Dya” Z a + (e — a) tka” Z a'.
i=0 1=0

Again, since p(a) < 1, it follows from Proposition 2.2 and the above inequality that
(7) d(acn, acm) = Do(ln(e - CL)71 + (@ — a)72ka".

Since, p(a) < 1 we have |ja”|| — 0, i.e., a” — 6 as n — co. Hence, Dya"(e — a)~* +
(e — a) %ka™ — 0 as n — oo. Now by part (a) and (d) of Lemma 2.3 it follows that,
for given ¢ € P, 0 < ¢ there exists ny € N such that d(x,,x,) < c for all
n,m > ny. Thus, {x,} is a Cauchy sequence in X. By completeness of X, there
exists #* € X such that x, — x* as n — oo.

We shall show that x* is a fixed point of X. By part (II) of assumption there exists
a subsequence {xy, } such that (x,,,x*) € Eg for all j € N. Since x,, € T, for all
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n € N, therefore for all j € IN there exists y; € Tx* such that
d(@n;11,yj) = H(Tw,,, Tx") + ¢,
where ¢; € P° is chosen such that ¢; — 0 asj — oco. As (ocnj, x*) € Eg forallj € N we
obtain from the above inequality that
(8) d(@n11,Y5) = ad(@y;, x") + ¢;.
Now,
d(y;, ©*) 2 d(yj, Tn;+1) + d@n;41,27)

= d(xanrlv ")+ ad(xnj> £+ Cj.

Sincex; — x*and ¢; — 0asj — oo, foranyc € P, 0 < cand each m € N there exists
my € N such that d(xy,1,2%) + ad(e,;, x") + ¢; < ¢ for all j > my. By part (a) of
Lemma 2.3 we have,

d(yj,x") < c¢ forall j > my.

It shows that y; — «* as j — oo. Since y; € Tx* for all j € N and Tx* is closed we
must have x* € Tx*. Thus, x* is a fixed point of 7. O

Next, we give an example which shows that how the above result is different from
the existing ones.

Example 3.3. Let®8 = R*with the norm defined by ||(x1, )| = | 1 | + | 22 |
and the multiplication defined by

(1, 22)(Y1, y2) = (@1Y1, X1Y2 + T2Y1)

for all (x1,%2), (y1,y2) € V. Then B is a Banach algebra with unit e = (1,0). Let
P = {(1,22) € B:ay,22 > 0}. Then P C B is a cone and P° # 0.

By |0, (x1,22)] we denote an ordered interval in R? and it contains all points
(a1,a2) € R* such that 0 < a; < 1,0 < ag < ap, i.e.,

10, (1, 22)| = {(a1,02):0 < a1 < 21,0 < ag < @a}.
Let X = R" x R" and the the function d: X x X — 9B be defined by
d((wy,22), Y1,92) = (|21 —y1 |, | 22 —y2 | ).

Then (X, d) is a cone metric space. Let .4 be the family of subsets of X of the following
form:

A= {0, @, 22)]: (x1,22) € X }.

For some fixed o, f# > 1, 7 > 0 and o < 1 + 2, define the mappings 7:X — A and
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H:Ax A— B by:
T(x1,02) = |0, (In(o + @1), tan (B + w2) + y1) | V (v1,22) € X and
HAB = (|er—w |, w2 —y2|),A=10,(x1,22)],B=10,(y1,y2)] € A

Define a graph G = Vg, Eq) by Vg =X and Eq = X x X.
By Lagrange mean value theorem we have

o+ x—y _1 -1 r—Y
1 < d t —t <
n@+ﬁ__a and tan (S +x) an(ﬂer)_Hﬁ2

for all 0 < y < x. Therefore, for all (x1, x2), (1, y2) € X we obtain

H(T(x1,22), T(y1,y2)

o+x _ _
= <’1n< 1>’,|tan LB+ x0) — tan 2B + y2) + y(@x1 — y1) |>
o+ Y1
L2 — Y2

<Qm—m
o 1+ p2

= (E V) d((er, x2), (W1, y2))-

067
1 \" 1 wy
&7)) ﬁaan71

Therefore, the condition (i) of Definition 3.1 is satisfied with a = (%,y). All the

+Mm—m0

)

Also,

1/n 1/n 1 1
‘ H&(<1) as n — oo, and SO,P(&J’><1~

other conditions of Theorem 3.2 are satisfied and T has a fixed point (0,0) in X.

Remark 3.4. In the above example, for sufficient large y > 0 the mapping 7'
is not a set-valued contraction (in the sense of Nadler [14]) and so the existence of
fixed point of T’ can not be concluded by the corresponding results from usual metric

1 1
(—,y)H =—+y> 1, which
o o

shows that our result is a proper extension of Wardowski [19].

1
spaces. Also, for y > 1 we have <& , y) #4(1,0) = eand

Next, we prove an ordered version of result of Wardowski [19] on ordered
complete cone metric space over a Banach algebra.

Definition 3.5. Let (X,C,d) be an ordered complete cone metric space over
a Banach algebra 8 and let A be a nonempty collection of nonempty subsets of X. A
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set-valued mapping 7: X — A is said to be an ordered generalized Nadler con-
traction with contractive vector a, if for all x,y € X with x C y :

(i) there exists a € P such that p(a) < 1 and H(Tx, Ty) < ad(x,y);
(ii) ifu € Tx, v € Ty are such that, d(u,v) < d(x,y), then u C v.

The following corollary is a fixed point result for ordered generalized Nadler
contractions and can be obtained by using Theorem 3.2 with the set of edges
Eq={(x,yeXxX:aCy}.

Corollary 3.6. Let (X,C,d) be an ordered complete cone metric space over a
Banach algebra B, P the solid cone in Banach algebra B and let A be a nonempty
collection of monempty closed subsets of X. Suppose, T:X — A be an ordered
generalized Nadler contraction with contractive vector a and there exists xy € X
such that:

(I xo C To;

(II) for any sequence {x,} € X, if ®, — x, xy—1 C x, and x, € Tx,_1 for all
n € N, then there is a subsequence {w,,} such that x,, = x for all j € N.

Then there exists a sequence {x,} € X such that x,_1 C &y, &, € T2,_1 for all
n € N and it converges to a fixed point of T.
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