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On a nonlocal p(.)—Laplacian equations via genus theory

Abstract. In this work, we study a class of nonlocal anisotropic type problems
involving p(.)—Laplacian Dirichlet boundary condition with an additional nonlocal
term, we give a result on the existence and multiplicity of solutions by using as main
tool a result due to genus theory.
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1 - Introduction

The study of anisotropic problems with variable exponents has become parti-
cularly interesting for many researchers so far. This is partly due to their frequent
appearance in applications such as some physical phenomena which can be mod-
elled by such kind of equations. The reader can find several models in mathe-
matical physics where this class of problems appears in electrorheological fluids
[19, 22], thermorheological fluids [3], elastic mechanies [29] and image restoration
[10]. From a purely mathematical point of view these problems seem to have a
great importance because many results have been obtained in this direction (see
for instance [7-9, 23, 25, 26, 28] and the references therein). As a result of the
preoccupation for the nonhomogeneous materials which behave differently on
different space directions, the anisotropic spaces involving variable exponent were
introduced. For more detail see [9] and [23].

April 23, 2015; accepted in revised form: November 5, 2015.



306 ANASS OURRAOUI 2]

It is important to note that this kind of equations with growth conditions would
make the study of such equation more complicated, since the differential operator

N
Ay ) == Oy, (\a%.mp f(”)_zﬁmu) allows a distinet behavior for partial derivatives
i=1

in various directions. The anisotropic problems are more complicated than the iso-
tropic problems.

On the other hand, nonlocal differential equations are also called Kirchhoff-type
equations and introduced in [21],

e /| e,

o h 2L oxz 7
where p,, p, L and h are constants associated to the effects of the changes in the
length of strings during the vibrations. It is an extension of the classical

D’Alembert’s wave equation.
Let consider the following anisotropic nonlinear elliptic problem

N r
- ZMi(Ii(u))aaci (I@xiulpf(“)_zaxzu) = f(o,u) (F(w, u)) inQ, wu=0onodQ,
=1

where Q@ ¢ RY (W > 3) is a bounded open set with smooth boundary and v; are the
components of the outer normal unit vector and

pia)
L) = / 9™ g
pi(x)

pi, @ =1,...,N are continuous functions on Q, 7 > 01is areal parameter and for each
1=1,..,N, M;: [0,00) —[0,00), f:2 xR — R are continuous functions with
the potential

¢
F(m,t):/f(ac,s)ds.
0

Problem like (1) is a generalization of the p(x)—Kirchhoff equation. This type of
Kirchhoff problems with stationary process has received considerable attention by
several researchers. Among the numerous literature on the subject we would only
mention the papers [1, 2, 4-6, 10-14, 17, 18, 24, 28].

The underlying ideas of the present paper are essentially the same as those of
[6, 12, 18]. Obviously, our problem (1) is more general. That means that the theory
of the anisotropic variable exponent Sobolev spaces W'P“(Q) and Wé"ﬁ (‘)(Q) is
needed.
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The planning is organized as follows. In the next section, we present a brief re-
view on variable exponent Sobolev and anisotropic variable exponent Sobolev spaces.
Afterwards, we give the main result about the existence of weak solutions. The last
part of this paper is aimed at giving the proof of the main result.

2 - Preliminaries and main result

In order to deal with the problem (1), we recall some auxiliary results. For
convenience, we only recall some basic facts which will be used later, we refer to
[15, 16, 20].

For q € C,(Q), we introduce the Lebesgue space with variable exponent defined
by

LY(Q) = {u : u is a measurable real-valued function, / ()| ™ dae < o0},
Q

where
C.(Q)={qeCQ,R): iggq(x) > 1},

This space, endowed with the Luxemburg norm,

q(x)

@) |1 g < 13,

u

|u|(1(~) = Hu||Lq<~)(Q) =inf{u>0: / ‘
Q

is a separable and reflexive Banach space. We also have an embedding result.

Proposition 2.1. Assume that Q is bounded and q1, qz € C(Q) such that
q1 < g2 in Q. Then the embedding L=V(Q) — L1O(Q) is continuous.

Furthermore, the Holder-type inequality

@) | [ @ da] < 2l o o]0
Q

holds for all u € LIO(Q) and v € LYY(Q), where LI(Q) is the conjugate space of
LA9(Q), with 1/q() +1/¢'(e) = 1.
Moreover, we denote

gt =supq(x), q = infq(x)
reQ

reQ

and for u € L?Y(Q), we have the following properties:
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(3) [l oy <1 (=1;>1) & /|u(.oc)|q<”d9c< 1(=1;> 1)
Q
- +
(4) ”u”L‘I(‘)(!)) >1 = Hu”([I,q(-)(Q) < / |u(m)‘q(x) dx < HuH%q()(g);
Q
N .
(5) [l o <1 = Ul 0@ < / @)™ dae < [Jullf 00
Q
(6) tll gy — 0 (— o0) / @] daz — 0 (— 00).
Q

To recall the definition of the isotropic Sobolev space with variable exponent,
Wha)(Q), we set

WHOQ) = {u € L19(Q) : ,u € L1(Q) for all i € {1,...,N}},

endowed with the norm

N
HMHWW(‘)(Q) = ||ull o) + Z 1|02 L2

i1
The space (WO(Q), || - l[wiro@) is a separable and reflexive Banach space.

Now, we consider p : Q — R¥ to be the vectorial function
pl) = (p1(@), . ..,py(@))
with p; € C.(Q) for all i € {1,...,N} and we put
py(x) = max{p1(x),...,pn@)}, Ppw(e) = min{p1(),...,pn)}.
The anisotropic space with variable exponent is
WHOQ) = {u € LP*O(Q) : 8yu € LPOQ) for all i € {1,...,N}}

and it is endowed with the norm

N
HMHWLF’(‘)(Q) = ||u||L1’M(')(Q) + ZH@MHLM»)@)-

i=1

The space (Wl*ﬁ(')(Q), |- lwisoq) is a reflexive Banach space. Furthermore, an
embedding theorem takes place for all the exponents that are strictly less than a
variable critical exponent, which is introduced with the help of the notations

Nq@)/[N — q(@)] if g(x) <N,

_(gg) — L *(96) _
P Z?LI 1/pi(x)’ = 00 if q(x) > N.
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Proposition 2.2. Let Q@ ¢ RY be a bounded open set and forall i =1,2,...,.N
and p; € C.(Q) foralli € {1,..,N}. If g € C(Q,R), 1 < q(x) < max{p*(x), py ()}
for all x € Q, then we have the compact and continuous embedding WPO(Q) —
L‘I(')(Q).

Remark 2.1. We make the following notations,
Fr={i€{l,.. ,N} |0 unl oo < 1},
Fe={i€{l,.. N} [|Onunll o > 1}

Then, by (3), (4) and (5),

N
Z/ | Oyt e = Z/I%un\p’(”)der > 100w dae
p

Q Q

ie]—'l iEfz Q
> S 0wl + S 0n P
= i LPi©) i PR pi©)
'L‘E]“l iej:Z
N
2 Z ||aw7tun||i?;<-> - Z ||8x7-un”€z;<-r
i=1 ie]—'1
Thus,
N N
(7) Z/ ‘axiuﬂpi(w)dx > Z (| Ot | Z[i’,,”i(_) —N.
i=1 o i=1

We denote by X = W3 7() the closure of C;(2) in W'79(Q). According to [16],
the space (W, 7"(€), [[24]| 170 ) I8 @ reflexive Banach space, where
0

N
lll = leellygpingy = 310l iy
=1

3 - The main result

The problem (1) is considered in the case when f € C(Q x R) satisfying:
There exist a(x), f(x), o(x) and 6(x) € C(Q) such that
(Hy) Foreachi=1,....N

A+ A" < M(t) < By + Bt/
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and
Q"0 < fla,t) < Qut™

for allt > 0 and x € Q, where Q1,Q2,4; and B;, i =0, ..., N are positive constants.
(Hs) p,, > o (r+1),and f(x, —t) = —f(x,t) for all t € R and x € Q.

Definition 3.1. We define the weak solution of problem (1) as a function
u € X satisfying:

N

1 (@ ;
ZMi /—|8xiu|p”(” da /\8xiu|p‘(x)728x{u6xivdx
i=1 5 pl(x)

Q
— [/F(ac,u)dacr /f(ac,u)vdx =0
Q Q

for all v € X.

Our main result in this section is the following.

Theorem 3.1. Assume (H1) and (Hs), then the problem (1) has a sequence of
solutions (+uy), such that J(u,) <0 forn=1,2 ...

4 - proofs

Since X is a separable and reflexive Banach space [18], there exist {¢;};°; C X
and {¢; };%; C X* such that

) 1, ifi=j;
e;(e) =9d;j = 0. if i

X =span{e;:j=1,2,...}, X' = spanW*{e]’.k j=12.. .}

Define for ¢ = 1, ..., N the functionals

t
Mm:/M@w V¢ >0,

|xlu‘pt(%)
o= [5G
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Consider the functional energy
N
~ 1 r+1
Jeu) =Y Milliw) = [ / Fwds| , YueX.
=1 0
Obviously, J € C*(X, R) and

N
J'w).v =YY" M; / i|amu|@<x> dx / |0, P20, O, v de
i1 J pi() ) '

_ [ / F(ac,u)dacr / fe, wwda,
Q

Q

for all u,v € X.

Claim 1. J is bounded from below and even:
By (H1) and (H3), we have

N r
T =Mt - | [ P,
i=1

Q

low; uPi® g
f pi(@)
el u

N r+1
S MH&W%MmLJ(/MMWﬂ
0

=1
ae)+1
/ aﬁml”(” | mimicioy A /|a%u|p’<”>
pi(®) ot +1 pi(x)

Til Q_E)T+1(/|u|‘7(m))r+l.

| \/

For |ju|| > 1 we define
f { pz-{—/[ 7<f |8xiu|p7'(.) < 17
i =

yom if |8xiu|pi(.> > 1.
We recall the following inequality

N Pm
SR Ty
- P N
®) =
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for all w € X. By this inequality, for # € X with |ju| > 1 we obtain

N ® N )
Z/ [ de > 3 7 lnuly
] o i=1

=1
N B ot
©) > > lonulyty = D 10l
i=1 iEfl
[Jaa] [P
Z Np;z_l - N7
then,

. ~ (o +1) P
ming gy A; [lul/™ Ao [ |u]™
J(u) > Ry N1

N)|-C (r+Do* _ Cs.
p?&)““’l(d‘* +1 Npn-1 p;‘;[ ) 1||u\| 2

Since

Pyt +1>ph >+ 1)a",

it follows that J is bounded from below.

Claim 2. J satisfies the condition of Palais-Smale (P.S):
Let (u,,), C X be a (P.S) sequence of the functional J, that is,
J,) — ¢, and J (u,) — 0.

Thus, there exists ¢; > 0 such that

c1r > (uy)
(10) miIl1<'<NAi ”uan;L o (1ot
- (py, )“Aj(;ﬁ +1) [Npm—l] — CiJun| — Cs.
M

Because p,, (¢t +1) > (r + 1)o*, we see that (u,), is bounded in X. Up to a sub-
sequence, still denoted by (u,,), u, — u (i.e. weakly) in X.
On the one hand we have

J,(un) — 0,

then
<Jl(un)aun - ?/L> - 07

so it leads to
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N
> M) / 100, |2 D1, D0, — ) i
i=1 0

- {/F(m,un)dac] x/f(m,un)(un —u)dx — 0.
Q Q

Using the Hoélder inequality, we get

| [ st~ wde] < @uf [ 1], ~ wdal,
Q Q

‘ / |un|”(x)7l(un — ) dac‘ < 2] oy [ — 2 -
o

In view of the condition 1 < o(x) < p*(x) for all x € Q, it yields X — L°®(Q) with
compact embedding. Hence u,, — u in L°®(Q) and thus

(12) S, uy)u, —u)de| — 0.
‘Q/ 2, U ) Uy, — u) dc

Since the Banach space X is reflexive, from the boundedness of (u,,),, in X, we may
assume that

Yoo
/ Z pi(ax) |amun|lli(90) dx —c. > 0.
0 =1 £

If . =0, s0 u, — 0in X and it is will be done.
In the case when c, > 0, there exist Cy and Cs > 0 such that

Cy <M;(Ii(w) <Cs;, v=1,...,N.
From (11) and (12), we obtain

N
Kp(x)un-(un —u) = Z/ |8xi%n‘pi(x)72amun aml(un —uw)dx — 0
i=1 o

and

N
Kyttt — ) = > / |0, P20 B,y — w)die — 0,
=1 0

what implies that

(Kpyun — Kpayt, uy —u) — 0, as n — oo,
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that is

N
3 / <|8xiun\p"(x)_2&wun - |8$iu|p"(x)_28miu> (axiun - 8xiu> dic — 0.
i=1

Applying the following inequality
(|22 — |y Py) > 27 % —y| ™, @y RN, g>2

we deduce that %, — win X.

Proof of Theorem 1.1. From (H;) and (H32) we obtain

pita) N pw O
| O, [P B | O, [P
Ju) < B . dx + E ————dux
(u) < By 2 1/ pi() Bw) +14= J pi(x)

B Til (%)rﬂ(/W'&(@dx)rﬂ.
Q

Taking [|u|| small enough we get |9;,ul,, <1fori=1,..., N, then we have

N N ~
> [oras <3 [l
=1 0 i=1 0

N P
Zi:lyaﬁcimp,;(.)
<N| —W——
- N
G
Npn—1°

Since X}, is finite dimensional, let Cy > 0 such that

[ de > collul”

Hence,
oo < B B e
o NP1 (p;n)wﬂ(a, +1) NPl 0 .
That is,
r+1)0" B() 1 B i1t
Ja) <) (22— _ wlPo _
Il | (o et + oo ) 1

Co} .

[10]
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Let R be a positive constant such that

Bl B jpeew g
p;@ Npmfl (py_n)a JFl((‘)c_ + ]-)Np';b_l

Thus, for 0 < ||u|| < R we get

By 1 n B 1
P NPw7t o) e 1) Now Tt

]RW”‘“W —Cy < JO) =0.

Now, let n be any integer given. It is well known that Cj°() is infinite dimen-
sional subspace of X. Taking Y, C C3°(2) of dimension is n. Set S, =

{uw €Y, : |ul]| =1}. Therefore, for every v € S,,_1, we can find a nonnegative con-
stant 7 such that J(tv) < 0. As S,,_; is compact, there exists 7, > 0 with J(r,v) < 0 for
every v € S,,_1. Taking K,, = 7.S,,_1. Hence, y(K,) = n and sup J(u) < 0, where y(.)

uek,

is the Krasnoselskii genus. By the Ljusternik-Schnirelman category theorem
(cf. [27]), J has at least » pair of different critical points.
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