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Rank r spanned vector bundles
with extremal Chern classes on a smooth surface

Abstract. We study spanned vector bundles with extremal Chern classes and
large rank on very simple smooth surfaces X (e.g. on IP%, following the rank two case
solved by Ph. Ellia). Let £ be a spanned and ample line bundle on X. Let £ be arank
spanned vector bundle with det(£) = £ and no trivial factor. We prove that
7 < hO(L) — 1 and classify all £ with h°(L) —r — 1 < a, where « is the maximal in-
teger k such that the adjoint line bundle £ ® wy is k-spanned.
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1 - Introduction

Let X be a smooth and connected projective surface. Fix £ € Pic(X), ¢z € 7 and
an integer r» > 2. We assume that £ is ample and spanned. We are interested in rank
r spanned vector bundles £ on X with det (£) = L, c2(€) = c2 and no trivial factor. We
have ¢ < £? (self-intersection number), » < h%(L) — 1 (Remark 1) and often stron-
ger inequalities may be proved obtaining a classification of all £ with extremal
L2 —¢yor very small 2°(£) — 1 — 7 (see Proposition 3). Now assume rank(€) = 2 and
that £ has no trivial factor, i.e. £ # Ox @ L. Fixaninteger r > 2. We say that arank »
vector bundle G is an extension of £ if it fits in an exact sequence

(1) 002 5G—E—0.
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We say that G is a non-trivial extension of £ if it has no trivial factors, i.e. the » — 2
elements of H'(£") inducing (1) are linearly independent. If 21 (Ox) = 0 the bundle G
is spanned if and only if £ is spanned. Rank two bundles £ and F with the same Chern
classes may have h'(F") # h'(£"). Hence the classification of all possible (£, ¢2) with
r = 2 does not give the classification for » > 2, too (although for several reasons the
rank 2 case is the most important one). Assume X = P? and rank(€) = 2. Ph. Ellia
gave the classification of all Chern classes of rank 2 spanned vector bundles on 2
([13]). In the range 4co > c% and ce < (”12+ 2) — 3 a general rank two stable bundle £ on
P2 with ¢;(€) = ¢; is spanned and these are the bundles used by Ph. Ellia to cover this
range of pairs (cy, c2) and usually these bundles are not extendable (Remark 4). In
extremal cases it may be possible to get a full classification. We first prove the fol-
lowing result (the existence/non existence part is a very particular case of [13], only
the classification part is, we hope, new). In the body of the paper the reader will find
the quoted examples and remarks.

Proposition 1. Fixintegers x,z suchthatx > 4andz > x> — 2x + 5. There is
a spanned rank 2 vector bundle £ on P? with det (£) = O2(x) and c2(&) = z if and
only if eitherz = orz=a> —x+1lorz=a —n Ifz =a® (resp. z = 2> —x + 1,
resp. 2 = x> — ), then & = Erw with L = Ope(x), W C HO(L), dim (W) = 3, is as in
Remark 3 (resp. Example 1 with (c1,t) = (x,0), resp. Example 2 with
(c1,t,m) = (x,l,x —1). If 2 = % (resp. z =a®> —x + 1, resp. 2 = &% — x) there is a
rank r spanned vector bundle F on P? with det(F) = O2(®), ca(F) =z and no
trivial factor if and only if 2 <r < (”;2) —1 (resp. 2 <r < @%+x+4)/2, resp.
2<r< @ +x)/2).

All the bundles F coming from Remark 3 and Example 1 are indecomposable,
while in Example 2 for each r € {3,...,(x® +x)/2} some rank r bundle F is de-
composable (always with 7 = O,.(1) & A with A indecomposable and as in Remark
3), but the general bundle in this family is indecomposable.

To get a related result (just in the range cs > 2® — & + 2) on an arbitrary surface
X with ho(a)}v() > 2 we use the following definition related to the notion of k-spanned
line bundle ([3], [4], [5], [6], [24]).

Let X be a smooth and connected projective surface and let R be a line bundle
on X. For each integer k > 0 we say that X is weakly k-spanned if h°(Zg @ R) =
h°(R) — k — 1 for all finite sets S ¢ X with #(S) = k + 1. R is spanned if and only if
it is weakly 0-spanned. If R is very ample, then it is weakly 1-spanned. Let «(R) be
the maximal integer k such that R is weakly k-spanned, with the convention
a(R) = — oo if R is not spanned. We have a(O(t)) = ¢ for all ¢ > 0. We prove the
following result.
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Theorem 1. Assume that L is ample and spanned and that o(L ® wyx) > 0.
Let £ be a rank r spanned vector bundle on X with det (£) = L and no trivial factor.
If c2(&) > L2 — a(L ® wx) — 1, then hO(E) = r + 1, c2(E) = L% and & fits in an exact
sequence

(2) 0L — 0"~ g0

On very simple surfaces (e.g. the Hirzebruch surfaces or a K3 surface with
Pic(X) = 7 or IP% blow up at a very small number of points) one knows the integer
o(R) for all R € Pie(X). Many authors proved that the adjoint line bundle R ® wy is
k-spanned (and hence weakly k-spanned) under certain assumptions on R and X ([3],
[4], [5], [6], [24]).

To get better results we consider the following invariants. Take X = P2 For any
rank 2 vector bundle € on P? let t(€) be the maximal integer ¢ such that 2%(&(— ¢t)) > 0.
The integer #(€) is a key step in the determination of A!(£") and hence in the de-
scription of the rank r > 2 bundles associated to non-trivial extensions of £. £ is
stable (resp. semistable) if and only if ¢(£) < ¢1(€)/2 (resp. 1(E) < ¢1(£)/2). Let t1(E)
be the maximal integer y < #(€) such that A°(E(— y)) > (“‘g)’zy”). The integer (&) is
defined for every surface X with Pie(X) = 7. The integer ¢,(€) is defined for every
surface X with Pic(X) = '/ and with a very ample positive generator of Pic(X) (e.g.,
on some K3’s or several complete intersection surfaces).

Theorem 2. Let & be a rank 2 spanned vector bundle on P2 with t := t(€) > 4.
Set ¢y := c1(E) and ¢z := c2(E). We have t(c; —t) < ce < c1(c1 — 1) ifcr > 2t + 1, then
co > (c% + 212 — 2tc; + ¢4 — 2t) /2. Let v be the maximal integer > 2 such that there is
an extension of £ by sz(’”’@ without trivial factors. We have v > 2+ co —
t(c; —t) — (”1’;’1) and equality holds if and only if t1(E) < 2; equality always holds
if ca(E) > (c1 —3)e1 —1). We have r <2+ (c1 —t —1)(c1 —t+2)/2, unless £ 1is
Example 2 with m = ¢; —t and r =2 + (¢; — t)* — (5.

See Proposition 6 for a stronger statement when ce < (¢c; —3)(c; —t) and
r#2+c—ta—t)- (3.

In this paper we first study the the rank 2 spanned bundles £ and then try to
compute &'(€") to see for which rank 7 > 2 there is an extension of £ by 03" ?
without trivial factors. There is another approach to globally generated vector
bundles on projective spaces ([1], [2], [22], [23]). The quoted authors first classify all
rank » spanned bundles G with no trivial factor (i.e. with h1°(G") = 0), and such that
each extension of Gby O, splits (i.e. with h(G") = 0); we say that any such bundle is
a master. Every spanned bundle £ with no trivial factor, say of rank s, has a unique
master (up to isomorphisms) and the rank of the master K of £ is s + h}(EY). If
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RY(EY) = 0, then £ is its own master. If A1(£Y) > 0, then £ is isomorphic to a quotient
of K by a trivial subbundle of /C of rank 2(£"). So if one has classified all possible
masters, then one knows which triple (v, ¢y, c2) is realized by a spanned bundle. In
many cases from a resolution of a master G with direct sum of line bundles (or other
homogeneous sheaf, like a twisted tangent bundle) they obtain a similar description
of all bundles which are the quotient of the master G by a trivial subbundle. From
this often they know all integers hi(E(t)), i € N, t € 7. However, sometimes for a
fixed s a master G gives both decomposable bundles and indecomposable ones (see
Example 2).
We work over an algebraically closed field with characteristic zero.

2 - General results

Let X be a smooth and connected projective surface. We often use the following
exact sequences with S a locally complete intersection zero-dimensional scheme and
L € Pie(X)

3) 0-0x —-E—-IsL—0

(4) 00 5Tyl —0.

Remark 1. Let Y be an integral projective variety and £ a rank r spanned
vector bundle on Y. Since the evaluation map H(E) ® Oy — & is surjective, we have
h%(&) > r and equality holds if and only if £ is trivial. Now assume that ¥ := X is a
smooth surface. Taking  — 1 general sections of £ we get and exact sequence (4)
with £ = det (£) and S C X a finite set with £(S) = c2(€). Since £ is spanned, (4) gives
that Zg ® L is spanned. Hence there are D, D’ € |£| such that the scheme D N D’ is
zero-dimensional and it contains S. Hence £ =D - D’ > 10S) = c2(&).

Lemma 1. Let & be arank 2 spanned vector bundle on X with no trivial factor
and let S C X be a zero-dimensional scheme which is the zero-locus of a non-zero
section of €. Set L := det (£) and a := h'(EY). There is a rank r vector bundle G on X
fitting in an exact sequence (1) and with no trivial factor if and only if2 < r <2+ a.
Assume h(Ox) =0. We have dim Extl(IS RL,Ox)=a+1. There is a rank r
spanned vector bundle F on X with det (F) =2 L, no trivial factor and with S as the
dependency locus of v — 1 of its sections if and only if 2 < r < 2 + a.

Proof. The first part follows from the definition of extensions, because Ext!
commutes with finite direct sums. Now assume h'(Ox) =0. In this case any
extension of a spanned sheaf by a trivial vector bundle is spanned. Hence we get
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the “ if ” part. Since £ is spanned, so is Zg ® £. Since h'(Ox) = 0, the middle term
of any exact sequence (4) or (1) is spanned. We have dim Ext’(& ,O0x) =hY%(EV) =0,
because € has no trivial factor. We have dim Ext’(Ox, Ox) = h%(Ox) =1 and
dim Ext!(Ox, Ox) = k1 (Ox) = 0. Applying the global Ext functors to (3) we get
dim Ext'(Zs ® £, Ox) = dim Ext!(£, Ox) + 1. O

Lemma 2. Take an exact sequence

(5) 0—-—A—-B—-FE—0

of vector bundles on X such that h'(B") = 0. Then any extension F of E by (’)}E‘?k fitsin
an exact sequence

0-A—-BoOy —F —0.
Proof. Take the exact sequence
(6) 008 “F - E—0.

Since h'(BY) = 0, (5) gives a surjection p: H'(BY @ F) — H*(B" ® E). Take a map
v : B — F inducing the surjection /' — E of (5). Take v/ : B — F such that p(v) = ».
The map f = (V,u): B & O?}k — F'is surjective and ker(f) = A. O

Remark 2. Lemma 2 works (i.e. #'(BY) = 0) in Examples 1 and 2. Hence in
these cases it is sufficient to find (5) when £ has rank 2.

Proposition 2. Assume h'(Ox) = 0. Let L be a very ample line bundle on X
such that YL @ wy) < h%(L). Fix an integer x such that (L ® wg) < x <
(L) — 3. Let S C X be a general subset with 4(S) = x. Then Is ® L is spanned.
The set S satisfies the Cayley-Bacharach condition with respect to L ® wx and it is
the zero-locus of a section of a rank 2 spanned bundle £ with det (£) =2 L. For any
r > 2 any rank r bundle F with r — 1 sections with S as their dependency locus has
0" ? as a factor.

Proof. Let U be the set of all subsets of X with cardinality x. We claim the
existence of a non-empty open subset Q of the irreducible variety U such that every
S € Q satisfies the theorem. Since h°(£) > x, there is a non-empty open subset U’ of
U such that 2%(Zg @ £) = h%(L) — x for each S € U'. Since £ is very ample, a general
D < |£| is smooth. Since 2°(£) > x, there is a non-empty open subset U” of U’ such
that every S € U” is contained in a smooth element of |£|. The condition “ Zg ® £ is
spanned ” is an open condition for S € U’, because all sheaves h’(Zs ® £), S € U’,
have the same h°. Hence to prove the existence of a non-empty open subset U; of U"
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such that Zg ® £ is spanned for all S € U; it is sufficient to find one S € U” with
Ts ® L spanned. Fix a smooth C € |£] and take a general S C C with §(S) = «x. Since
h(Ox) = 0, the exact sequence

0-0x—>L—-LIC—0

gives h%(C, L|C) = k(L) — 1. Since K°(C, £|C) = h°(L) — 1, x < h%(L) — 8, L is very
ample, S is general and we are in characteristic zero, the line bundle (£|C)(— S) is
spanned ([16, Lemma 2.1]). Since the section of £ with C hasits zero-locus has C as its
scheme theoretic zero and vanishes at each point of S, the scheme-theoretic zero-
locus of Zg ® L is contained in C. Since (£|C)(— S) is spanned and the restriction map
H'(L) — H(C, £|C)is surjective, the sheaf Zg ® L is spanned. Hence there is a non-
empty open subset U; of U” such that Zg ® £ is spanned for all S € U;. Since
(L ® wx) < x, there is a non-empty open subset Q of U; such that for every S € Q
we have h’(ZTg ® L ® wy) = 0 for each S’ C S with #(S') =« — 1. Each S € Q sa-
tisfies the Cayley-Bacharach condition with respect to £ ® wx and hence it gives a
rank 2 vector bundle £ fitting in the exact sequence (3). Since 2(Ox) = 0and Zg @ L
is spanned, £ is spanned. Since ' (Ox) = 0, Lemma 1 gives the statement for rank
r > 2 bundles. O

Let X be a smooth and connected projective surface and let £ be a spanned and
ample line bundle on X. Since £ is ample and spanned, we have h°(L) > 3.

Remark 3. Since £ is spanned, the evaluation map p, go): HY(L) @ Ox — Eis
surjective. Fix an integer r such that 2 < » < h%(£) — 1. Since dim (X) = 2, a general
(r + 1)-dimensional linear subspace W of H°(L) spans L. For each (r + 1)-dimen-
sional linear subspace W of H°(£) spanning £ let pew:W @ Ox — L denote the
evaluation map. Since p, y is surjective, the sheaf ker(p ) is locally free. By con-
struction £, w := ker(p C’W)v is arank » spanned vector bundle with det (£, w) = £,
collrw) = £? and no trivial factor. It fits in an exact sequence

(7) 0— v 2, O;’?(T+D —E.w—0

Kodaira’s vanishing gives h°(E cw) =1+ 1. The bundle E . w has no trivial factor
if and only if the map u",: HY(O%™) — H'(L) obtained dualizing (16) is injective.
Conversely, any rank » spanned vector bundle £ with rank » and 2°(&) =r+1
fits in (16) with W = H%(E). For any vector bundle F on X let c¢(F) =
14+ c1(F)h + ca(F)R? be its total Chern class. If £ is a line bundle, we have
¢(LY) =1—ci(L)h. Hence for any vector bundle £ fitting in (2) we have
c(L)e(€) =1 in the Chow ring of X, i.e. ¢1(€) = c1(£) and ca(E) = L2,
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Note that the bundles £ i are exactly the spanned bundles £ with det (&) = £,
hY(E) = rank(E) + 1 and no trivial factor. The set of isomorphism classes of rank »
bundles arising in this way is parametrized (not necessarily finite to one) by an ir-
reducible variety (a non-empty open subset of a Grassmannian).

If the morphism associated to |£| does not map X onto a curve, then this con-
struction does not work when r = 1, i.e. in this case we would have £, w a rank 1
torsion free sheaf which is not locally free (i.e. E,w # £); this is seen also because
the morphism associated to |£| has not a curve as its image if and only if £ > 0.

Claim. Each bundle £ w is indecomposable.

Proof of Claim. Assume E,.w = A; ® Az with A;, As spanned vector bundles.
Since A; has no trivial factor, we have h°(A4;) > rank(4;) +1, ¢ =1,2. Hence
RYEw) > r + 2, a contradiction.

Proposition 3. There is a rank r spanned vector bundle £ on X with
det (£) = £ and no trivial factor if and only if 2 < r < h%(L) — 1.

Proof. The “if ” part is covered by Remark 3. The “ only if ” part is true by
Remark 1. O

Proof of Theorem 1. Let Q be the non-empty open subset of X such that |£|
has injective differential. Let S be the dependency locus of » — 1 general sections of
£. S is a finite set contained in Q and £ fits in (4). We have #(S) = c2(€). Since £ is
spanned, Zg ® L is spanned. Fix general T, T" € |Zs ® £L|. By Bertini’s theorem
T N T is reduced outside S. Since S C Q and Zg ® L is spanned, we also see that
T N T"is reduced at each point of S. Set A := T N 7"\ S. We just checked that A is a
set with cardinality L2 — ¢(E).

(a) First assume A = (), i.e. assume that S is the complete intersection of T'and 7".
Let U C H%(Zs ® £) be the image of H°(£) by the map induced by (4). Since & is
spanned, U spans Zg ® L. Since £ # Oy, we have dim (U) > 2. Fix general s, s’ € U.
Since s, s" are general and U spans Zg ® L, the divisors {s = 0} and {s’ = 0} have no
common component. Since S is the complete intersection of 2 elements of | £|, we get
that the linear span of s and s’ spans Zg ® L. Take ¢,¢’ € H(E) whose image is s, s/,
respectively. From (4) we get an (r + 1)-dimensional linear subspace W of £ con-
taining o, ¢’ and spanning £. The kernel of the evaluation map W @ Ox — & is iso-
morphic to £. Hence we are in the set-up of Remark 3 with £, w = E and in parti-
cular W = HO(&).
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(b) Assume A # 0, i.e. c2(E) # £2. We have #(A) = £2 — c5(E). Note that A
and S are linked by the complete intersection TN7T". We proceed as in the
proof of [17, Lemma in §3]. Let m: X — X denote the blowing up of X at the
points of A. Let E := 7n71(A) denote the union of the exceptional divisors.

Let D,D’' be the strict transforms of 7,7’ and S :=7n"1(S). We have
(’)}(D) o O}(D’) ~ 7*(L)(— E). Since ANS =0, we have ENS' = 0. We have
#(S") = #(S) and S’ is the complete intersection of D and D'. We have an exact
sequence on X:

8) 0= O(=D = D)= O~ D)& O~ D)) = Iy — 0.

Since O}(D) =} O}(D’) =~ 7*(L)(— E), tensoring (8) with n*(£) we get an exact se-
quence

9) 0—0QE)® (L) — OL(E)© OLE) = Iy @n' (L) — 0.

We have h°(Zg @ n*(L)) = h°(Zg ® L) by the projection formula. Since A # () and
I ® L is spanned, we have h°(Zg ® £) > 2. Since E is a disjoint union of excep-
tional divisors, we have ho((’)}(E)) = 1. Hence (9) gives hl((’)}(ZE) @7 (L)") > 0.
Since W n*(wy) ® E, Serre duality gives hl(Og(ZE’) @t (L)) = hl((’);((— E)®
(L ® wy)). Since Rln*(O}(— E) =0, n*(O;((— ) =Ty, Rln*(O}) =0 and
n*((’);() =~ Oy, then hl(O}(— E) @' (L® wy) = hNT4 ® L ® wyx) (use the Leray
spectral sequence of R'n, and the projection formula). Hence h1(Z4 ® £ ® wy) > 0.
Therefore #(A4) > a(L ® wy) + 2, i.e. c2(E) < L2 — (L ® wy)—2, a contradiction. O

Assume (L ® wy) > 0 and that we have a good description of all finite sets
A C X with #(4) = «(£ ® wx) + 2 and h(Z4 ® L ® wx) > 0. We may hope to get a
description of all spanned vector bundles £ on X with det (£) = £, no trivial factor
and ¢2(€) = L% — (L @ wy) — 2. We are able to do this when X = P2

3 - The projective plane

If £ is a rank 2 spanned bundle on Pz, then #(£) > 0. Taking ¢t :=#(£) and
c1 := ¢1(€) we get an exact sequence

(10) 0— 0 =E—TIz0c1—-t)—0

with Z a locally complete intersection zero-dimensional scheme of degree ca(E) —
t(c; — t). Abundle in (10) is spanned if and only if Z z(c; — ) is spanned. Duality gives
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R(EY) = h1(E(— 3)). Hence if t > 0, then h1(EY) = (T 4(c; — t — 3)). If t = O we have
h(EY) = h'(Z4(c; — 3)) — 1 if £ is spanned, because for a spanned bundle G on a
surface X with h2(Ox) = 0 we have h2(G) = 0.

Fix integers t, ¢1, 2. Let U(t, c1, 2) be the set of all rank 2 vector bundles £ on P2
with ¢1(€) = ¢1, t() = tand co(£) = z + t(c; — t). Each £ € U(, ¢1, 2) fits in the exact
sequence (10) with Z a locally complete intersection zero-dimensional scheme of
degree z. Hence U(t, ¢1,2) = 0if z < 0, while U(t, ¢1,0) = {O2(t) & Opz(c; — t)}. We
have #(€) =t if and only if A%(Z,(c; — 2t — 1)) = 0. Hence if #(£) = t, then either
c1<2torz> (cl‘g”l). £ fits in a unique extension (10) (for some Z) if and only if
KT z(cy — 2t)) = 0. If t > 0, any & fitting in (10) is spanned if and only if Z z(c; — t) is
spanned. Set U'(t,c1,2) := {€ € U(t,¢1,2) : h'(€) = 0}. Notice that € € U'(t, ¢1,2)
with ¢(£) =t if and only if £ fits in (10) with Z a locally complete intersection,
W (Zz(c; — ) =0and h%(Z5(c; — 2t — 1)) = 0.

Lemma 3. Fix integers @ >0, 2> 0. Let S C P? be a general subset of I
with #(S) =z The sheaf Zgs(x) is spanned if and only if either x >3 and
2 < (w;rz)—3 or x <2 and z < x>

Proof. Since S is general, h°(Zg(x)) = max{0, (“2“2) —2}. Since the cases
x = 1,2 are obvious, we assume x > 3. Since S is general, S is not the complete
intersection of two curves of degree z > 3. Hence if Zg(x) is spanned, then
z < (T;2) — 3. The property “ globally generated ” is an open property for sheaves
with constant cohomology. Fix a smooth plane curve C with deg (C) = xandletS c C
be a general subset of C with cardinality z. As in the proof of Proposition 2 we see that
Zs(x) is spanned. O

Proposition 4. Fix positive integers z,t,cy such that ¢c; >t > 0 and either
¢ —t=1,2 and z2<(c;—t® or s —t>3 and z< ("1’2”2) -3 if c1>2t+3
assume z > (3 1). Then there are € € U'(t, ¢1,2) fitting in (10) with Z general
in P* and & spanned. For any such bundle € we have h*(EY) = 0if z < (Cl‘zt‘l) and
PEN = () ife > (1),

Proof. Since Z c P?is general, Z,(c; — t) is spanned (Lemma 3). Since Z is
general and either ¢; < 2t +2orz > (Cl’gt’l),we have h%(Z (o (c1 — 2t — 3)) = O for
each o € Z, i.e. the finite set Z satisfies the Cayley-Bacharach condition in degree
¢1 — 2t — 3. Thus there is a bundle £ fitting in (10). Since Z is general and z < (’31*2”2),
we have K1 (Z z(c; —t)) = 0. Since Z z(c; — t) is spanned, £ is spanned. Since t > 0, we
have h?(O,(t — 3)) = 0 and hence k(") = hL(E(— 3)) = K (T z(c1 — t — 3)). Use that

Z is general. O
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Example 1. Fix integerst > 0 and ¢; >t + 2. Let U be the set of all locally
complete intersection zero-dimensional schemes Z C %, which are linked by two
curves of degree c; —t to a degree ¢; —t — 1 zero-dimensional subscheme A con-
tained in a line D. Fix plane curves T',7" without common components and set
u := deg (1), w' := deg (T") Let S; and A; be any two zero-dimensional subschemes
of P? linked by T N T". By [20, Theorem 3] or ([12, Theorem CBT]), or if S; and A,
are reduced and disjoint, [17, Lemma in § 3] we have

(11) R(Zs, ) = W Ta,u+u' —y —3)+h°Trap(y) YyeZ

Look at (16) with S;:=Z7, A; .= A, u=u' =c¢; —t. Taking y =c¢; —t we get
W(Zz(c; —t) =8. Taking y=c; —t—1, we get h’(Z;(c; —t—1)) =0. Since
(T z(c; — 2t —2)) =0, Z satisfies the Cayley-Bacharach condition in degree
¢1 — 2t — 3 and hence we get bundles £ fitting in (10) and with ¢1(€) = ¢y, c2(E) =
ter—t)+ (1 -t — (1 —t—1)=c% — et —¢; +t — 1. Since h%(Zz(c; — 2t —3)) =0,
the family of bundles obtained for a fixed Z is irreducible and its dimension does
not depend on Z. Hence varying Z we get an irreducible family of bundles. Since
h(Z5(c; —t —1)) =0, we have t(€) =t for all £&. Now we check that each & is
spanned, i.e. that Z;(c; — t) is spanned, at least for a general Z. Since Z is linked to
A by a complete intersection of two curves of degree ¢; —t, Zz(c; —t) is spanned
outside the support of A. Since deg(A) =c1 —t—1, Za(c; —t — 1) is spanned and
hence for a general linkage (say by curves T', T") we get Z with Z N A = (). We claim
that if Z N A = (), then Z(c; — t) is spanned, i.e. it is spanned at each point of A,eq.
Fix O € A,eq and call A’ the zero-dimensional scheme linked to Z U {O} by TN T". A’
is a colength 1 subscheme of A and so deg(A’)=c¢; —t—2. Therefore
YT 4(c; —t — 3)) = 0. Using (16) withy = ¢; — t,S; := ZU {0} and A; := A’ we get
(T zuoy(c1 — 1)) =2. Hence O is not a base point of Zz(c; —1t). Since
RY(Zz(c1 —t —8)) = 0,we have RH(EV) =h}(E(=8) = —cit — e+t — 1 — (2 }7).
By Lemma 1 there is a spanned rank = vector bundle F on P? with ¢ (F) = c1,
(F)=¢f —cit—c;+t+1 and no trivial factor if and only if 2 <r <cf-—
cit—cr+t+1— (617;71) + 2.

We claim that for fixed r, ¢1, t the set of all isomorphism classes of rank » bundles
F obtained in this way is parametrized (perhaps not finite to one) by an irreducible
variety. Indeed, the set of all zero-dimensional schemes Z is irreducible and the
integer h!'(Z4(c; — t — 3)) is the same for all Z’s. For a fixed Z we use as a parameter
space a non-empty open subset of the Grassmannian of all (+* — 1)-dimensional linear
subspaces of H'(Z 7(c; —t — 3)).

(a) Take t=0 and set x:=c;. We have co() =2® —x. In this case
REY) = @2 +x) /2. A referee suggested that each such bundle occurs in an exact
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sequence

(12) 0— O0pl—1)®0(-1)— 0% —E—0

P2

Indeed, we proved that 7°(€) = 4. Let A denote the kernel of the evaluation map
HYE) ® Op: — E. Since hY(Z 4 (x — 4)) = 2, we have h’(Zs(x + 1)) = 8 (see (16) with
y=x+1,8 =8,A; =A). Thus h°(E1)) = 11. Hence h°(A(1)) > 0. Let B be the
cokernel of an injective map Opz — A(1). Since hO(A) =0, then B = ZTw(— x) for
some zero-dimensional scheme W. Since c2(£) = x(x — 1), (12) gives deg (W) = 0, i.e.
W = (. Proposition 1 gives that all bundles in (12) arises as in (3) for £ =2 O (x) and
some complete intersection S.

Claim. Let F' be any extension of £ by a trivial factor. Assume that /" has no
trivial factor. Then F' is indecomposable.

Proof of Claim. Assume F = A; @ As with A, As non-trivial vector bundles.
Set x; :=c¢1(4;) and z;:=co(4;). We have x =1 +a9 and #2—x+1=2+
29 + x1%2. Since h2(E) = 4, we have hO(F) = rank(F) + 2. Thus #%(4;) = rank(4;) + 1.
Hence A; is as in Remark 3 and in particular z; = oczz, rank(4;) > 2 and x; > 2. Since
Xe =& — x1, we get x — 1 = x1(x — 27), i.e. either ;1 = 1 or x2 = 1, a contradiction.

Example 2. Fixintegersec,t,m suchthatt > 0,¢; —t > m > max{1,¢; — 2t}
and ¢; >t + 2. Take any zero-dimensional scheme Z C IP* which is the complete
intersection of a curve of degree c; —t and a curve of degree m. Since
m > c¢; — 2t — 1, we have h%(Z;(c; — 2t — 2)) = 0 and hence Z satisfies the Cayley-
Bacharach condition in degree ¢; — 2t — 3. Hence there are bundles £ fitting in (10).
Fix any & in (10). We have deg(Z) = (c; — t)ym and Zz(c; —t) is spanned. Since
m>cy —2t, we have h%Z;(c; —2t—1)=0 and hence #&)=t. We have
t1(E) =c; —t —m. Since t > 0 and Zy(c; —t) is spanned, we get in this way an
irreducible family of spanned vector bundle with ¢i(€) = ¢, c2(E) =t(c; — 1)+
(¢1 — tym. Since hM(Op2(t)) = 0 and A1(Op:(t + m — ¢1)) = 0, lifting the sections of
Zz(m)and Z4(c; — t) we get that £ fits in the exact sequence (suggested by a referee)

(13) 0 — Op(—m) —5 Op @ Opeler —t —m) ® Ope(t) — € — 0.

Conversely, by Bertini’s theorem a general map u in (13) is injective with locally free
cokernel ([9]) and £ is spanned and with the same Chern classes as the bundle in (10).
All bundles in (13) fits in (10) with Z determined by the first two entries of u.

We have R9(Z4(c; —t—3)=0 if m>c; —t—2 and h%(Zy(c; —t—3)) =
(Cl‘tgm‘l) if m<c; —t—3. Therefore (10) gives hl(EY)=hY(E(-23)) =
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(c1 —tym — ([ ifm > ¢; —t —2and R1(EY) = (7" + (@ — Om — () if
m<c —t—2.

We claim that for fixed »,c;,t,m the set of all isomorphism classes of rank r
bundles F obtained in this way is parametrized (perhaps not finite to one) by an
irreducible variety. Indeed, the set of all zero-dimensional schemes Z is irreducible
and the integer h'(Zz(c; —t — 3)) is the same for all Z’s. For a fixed Z we use as a
parameter space a non-empty open subset of the Grassmannian of all (» — 1)-di-
mensional linear subspaces of H'(Z ;(¢c; — t — 3)).

(a) Taking t =1, m = ¢; — t and « = ¢; we get the case quoted in Proposition 1
with z2=22—2 In this case we have RYEY) =Y (Tz(x—4)=@x—17°—
(‘"”;2) = (a2 +x)/2 —2. Now we prove which non-trivial extensions are decom-
posable.

Claim. Fixanintegerasuchthat3 < a < (¥® 4+ x) /2 and any extension ¥ of £ by
O%“*Z) with no trivial factor. F' is decomposable if and only if F' = O (1) & A with A
as in Remark 3. This case occurs if and only if 3 < a < (¥ + x)/2, but for each a the

general extension of £ by Oiﬁ“’z) is indecomposable.

Proof of Claim. By Lemma 2 the bundle F' fits in an exact sequence

(14) 0— Op —1x) 5 0% ¢ Opl) — F — 0.

P2

Since £ is indecomposable (e.g. by (14) and the assumption x > 2), we may assume
a > 3. Write u = (u1, uz) with u: Op2(1 — ) — Ofﬁ‘, u2: Ope(1 — ) — Op(1) and
v = (v1,v2) With v1: Op2(1) — F and vy: (’)Tf;l — A.If a > 3 we may find u with ug = 0
and hence F' = O,2(1) @ A with A a spanned vector bundle with h0(A) = rank(A) + 1.
Hence A as in Remark 3. Therefore if a # 2 we may find decomposable examples
with O2(1) as one factor and an indecomposable bundle A as in Remark 3 with
c1(A) = x — 1. We claim that these decomposable bundles are not the general ones.
Fix any F ~ Opz(l) dAin (14). Write v = (1)1,1, 1)1,2) with V11: Opz(l) d 01)2(1) and
v12: O12(1) — A. Since hO(A(—1)) = 0, then v12 = 0 and hence v is an isomorph-
ism. Since v; 1 o u; = 0, we get u; = 0. Hence  is not the general map in (14). Now
assume F' =~ A; ® Ay with rank(A4;) > 2 for all 7. With no loss of generality we may
assume 7%(A41(—1)) =1 and 2°(As(— 1)) = 0. Since 7°(A;(—2)) =0, a non-zero
section of A;(— 1) induces an exact sequence

0— O’pz(l) — A1 — G — 0

with G a torsion free spanned sheaf. Since A; has no trivial factors, G is not trivial and
hence #%(G) > rank(@) + 1 = rank(A4;). Hence 1%(4;) > rank(4;) + 3. Since K°(F) =
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a + 3, we get h%(As) = rank(A4,) and hence A; is trivial, so F' has a trivial factor, a
contradiction.

A referee suggested the exact sequences (10) and (13), which immediately give
spanned bundles with easily computed cohomology groups. More generally, take
“general” maps g: A — B, where A, B are easy vector bundles (e.g., direct sums of
line bundles) and A" is spanned, so that ker(g)v is a spanned vector bundle. This is
the approach of [14], [11], [21] in P for a very difficult problem (see also [11], [15],
[21]). On P? it gives many examples, but we did not found a set of data (e.g., r, ¢1, ¢2)
for which all spanned bundles with these invariants arise from the same exact se-
quence varying the entries of the matrix g, except Examples 1 and 2.

Proof of Proposition 1. By Remark 1 we have z < x? and z = 2?2 if and only if
£ is as in Remark 3, i.e. if and only if it fits in an exact sequence

(15) 0— Op(—a) — OF - &—0.

T 2

We also saw in Remark 3 that in this case we may find F if and only if
2<r< () -1

Now assume z < x? and the existence of £. Let S C IP% be the dependency locus
of a general section of £. We have #(S) =z and Zg(x) is spanned. Fix general
T,T' € |Zs(t)|. The scheme T N T" is zero-dimensional, deg (T'N7T") = x> and T N T"
is smooth outside S. Fix P € S. Since Zg(x) is spanned and O, () is very ample,
T N T is smooth at P. Since S is finite, we get T N7 = SUA with A C P* a finite
set, #(4) = x> —z and AN S = (. By the way we defined Examples 1 and 2 it is
sufficient to prove that either z = 2 — x + 1 and S, A are as in Example 1 with ¢ = 0
and ¢ =2 or z=a% —x and S,A are as in Example 2 with ¢t =1, ¢; = and
m=c; —t=x— 1. Let S; and A; be any two finite sets such that S; N A4; = () and
SiUA; =TnNT (as schemes). By [20, Theorem 3] or [17, Lemma in § 3] or [12,
Theorem CB7] we have

(16) W (Zs, ) = W' (Za,@x —y —3) + ' Trop(y) Yy €L
We have h’(Zpqp(x)) = 2. Take y =, S; := S and A; := A in (16). Since Zg(t) is
spanned and S ¢ T N 7", we have h°(Zg(x)) > 3. Hence (16) gives h1(Z 4(x — 3)) > 0.

Claim 1. There is a line D C X such that (AND)e {x—1,x}, §(SND)+
4AND) <wxand W' (Talx —3) =HAND) —x +2.

Proof of Claim 1. Since #(A) < 2(x —3) + 1 and AN(Z4(x — 3)) > 0, there is a
line D c P? such that HAND)>x—1 (7 Lemma 34]). We have a residual exact
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sequence

(17) 0 — Zganp@ —4) — Za(@ —3) — Ipnaplx —3) — 0.

Since A \ A N D is zero-dimensional, we have h*(Z g\ anp(@ — 4)) = h*(O,2(x — 4)) = 0.
Since fA\AND) <2x —5— (x — 1),wehave hl(IA\AmD(x —4)) = 0. Hence (17) gives
WM 4(x)) = K1 (D, T gnp(@ — 3)). Since §(AND) > x—1, we have h1(D,Z4-p(x—3)) =
HAND)—x+2. Since AUuS=TnNT, we have #((AUS)ND)<x Hence
#AND) e {x—1,x}.

By Claim 1 we have z < 2 —x + 1.

(a) Assume z =22 —x + 1, i.e. #(A) = x — 1. By Claim 1 there is a line D C P2
such that A € D. Hence € is as in Example 2 with ¢ = 1 and ¢; = «.

(b) Assume z = % — x. Take D as in Claim 1. First assume A ¢ D. From (16)
with S; =8 and 4; =A we get W°Zg(x—1)) >0, and A'(Zs(x —2)) =0 and
h%(Zs(x)) = 5. Hence S is a complete intersection of a curve of degree x — 1 and a curve
of degree x. Hence S and A are as in the case t = 1, ¢; = « of Example 2. Now assume
(AN D) =x— landhence A \ A N Disaunique point. Call q this point. By Claim 1 we
have A1 (Z snp(@ — 3)) = K1 (Z4(x — 3)). Taking v := x, S; := S and A; := A in (16) we
get h'(Zs(x)) = 2 + h'(Zanp(x — 3)). The sets S U {g} and A N D are linked by 7' N 7T".
Taking y:=x, S;:=SU{q} and A;:=AND in (16) we get hl(ZSU{q}(x)) =
2 + h (Zanp(@ — 3)). Hence q is in the base locus of Zg(x), a contradiction.

(c) Assume 22 — 2r + 1 < z < #® — x. We have §(4) > x + 1 and hence there is
OcA\AND. Since O¢D, the proof of Claim 1 gives h'(Zg(x —3)) =
ez a0y (@ — 3)). As in step (b) we see that O is a base point of Zg(x), a contra-
diction. O

Proposition 5. Fix integerst >0, ¢c; >t+2andce > (1 —t)cy —c1 +t+ 1
Let & be a rank 2 spanned vector bundle on P2 with ¢,(E) = ¢y, t(E) = t and c2(E) = ca.
Then either € is as in Example 2 with m = c¢; — t or it is as in Example 1.

Proof. Byassumption £ fits in an exact sequence (10) for some locally complete
intersection scheme Z with Zy(c; —¢) spanned and deg(Z) =cy —t(c; — 1) >
(1 — t)2 —c1+t+1. By assumption Zz(c; —%) is spanned. Fix two general
T, T €|Zz(c; —t)|. We have Z =T NT' if and only if £ is as in Example 2. Now
assume Z ¢ TN T" and let A C P? be the scheme linked to Z by T'N T". We have
deg(A) = (c; — t? — deg(Z) <c¢y —t—1.Since ZZ TNT" and Tz(c; —t) is span-
ned, then h%(Z(c; — t)) > 3. Using (16) with y =¢; — ¢, S; = Z and 4; = A we get
W (Zalc; —t —3)) > 0. Since deg(4) <c¢; —t—1, we get deg(4) =¢; —t—1 and
that A is contained in a line ([7, Lemma 34]). Hence £ is as in Example 1. O
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Proposition 6. Take £ as in Theorem 2 and assume h'(E) # ¢z — t(c; — t)—
(57

@) Ifce = (c1 — 3)(cy — ), then & is as in Example 2 with m = ¢, —t — 3.

) Ifcg < (1 —3)ecr —t)and ¢y >t + 6, then (c; —3)(cy —t) —ce > ¢y —t—4.

Proofs of Theorem 2 and Proposition 6. Fix a non-zero a section of £(—1t)
so that &£ fits in (10) with deg(Z) =ce —t(c; —t) > 0. Since #(€) =t, we have
(T zc; —2t—1))=0. If ¢; > 2t +1 we get deg(Z) > (cl‘gt“) and hence ¢y >
ter — )+ (“72Y) = (& + 2% — 2te; + ¢ — 2t)/2. Lemma 1 gives r — 2 = h(£Y) =
RYE(—8)) =h (T z(c1 — t — 3)). We have BN (Zz(c1 —t — 8)) > ¢z — t(er — 1) — (2 57Y).
Since Zz(¢; — t) is spanned, we have deg (Z) < (¢; — £)? and hence ¢2(€) < ¢1(¢; — ).

(a) Assume cg > (c; — t)c; — ¢1 +t + 1. Proposition 5 gives that £ is as either as in
Example 2 with m =c¢; —¢ or as in Example 1. In the latter case we have
REY = (1 —tF = —t—=1) = ("57) = (c1 — t — D(er — t +2)/2.

(b) Assume cg < (c; —t)c; —c1 + t. We assumed the inequality ¢c; — ¢t —3 > —1. If
hO(Iz(Cl —t— 3)) = 0, then hl(IZ(01 —t— 3)) = C2 — t(Cl — t) — (017;71) < (Cl — t)2—
c1+t— (Cl’zt’l) = (c; —t—1)(c; —t+2)/2. Now assume h°(Zz(c; —t—3)) > 0.
Take any D € |Z(c; —t — 3)|. Since Zz(c; —t) is spanned, there is T' € [Z5(c; — 1)
containing no irreducible component of D. Hence the scheme W :=TnND is a
complete intersection of a curve of degree c¢; —t and a curve of degree
c1 —t—3. Since ZC W we have hl(Zz(c; —t —3)) < h'(Zw(ci —t —3)). Since
RY(Zw(ci —t—3)) = 1, wehave b (Zw(ci —t—3))=(c1 — )1 —t —3)— (“F ) —1=
(*47!) — 1. Since Z C W, then ¢z < tler —t) + (1 — t)er — t — 3) = (e1 — B)er — ¢).

(e) Assume cp > (c; —t)(c;1 —8) —c1 +t+5 and RO(Z(c; —t —3)) > 0. If cp #
(c1 — t)(cy — 3), then assume ¢; > ¢+ 6. Take D, T and W D Z as in step (b). If
ce = (c1 — 3)(c; — t), then Z = W and hence £ is as in Example 2withm = ¢; — ¢ — 3.
Now assume ce # (¢c; — 3)(¢c; —t) and ¢; >t + 6. Let A C W be the residual of Z
inside W, ie. the closed subscheme of W with Z4 = Ann(Z;/Zw). Since
ci—t<(1—H+(@ —t—3)—3, we have h%(Z;(c;i —1) = h (T alc; —t—6))+
W Twlc; —t) (12, Theorem CBT7]). Since deg(4)<c¢;—t—5, we have
hNZa(c; —t — 6)) = 0. Since W 2 Z, we get that Z,(c; — t) is not spanned, a contra-
diction. O

Remark 4. Fix positive integers cq,ce such that 4ce > c% > ¢, c1(c1 +3)/
2 — ¢z > 2 and let £ be a general rank 2 stable vector bundle on P2 £is spanned. If
(c1 — 1)(c1 — 2)/2 > ca, then A1(E(—3)) = 0 ([8, 5.1], [19, 3.4]) and hence & is not
extendable to a higher rank spanned bundle with no trivial factor. Now we show that
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for many of these pairs (¢, ¢2) there are extendable rank 2 spanned vector bundles

F. Fix an integer t such that 2 <t < ¢;/2 and assume cz > t(c; — ) + (Cl_zt_l) (e.g.

for t = 2 take ¢y > (c% +¢1+6)/2).Setz:=cy —tlc—t)and let S C P be a general
subset with cardinality z. Let G be a general extension of Zg(c; —t) by Op2(t). Gis a
vector bundle and 21(G) = h1(G(— 3)) = ¢z — t(er — 1) — (“F7).

Remark 5. The existence part in the determination of the Liiroth semigroup
of a smooth plane curve C of degree d are constructive ([16, Lemma 2.1 and
Corollary 2.6], [10]). In the corresponding cases it is often easy to compute
W (Zs(d — 3)) (e.g. if S is general in C as in [16]). However, we are unable to get from
this a uniqueness statement like Proposition 1. The difficulties in the set-up of
Theorem 2 are very different. Since ¢ > 0 and 2%(Z z(c; — 2t — 1)) = 0, Z satisfies for
free the Caylay-Bacharach condition in degree ¢; — 2t — 3. We are unable to con-
struct Z covering large numbers of pairs (deg (Z), h%(Z z(c; — t)) with the restriction
hO(Iz(C1 — 2t — 1)) =0.
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