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and asymptotic behavior of eigenvalues
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Abstract. In the paper, we give an abstract formulation of the classical Regge
boundary value problem (but with a constant potential) in a Hilbert space and prove
an isomorphism result for the problem. This result implies, in particular, maximal
Ly-regularity for the problem. We also obtain an estimate of the solution with re-
spect to the spectral parameter. Then, for one homogeneous abstract spectral
problem, we find asymptotic behavior of its eigenvalues. A possible application of the
abstract results to elliptic partial differential equations is shown at the end of the

paper.
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1 - Introduction

Boundary value problems for elliptic differential-operator equations with the
same linear spectral parameter entering into the equation and boundary conditions
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have been investigated in various aspects in the papers by V. I. Gorbachuk and M. A.
Rybak [12], M. A. Rybak [19], L. A. Oleinik [18], V. M. Bruk [8], B. A. Aliev [2, 3, 4], B.
A. Aliev and Ya. Yakubov [5], M. Bairamoglu and N. M. Aslanova [7]. In contrast to
the above mentioned papers, in this paper, we study solvability of boundary value
problems for an elliptic differential-operator equation of the second order when the
spectral parameter enters quadratically into the equation and enters linearly into
one of the boundary conditions. Such a case has been also previously considered in a
few studies but no one of them covers our situation. A prototype of our abstract
problem, in the first isomorphism part of the paper, is the classical Regge problem
(but with a constant potential), for which there is no a general theory (for the details
of the last remarks see below).

So, in a separable Hilbert space H, consider a boundary value problem on the
interval [0,1] for a second order elliptic differential-operator equation

(1.1) L(,Dyu = 22u(x) — " (x) + Au(x) = f(x), < (0,1),

Li(Au = o/ (1) + du(l) = fi,

1.2
(12) Low :=u(0) = f5,

where the spectral parameter A and o # 0 are some complex numbers from the right-
hand side of the complex plane; A is a linear selfadjoint positive-definite operator in

H; D := do Note that the solvability questions, discreteness of the spectrum and

two-fold completeness of a system of root functions of boundary value problems of
the form (1.1), (1.2) but for second order ordinary differential equations (replacing A
by Q(x), where Q(x) € W;(O, 1), Q(1) # 0, and o = 1) have been investigated in the
monograph by S. Yakubov and Ya. Yakubov [22] (see also the paper by S. Yakubov
[21]). In that case, the problem becomes, so called, the Regge problem (just replacing
Aby 14, that can be done without loss of generality) which arises in the description of
scattering by a finite potential. The main difficulty in such case is that the Regge
problem is not only Birkhoff-irregular but also Stone-irregular and there is no a
general theory for such problems. We decided to keep this name, the Regge pro-
blem, for our abstract boundary value problem (1.1), (1.2), at least for the first part of
the paper. Let us emphasize again, that we cannot cover a general situation of the
classical Regge problem in the framework of ordinary differential equations since
our operator A is a constant operator with respect to x variable, i.e., we can just take
A = @ =const+# 0. This first study of such abstract problems can stimulate the
readers (including ourself) to consider in future the general situation of a non-con-
stant operator A(x) in the equation. For the classical Regge ordinary boundary value
problem with a non-constant potential, we also refer the readers to [13].
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Let us also note, that our equation (1.1) may be considered as an abstract for-
mulation of the classical scattering equation. On the other side, the scattering pro-
blem is usually treated in the whole space or in the half-space (see, e.g., [10], [11],
where our H = R" and A is an % x % matrix), so our boundary value problem (1.1)-
(1.2) does not really describes the classical scattering problem but describes the
classical Regge boundary value problem (see, e.g., [13]) even if in its particular case
(the problem with a constant potential).

A few similar isomorphism studies by M. Denche [9] and A. Aibeche, A. Favini,
and Ch. Mezoued [1], treat more general boundary conditions than (1.2) but their
abstract equations do not cover our abstract equation (1.1). Moreover, their results
cannot be applied to the classical Regge problem, even with @ = const # 0. We, in
addition to isomorphism questions, obtain also asymptotic behavior of eigenvalues of
some connected abstract spectral problems.

In the present paper, some simple sufficient conditions for solvability of the
problem (1.1), (1.2) have been found (in fact, an isomorphism theorem has been
proved) and some estimates (with respect to « and 1) for the solution of the problem
(1.1), (1.2), in the space L,((0,1); H), 1 < p < oo, have been also established. The
results imply maximal L,-regularity for (1.1), (1.2). Then, we study asymptotic be-
havior of eigenvalues of a homogeneous abstract problem which is obtained from
(1.1), (1.2) replacing A by i4 and taking o = i. Therefore, the corresponding spectral
problem does not cover the classical Regge problem (x =1) but some another
spectral problem. First, it is proved that the eigenvalues are real numbers.

Note that asymptotic behavior of eigenvalues and eigenfunctions for second or-
der ordinary (and not abstract) differential equations with the spectral parameter in
both the equation and boundary conditions have been studied in many papers. It is
not our goal to give here a full reference on ordinary differential equations, but, for
example, N. B. Kerimov and Kh. R. Mamedov [14] have considered a situation when /
enters quadratically into the equation and enters linearly and quadratically into the
boundary condition.

Some simple application of obtained abstract results to boundary value problems
for elliptic partial differential equations of the second order, considered in a square,
is given at the end of the paper.

Introduce now some necessary definitions and notation used in the paper.

Let £ and E be Banach spaces. The set E1+ Es of all vectors of the form (u,v),
where u € E1, v € Ey with standard coordinatewise linear operations and with the
norm

1 )54 5= 12l 10l g,

is a Banach space and is said to be a direct sum of Banach spaces £ and Ej.
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Let E7 and E be two Banach spaces. Denote by B(E1,E) a Banach space of all
linear bounded operators acting from £; into £ with the standard operator norm. If
E,; = E then B(E) := B(E,E).

Definition 1. A linear closed operator A, densely defined in a Hilbert space
H, is said to be strongly positive if, for some ¢ € [0, 7) and for all complex numbers u
such that |arg u| < ¢ (including x = 0), the operators A + ul are (boundedly) in-
vertible and the estimate

[, <casi?

holds, where [ is the unit operator in H, C = const > 0. For ¢ = 0, the operator A is
called positive.

A simple example of strongly positive operators are selfadjoint positive-definite
operators acting in a Hilbert space. Note that from strong positivity of an operator A
it follows strong positivity of the operator A*, o € (0,1). Let A be a strongly positive
operator in H. Since A~! is bounded in H, then

H(A") = {u:ue DY), [ullyae= |A"ul}, n €N,

is a Hilbert space whose norm is equivalent to the norm of the graph of the operator
A" If A is strongly positive in H, it is known that the operator —A is a generating
operator of the analytic, for ¢ > 0, semigroup e~* and this semigroup exponentially
decreases, ie., there exist two numbers C >0, o >0 such that |le~™| <
Ce=! 0 <t < 4o0. By virtue of [15, theorem 1.5.5], the operator —A'/? generates
an analytic semigroup, for ¢ > 0, decreasing at infinity.

Definition 2 [20, theorem 1.14.5]. Interpolation spaces (H(A"),H),,, of
Hilbert spaces H(A") and H, where A is a strongly positive operator in H, are
defined by the equality

(H( n);H)H.,p:: {u U € H, HMH(H(A”').H)a

P

+o0
- / 0 || Ane Au|) dt < 00}7 0€(0,1), p>1, neN.
0
We denote (H(A"),H), ;= H(A"), (H(A"),H),,:= H.
Denote by L,((0,1); H) (1 < p < co) a Banach space (for p = 2 a Hilbert space)
of vector-functions © — u(x) : [0,1] — H strongly measurable and summable with
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order p and with the norm

p
oty o (/ (e ||de) < .

Denote by W2"((0,1); H(A"), H) := {u : A"u,u®" € L,((0,1); H)} a Banach space
of vector-functions x — u(x) : [0,1] — H strongly measurable and summable with
order p and with the norm

(2n)

el o 2yazamy.n = A"l 0.0+ 141, 011, < 00

It is known [20, theorem 1.8.2] (see also [22, theorem 1.7.7/1]) that if u € Wg"((O, 1);
H(A™), H) then, Vx, € [0,1],

u (o) € (HA"),H) , j=0,....2n—1.

2 - Homogeneous equations

First, consider the following boundary value problem, in a Hilbert space H,

(2.1) L(J,D)u = J2u(x) — u"(x) + Au(x) = 0, x € (0,1),

22) Li(Aw = o’ (1) + (1) = fi,
) Lou := u(0) = f.

Theorem 1. Let the following conditions be fulfilled:

1. A is a selfadjoint, positive-definite operator (A = A* > *I) in a separable
Hilbert space H;
. ) T
2. o # 0 is some complex number with |argo| < 5>

Then the problem (2.1), (2.2), fm"fk € (H(A),H) 5 212'9, 05 :%
p € (1,00), and for |arg | < ¢ < , || s sufficiently large, has a unique solution

u(x) which belongs to Wg( (0, 1),H (A),H) and, for these 1, the following estimate
holds for the solution of the problem (2.1), (2.2)

O’ where 0; =

el 0.0y 19" L 0.1300) HI AU 0,110

2
(23) <> (Wil A Wil

k=1
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Proof. SinceA = A* > 32Iin H, by the spectral theorem (see, e.g., [17, chapter
V, sections 5 and 6, chapter VI section 5]) there exists an operator-valued function

+00
f(A)= [ f(wdE, for any measurable, bounded complex-valued function f(x).
Furtherfnore, f(A)is abounded operator in H and || f(A)|| g, < esssupl|f(x)|. Then,

P <u<oo
from condition 1, it follows that for any v, 0 <y < & there exists C,, > 0 such that

IR(LA)| < Cy(1+[2)7, Jarg 2| = 7 — v,
where R(2,A) := (A —A)™" is the resolvent of the operator A. Hence, by virtue of
[22,1lemma5.4.2/6], for |arg 1| < ¢ < g,there exists an analytie, forx > 0, and strongly

9 N\1/2

continuous, for x > 0, semigroup oo (A+FT) By virtue of [22, lemma 5.3.2/1], for a
function % (x) being a solution of the equation (2.1), for |arg 4| < ¢ < g, belonging to
WIE((O, 1);H(A),H),1 < p < o0, it is necessary and sufficient that

1/2

) /: 5
(24) ’LL(O{I) _ efx(AﬁLAZI)l 291 + e*(lfm)(A+ﬂ.zl) g,
where g, € (H(A),H)le’p, k=12
A function u(x) of the form (2.4) satisfies the boundary condition (2.2) if

1/2 . 1/2
[—a(A + /121) +M]e(“‘“2’)mgl + [oc (A + /121) ! +JJ] 9 =fi,

(2.5) /

gr+e D gy — gy

We rewrite the system (2.5), in the space H := (H(4), H)%Jr%p’p + (H(A), H)i_’p, in
the operator form
26) e e (%) = (4).
92 fo
where A(/) and R(4) are operator-matrices of dimension 2 x 2:
o \1/2
AQ) = (0 w(A+72) +H>’
I 0
and
1/2 ) 2
{_a(A w21)! +/II] e (a+2D)’ 0
R(;L) = ’
0 o (a2
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Show that the operator A(7), in the space I, for 4 from the sector |arg 1| < ¢ < g ,

has a bounded inverse A (2) ! acting from H into (H(A), H), p—F (H(4), H)QL pandit
2p P
holds the estimate

2.7) HA(A)lHB( )g c,

HL(H(A).H) 1+ (H(A)H)
2p 2p

where C > 0 is a constant independent on /. Since A(2) " formally has the form

0 I
-1

AGY= [oc(AJr/lzI)l/erH] 0

1/2 -1
then it is sufficient to show that the operator [oc (A+221) +/11} , for

larg /| < ¢ < =, is bounded from (H(A),H),. ., into (H(A),H)

2
the estimate

and it holds

1,1 1
ztapD s P

2.8) [oc (A + /121) Y 2+/11} B

B(<H<A>,H>% L (H(A)LH),

where C > 0 is a constant independent on /.
-1
Consider the function f () = (1 +oa A(u+ /12)71/2) , for a fixed o # 0 with

larg o] < g Note that zz = |z|%ei$, where —7n < argz < n. Show now that, for

T
< i
larg 2l <o <3,
. -1 . —1 12 71/2
2.9) inf |(£0) " = it |(1+072 (et ) >(, 3C>0.
P2<u<oco P <pu<oo

Since |arg o| < g then |arga!| < 72—Z Ifo<argl<g< g and y* < u < oo, then 0 <
-1 -1/2
arg (ﬂ+/12) <2pand —2¢ < arg(quiz) <0. Therefore —¢p < arg(ﬂ + iz) <0.
~1/2
Consequently, —¢ < arg (i (/4 + /12> ) <@ If —p<argl<0and ) < u< oo,
5 2\ ~1/2
we have —2¢ < arg (u + A ) < 0. Hence, 0 < arg (,u + A ) < ¢. Consequently,

—1/2
—p < arg (i(u—k/lz) ) < . So, for |argi| < ¢ <g and »? < i < oo, we have
o\ 172 -
‘arg (xl(,u + A ) )‘ <p< 5 Therefore,

(2.10)

~1/2
arg(ocl/l(u—i-/lz) )’§g+q)<n.
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If (2.9) is not true then there necessarily exist sequences x,, and 4, such that 1% <
~1/2 ) 12
0, < 00, argZ| < ¢ and a Vi (w, +72) 4L =0 or a7 (4 2) - -1

and this contradicts with (2.10). Consequently, (2.9) holds. It means that f(u) is a
bounded function on [?, o), uniformly on 4, |arg /| < ¢ < g Then, according to the
remark at the beginning of the proof, 3C’ > 0 such that

-1

—1/2171
(2.11) [1+alz(A+)?1) /] <C

-1/2
< sup ‘1 + ofli(;t + /12>
B(H) 72 <pu<oco

” [

uniformly on 4, |arg | < ¢ < g Note that “ess sup”=“sup” since f(x) is a continuous
function.
On the other hand, by the same remark at the beginning of the proof, for 4 from

the sector |arg A| < ¢ < E , we have

2
-1
(2.12) H (A + 121) < Lo .
) 1414
Similarly,
-1/2 Co
2.13 H A+ 7P < :
. ( ) B 1+14
Then, from the representation
o \1/2 *1_ 1 . o\ —1/2 -1 0\ —1/2
(2.14) {a(AjLz 1) +i| = |I+a /I(A+A 1) <A+/1 1) ,
by virtue of (2.11) and (2.13), for 4 from the sector |arg 1| < ¢ < g, we have
1/2 -1
(2.15) [oc (a+21) HJ} < sos0
B 1+ 4

Now prove the estimate (2.8). According to (2.14), it is sufficient to show that
~1/2
a) the operator (A + 22 ) for A from the sector |arg A| < ¢ < g is bounded
from (H(A),H),, . , into (H(A),H )i , and it holds the estimate

1 1
2tz

(2.16) H (A + ;?1)_1/ : <c,

B(<H<A>,H>l+;p,<H<A),H>1 p)
2 2p 2p’

where C > 0 is some constant independent on /;
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—1/2\ 71
b) the operator (I +a 1A (A + 22 ) > , for A from the sector |arg 1| < ¢ < g,

is bounded from (H(A),H) Ly into (H(A),H) Lo and it holds the estimate
P’ D’

—172\ !
(2.17) H (1 + orl/l(A + ;FI) ! ) <,

B (<H<A>,H>l p)

2p

where C > 0 is some constant independent on /.
Note that a) was proved in [6]. Prove b). From the estimate (2.11) it follows that,
for |arg 4| < g, it also holds the estimate

<I + a‘li(A + ;,21) Y 2) B

Then, according to the interpolation theorem [20, theorem 1.3.3/(a)] (see also [22,
section 1.7.9]), from the estimates (2.11) and (2.18) it follows that, for A from the

—1/2771
sector |argl| < ¢ < g, the operator {I + oc’l/l(A + X2I> ] is bounded from

(H(A),H),, into (H(A),H)

<C, 3IC>0.

(2.18) ‘
B(H(4))

0 for any 6 € (0,1), and it holds the estimate

“1/2\ !
(2.19) ‘ (1 n orli(A + ;?1) >
B((H(A).H),,)
—1/2\ 1 =0 —1/2\ ! 0
< (1 Yol (A + /121) ) <1 Ty (A + ;,21) ) <C.
B(H(A)) B(H)

Take § = %in (2.19). Then we get (2.17). So, from the representation (2.14), by virtue

of the estimates (2.16) and (2.17), it follows that for A from the sector |arg 1| < ¢ < g

the estimate (2.8) holds. Consequently, for A from the sector |arg 4| < ¢, the operator
A(4) " is bounded from I into (H(A), H ), + (H(A),H )ZL’ , and the estimate (2.7)

2P
holds. Then, from the equation (2.6), we hrjwe
2.2 I+A(»)™ AITISTEa)
(2:20) (10 R) (9) =40 (4

We can now show that all the operators in the operator—matrix A(1) R(A), for
sufficiently large || from the sector [arg 4| < ¢, are bounded from (H(A),H), , into
2p?
(H(A),H) Loy It is sufficient to show this for the operator

1/2

[oc (A + /121)1/ 2+H} B {oc(A + /121) Y ZHJ} o (A+21)
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From (2.15) it follows that for A from the sector |arg A| < ¢ < git holds the estimate

{oc (A + 121) Y 2+H} B

(2.21) <

B(H(4))

1+ 4]

Then, by virtue of the interpolation theorem [20, theorem 1.3.3/(a)] (see also [22,
section 1.7.9]), it follows from (2.15) and (2.21) that for A from the sector

larg A| < ¢ < git holds the estimate

[oc (A + 121) Y 2+JJ}

-1
(2.22)

B((H(A)’H%J 1+]4]°

By virtue of [22, lemma 5.4.2/6], from the interpolation theorem [20, theorem 1.3.3/(a)]
it also follows that, for |arg 1| < ¢ < g, the estimates

1/2 2172
(2.23) H (A + ;?1) o~ (A+71) < Ce ¥, 30,0 >0,
B ((H(A)H); ,
2p
and
9 on1/2
(2.24) ¢~ (A+7T) <Ce Y 3C,w>0,
B ((H(A) my,

hold. Then, by virtue of the estimates (2.22)-(2.24), for A from the sector
larg A| < ¢ < g, we have

[oc (A + 121) Y 2+H} B [rx (A + 121) Y 2+M} o—(arn)”

< C((l + A e 4 efww) < Ceoll,

Consequently, for sufficiently large |1| from the sector |argi| §¢<g,

the operator A(A)'R(J) is bounded from (H(A)’H)%p+(H(A)’H)%p into
P’ 2p

(H(A),H)LH— (H(A),H), , and it holds the estimate

2p? 2p?

(2.25) |a)RG)| < Co oV < 1.
B((H(A)‘H%ﬁ (H(A).,H)z_lp_p)

Hence, according to the Neumann identity, for |argi| < ¢ <g and sufficiently
large |4|,

(2.26) (1+A40) 'R () ey i (—A(i)‘%(l))k,
k=1
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where the series converges in the norm of the space of bounded operators in

(H(A),H) Ly + (H(A),H). »- Then, from (2.20), for sufficiently large |4| from the
7 2p?

sector |arg A| < ¢ < g, we have

(g;) — (I+A(/1)’1R(/1)> A (2)

Consequently, using the formulas of A and R()) and (2.26), for sufficiently large
|4] from the sector |arg A| < ¢, the elements g; and g2 can be represented in the form

(2.27) 9k = (Cia(4) + Ria(A))fi + (Cr2(4) + Ri2())f2, bk =1,2,

1/2 -1
where Cy(2) =0, Cia(2) =1, Car(2) = {a(Aw?I)/ +ﬂ] , Cp(2) =0, and

Ryj(2) are some bounded operators acting from (H(A), H), b dp into (H(A),H ) L
Furthermore, from the estimaties (2.7) and (2.25) it follows that for larg A| < ¢ and
4] — oo,

@2) Ry (o

p HAVH)

)S Ce. 3C, 0> 0.

Nl_

l
ba

From the representations of A(1)~" and R(2) it also follows that, for sufficiently
large || from the sector |arg A| < ¢ <3 , for the operators R;;(4) we have

(2.29) (| R (2 < ce*wlﬁl 3C, 0 > 0.

M

Substituting (2.27) into (2.4), we get
2

(230) ) = Z{e-w“ " (C(2) + Rul2))
k=1 1/2
+e*(lfx)(A+/121) ! (Cor (1) + Rzk(ﬂ))}fk.

In order to show the estimate (2.3), it is necessary to estimate, for sufficiently large
|4] from the sector |arg | < ¢ < g,
Ly,((0,1); H). The integrand expressions are obtained from the functions u(x), u” (x),
Au(x), where u(x) is determined by the equality (2.30). Here, [22, theorem 5.4.2/1
and lemma 5.4.2/6] and the estimates (2.11), (2.12), (2.22), (2.28), and (2.29) are es-

sentially used. Estimate one of these integrals, for example, the integral

1 ’ 1/p
K5 ( dx) .
0

By virtue of [22, theorem 5.4.2/1 and lemma 5.4.2/6] and the estimates (2.11), (2.12),

some finite number of integrals in the space

*(1 x)(AHZI) CZI( )1




252 BAHRAM A. ALIEV, NARGUL K. KURBANOVA and YAKOV YAKUBOV [12]

and (2.19), for sufficiently large || from the sector |arg A| < ¢ < E, we have

2
1 1/p
P
12 / do
s H
1 ) e T 1/p
= |42 / ¢~ 1-D(A+T) {fx(A+221) +u] fill dw
0 H
-1

2 \1/2 -1/2 -1/2
o-t-o(a+2n)" 1 (A + ;?1) / [1 n orli(A + ;?1) / ] fi
o

2\1/2
e—(l—x)(A-M]) CZl(i)fl

P 1/p
dw)

H

» 1/p
dm)

H

“(

1
<— 2P
o

(A n ;,21) -

B(H)

1/2 N1/ —1/271
(a+21) P gma-n(avin)” [1 +arli(A+2) ] f

/

1 —1/2771
I+o 'A(A+ 221 ]
1+ |2 [ ( ) /i

1
< AP
o

—1/271
|ARG) {I—&—ali(A—&-)FI) } f )
H

< (Willrarm, .+ il )

1,1
2ty

3 - Nonhomogeneous equations

Let us now consider our full boundary value problem in a separable Hilbert space
H,ie.,
(3.1) L3, D)u := Pu(x) — u’ (x) + Au(x) = f(2), x € (0,1),

Li(A)w = aw/(1) + 2u(1) = f1,

(3.2) Lo = u(0) = fo.
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Theorem 2. Let conditions of Theorem 1 be satisfied.
Then the operator 1L(1) : w — L()u := (L(A, D)u, L1(2)u, Lou), for sufficiently

large |A| from the sector |arg | < ¢ < g , 1s am isomorphism from WZ((O, 1);H(A),H)

onto L,((0,1); H)+ (H(A), H),, ,+ (H(A),H),, ,, where 0y = 11 oy = 1

v 2Tz P g
p € (1,00), and, for these A, the following estimate is valid for the solution of the
problem (3.1), (3.2)

O1.p

|/1| ”u”L ((0,1);:H) HW HL ((0,1);H JrHAMHL (0,1);H)

(3.3) c 2 oo
< CA Az, 0,10 Jrz:(||fkH(zlr(A),H)(,k_pJF|/h| ka”H) .
Je=1

Proof. The injectivity of the mapping I.(4) follows from theorem 1, since the
homogeneous boundary value problem corresponding to the boundary value pro-
blem (3.1), (3.2), for sufficiently large || from the sector |arg | < ¢ < g, has only a
trivial solution. Thus, it is sufficient to show that 1.(1) is surjective, i.e., for any
J € Ly((0,1); H) and any fi € (H(A),H)y, ,, /> € (H(A),H),, ,, there exists a solu-
tion of problem (3.1), (3.2) belonging to W;((O, 1;H(A), ) eflne flx) =f(x) if
x € (0,1)and f(x) =0ifx & (0,1).

A solution of the problem (3.1), (3.2) can be represented in the form of the sum
u(x) = uy (x) + ua2(x), where u; (x) is the restriction on (0, 1) of the solution #; (x) of
the equation
(3.4) L(J,D)in(x) =f(x), € R = (—00,+00),
and ug(x) is a solution of the problem
(83.5) L(4,Dyug(x) =0, x < (0,1), Li(D)ug =fi — Li(Hw1, Loug =fo — Louy.

It is obvious that a solution of the equation (3.4) is given by the following formula

in(e) = 5 [ L) FF (s
R
where Ff is the Fourier transform of the function f (x) and L(4, ¢) = —o2I + A + 21,
Further, it is proved in [22, theorem 5.4.4] that the solution #; belongs to
WZ?(R;H (A), H) and, for the solution, it holds the estimate

(3.6) i 11l 7, (reeny 1120 w2 romra) . < © (R’ larg 4| < ¢.

Therefore, u; € Wz((O, 1); H(A),H) and, from (3.6), for |arg 4| < ¢, we have

(8.7) |7 lleeallz, 0.0y F 1 lwz 0.0y 04) .10 < CILF Nl 0.2):0)
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By virtue of [22, theorem 1.7.7/1] (see also [20, theorem 1.8.2]) and the inequality
(3.7), we have

u (o) € (H(A), H)yy Va0 €[0,1], 5= 0,1

Hence, Li(Z)u1 € (H(A),H),, , since (H(A),H), ,C (H(A),H),, 1 ,, and Lyu €
1, 2p° 2 2p

(H(A),H)y, ,- Thus, by virtue of theorem 1, the problem (3.5) has a unique solution

uz(x) that belongs to W2((0,1); H(A), H),

larg A| < . Furthermore, for the solution of the problem (3.5), for |arg | < ¢,

|4| — oo, we have

(3-8) Wz||u2||Lp((071);H)+H“ HL (0,1): +||Au2||L (0,1);H)
_C(HfI*Ll(;t)ul”(H( A)H
+w2“‘9“\|f1—L1<A>u1nH+M|2“—92>||fz—Lzu1||H)

<C(Illraran, ol

_L 1
2ty P 3

o HlIf = Lowalf g
z*z—P

P %"p

+L.p
tapl

+ Al (Dl e IWH%H AH

l»

_p+Hu1(O)H(H(A) H),

1 L
2p 2p

+ PR (| |f1|\H+Hu1 )+l (W)l )

120 (Wl s )] )

By virtue of [22, theorem 1.7.7/1] (see also [20, theorem 1.8.2]) and (3.7), for any
xo € [0,1], we have

(s) _
89 i@ oy = Clualluonaarn = ClA o, 5=0.1

pasrld
By virtue of [22, theorem 1.7.7/2], for any complex number A and any u €
W2((0,1): H), s = 0,1,

(3.10) 2P [ o)< € (121

Dividing (3.10) by M|ﬂlﬂ, for ie C,u e Wg((O, 1);H),s = 0,1, we have

241
7;((0,1);15{)+|/1| +’”||u||L,[,(<0,1);117>)~

B11) PPl @o) | 4= € (oAl oy ) » 8 = 0,1

Then, from (3.7) and (3.11), for |arg 4| < ¢ < g, we have

2
us? (o) HH§ C(||u1 lwe((0.0):n) 1A [l ”L,,((O,l);H))

2
<:COWHMWMUﬂMNﬂ+M|WMMMQMﬂDfSCHﬂhAmmm’ s=0,1.

312)  |ApOEd)
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According to the estimates (3.9) and (3.12), from (3.8), for |arg 4| < ¢ < ; |4 — oo,
we have

(3.13) M"ZHuZHL,,((OAI);H)_FHug||L,,((0A1);H)+HAu2| Ly((0,1);H)

2
\ 2(1-0;
<C [w|f|LI,(<0,1>;H)+Z(|fk|<H(A>,H>(,k\p+u| < “nfan)] 7
k=1

1 1 1
where 0 :é""%’ 0o :%.
Then, from (3.7) and (3.13) it follows (3.3) since # = u; + us. The theorem is
proved. O

4 - Asymptotic formulae for eigenvalues of the homogeneous problem (1.1), (1.2) for
some special case

In a separable Hilbert space H, consider the following boundary value problem on
[0,1] for a second order elliptic differential-operator equation

(4.1) —u" () + Au(x) = Pu(x), x e (0,1),

uw'(1) + Au(1) = 0,

(4.2) 2(0) 0.

where 1 is the spectral parameter, A is a linear unbounded, selfadjoint, positive-
definite operator in H and A~! is a compact operator in H. This problem is a
homogeneous problem corresponding to (1.1), (1.2) if one replaces 2 by i1 and takes
o =1in (1.1), (1.2).

Lemma 1. The eigenvalues of the boundary value problem (4.1), (4.2) are real.

Proof. Denote the eigenvectors of the operator A, corresponding to the ei-
genvalues 1y, — +00,by ¢, where k =1,2,3,.... It is known that {¢,} forms an

orthonormal basis in H. Then, from the expansion u(x) = >_ (u(x), ¢;),, o), We get,

for the Fourier coefficients u(x) = (u(x), ¢;.)y, the followin:g spectral problem
(4.3) —ul (@) + k() = P (x), @ € (0,1),

uy, (1) 4+ Aug(1) = 0,

(4) e (0) = 0.
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Thus, the study of the eigenvalues of the boundary value problem (4.1), (4.2) is reduced
to the study of the eigenvalues of the boundary value problem (4.3), (4.4) for different
natural k. The spectrum of the boundary value problem (4.3), (4.4) consists of those A for
which the problem (4.3), (4.4) has a non-trivial solution u;(x), at least for one k. The
number A = +, /i, cannot be an eigenvalue of the problem (4.3), (4.4), for sufficiently
large k, sinceif 2 = +, /1y, 1), # 1thenthe problem (4.3), (4.4) has only a trivial solution.
Let A be an eigenvalue of the boundary value problem (4.3), (4.4) and let uy(x, A)
be the corresponding eigenfunction. Multiply the both sides of equality (4.3) by the
function u; (x, 1) and integrate the obtained identity with respect to 2 from 0 to 1:

1
(45) - / (2, A (a, A)dae + g, / | (e, 1) [Pdae = 72 / e (¢, 2) [P
0 0 0

Using the formula of integration by parts and the boundary conditions (4.4), we get

1y

—/u}c(ac,i)ujc(ac,/l)dac
o O

1
/ ol 2 Yo 2) e = s AJut (e, )
0

1
= i (1, )uj, (1, 2) — ug (0, )}, (0, 1) — /|u}6(ac, A)’Zdac
0

_ f)L|uk(1,/l)\2—/|u}c(ac,},)}2dx.

0
From here and (4.5), it follows that

1 1 1

(4.6) /|uk(x 2)Pdac — Ay (1, 2)] —,uk/|uk(x,/1)\2dx— /]u}c(x, )M)‘de =0.

0 0 0

Denote

/ un(e, 2)Pde, b(2) = — (L, D),

:—ﬂk/|ukxl|dac—/|ukx/1|dx

Then, we can rewrite the equation (4.6) in the form
(4.7) a(2) 7% + b(2) A+ cp(2) = 0.
Since, for each k, a;(1) > 0, by(2) <0, ¢x(1) < 0 then bZ(4) — dag(4)ck(4) > 0.
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Consequently, for each k, the equation (4.7) has only real roots . Lemma 1 is
proved. O

Theorem 3. Let A be a selfadjoint positive-definite operator in a separable
Hilbert space H and let A~ be a compact operator in H.

Then the boundary value problem (4.1), (4.2) has the following three series of
eigenvalues : !

)L](Cl) ~ [ FE k — +o0,

2 b)
and

}W(ZZJC) =V My + In s }5137]6) = —\ U + 517»

where py, — + oo are the eigenvalues of the operator A; 9, ~ n2n?, 6, ~ n®r® when
n — 4+ oo.

Proof. The general solution of the ordinary differential equation (4.3) has the
form

(4.8) (1, 2) = Cre= Vi 4 Coo~ -0V,

where C;, 1 = 1,2 are arbitrary constants. Substituting (4.8) into (4.4), we get a
system with respect to C;, 1 = 1,2, whose determinant is of the form

K(2) = (i—m>6‘2m— </1+ \/ﬁ)

Consequently, the eigenvalues of the boundary value problem (4.3), (4.4) consist of
those real 4 # +,/1y; which satisfy the following equation, at least for one z,

(4.9) (,1 - m>e2 wtt (A + m> =0.

Therefore, the eigenvalues of the boundary value problem (4.3), (4.4) or, the same, of
(4.1), (4.2), are zeros of the function (with respect to 4, 1 # &, /1), standing at the
left-hand side of the equation (4.9), for each k. Rewrite the equation (4.9) in the form

(4.10) Zsinh <\/ﬂk _ 12> + /1 — 72 cosh (W) —o.

! By asymptotic behavior 2, ~f(n),m — 400, we mean the standard concept, i..,

;vn o

lim

n—-+00 f(’}/L)
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Thus, the eigenvalues of the problem (4.1), (4.2) consist of those real 4 # £, /1y
which satisfy the equation (4.10), at least for one y;.

Find the eigenvalues / for which /% < ;. Assume \/u, — /2 =y (0 <y < V)

Then 1 = ++/y, — y2. First, take 1 = /1y, — ¥? in the equation (4.10). Then, the
equation (4.10) takes the form

(4.11) \/ 1, — Y2 sinh (y) + y cosh (y) = 0, 0 <y <.

Consider the function fi.(y) = /1y, — ¥*sinh (y) +y cosh(y), y € O, /1 1.
Obviously, for each fixed k£ and for all y € (0,/z4; ], fi(y) > 0. Therefore, the

equation (4.11) has no solutions on the interval (0, \/z, ], for any k.

Now, in the equation (4.10), take 1 = —+/u, — %2. In this case, the equation (4.10)
is equivalent to the equation

(4.12) \i —y?2 —yeoth(y) =0, ye O,

Consider the function ¢, (y) = /1, — y* — y coth(y), y € (0, /1y 1. The derivative
/ Yy sinh (2y) — 2y . .

v.(y) = — - - < 0, for y € (0, \/;z; ], since sinh (2y) > 2y, for

Vi, — 2 2 sinh2(y)
y > 0. This means that ¢, (y) strongly monotonically decreases on (0, , /i, ], for each

k. Obviously, ¢, <\/ﬁ;) = \/;(1 — coth (\/;)) < 0, for each k. On the other

hand, some simple calculations show that

W 1 w1 4 2
Pe_ 2 ) B2 1 (14— ) >0,
¢k< 2 ﬂk) \/2 /xk<\/ +,u%—2 ( +62 %_i—l)

X

. . . . . €
starting with some k, since, for any fixed number m, hr+n i + oo. Therefore, the
Xr——+ 00

equation (4.12), starting with some k, has exactly one zero y; and it belongs to the

interval ( B _ ™ 1/ > ie., yi ~ 1/ B, Hence, for the first series of the eigen-
\/ %

values 1 = — ,uk — 2 of the problem (4.1), (4.2), for 1% < U, we get the asymptotic
formula
),(CU ~ = ﬂzk, k — +oc.

Now, let us study the eigenvalues A of the problem (4.1), (4.2) for which
2> . Set 2= /72—, (0 <2< +00). Then 1/, — 22 =iz, sinh(/p;, — /) =
sinh (iz) = isinz, cosh (y/ 1, — /%) = cosh (iz) = cosZ, J2 =22 + py, A= £/22 + .
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First, we take 1 = /2% + 1, in the equation (4.10). Then the equation (4.10) takes
the form

(4.13) \/22+ y8inz +z2cosz =0, z€ (0,+00).
Obviously, z # nn, n = 1,2,... . Then the equation (4.13) is equivalent to the equation

(4.14) 14— cotz=0, ze(0,+00), z#nr, n=12...
V1
Consider the function Fi,(2) =1+ \/% cot z. Since, at each interval ((n — 1)z, nn),
25+ 1y

n =1,2,..., the function F;(z) gets the values from —oco to +o0 and its derivative

We(sin2z — 2z) — 223

F.(z) = <0
g 2(22 + 1,)** sin2z
then, therein, for each k, the function Fy(z) has only one zero zgf): n—Dr<
2P <nr, m=1,2,.... Find the asymptotic formula for 2%, for each k, when
n — —+o0.

From (4.14), we have

/52
M’ ZE(O

cotz = — . ,+o0), 2#£nn, n=12,....
\/22+/lk .
Denote qk(z):—T, 2 € (0,4 00). Obviously, for each k, qr(z) <0,
M
' (2) = —=—=—-—-=> 0, and
qk() zzm
, 2, + 8322
Gi(2) = ———>

B+ m)”

i.e., qir(2), for each k, is a negative, increasing, concave up function. Moreover,

lir+n qr(?) = —1, i.e., the straight line z = —1 is a horizontal asymptote of the

22—+ 00

function gy (z), for each &, and lim g (z) = —oo. On the other hand, the points 2, for
2—0+

each k, are the abscissas of the intersection points of ¢;(z) and the branches of the
function cot 2z, z > 0. Then, z(n’c), for each k, approach the abscissas of the intersection
points of the branches of the function cot z and the straight line # = —1 when natural
n — +oo, ie., sz), for each k, are the approximate solutions of the equation

cotz = —1 on ((n — 1)z, nr). So, for each k,

1
zgc) ~ arceot(—1) + (n — )n = 3{-1- m—-1Dr= (n — Z) n, N — +00.
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Since 4 = /2% + w,, we get that

W =\ e+ @OV = 1o+ 7

22, m — +o0.

Now, take 1 = —+/22 + g, in the equation (4.10). Then the equation (4.10) takes
the form

(4.15) \/22+ ,sinz —zcosz =0, ze€ (0,+00).

Obviuosly z # nn, n = 1,2, ... .Then the equation (4.15) is equivalent to the equation

2 .
where y, ~ (n —1)*% ie., p, ~ 0

(4.16) 1-——°  cotz=0, ze(0,+00),z#nm, n=12,...

V&

In the same way, as the equation (4.14), investigate the equation (4.16) and show that
the last series of the eigenvalues of the boundary value problem (4.1), (4.2) has the
following representation

;‘;3’]6) ==\t On

where J, ~ n?r?, n — +o0o. The theorem is proved. O

5 - Application of abstract results to elliptic partial differential equations

Let us consider a boundary value problem with a parameter for an elliptic partial
differential equation of the second order in the square [0, 1] x [0, 1]

(51)  L(4,Dy,Dy)u := Pula,y) — Du(x,y) — D, (a(y)Dyu(x,y)) =f(x,y),

Ly(Au = oDyu(l,y) + 2u(l,y) =fi(y), y €[0,1],

(5.2)
Low :=u(0,y) = fo(y), y €[0,1],
(5.3) u(x,0) = u(x,1) =0, x € [0,1],
0 0
where D, := % D, = 8_?/

Denote the interpolation space of Sobolev spaces by

B;,(0.1) = (W (0.1, Wy 0.1)

where 0 <sp,s; are integers, 0<0<1 1<g<oo, 1<p<oo and
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s = (1—0)so+ 0s;. Set

W30.1) = B}, (0.1) := (W (0.1), W(0.1))

if 0 < s # integer.

Theorem 4. Let the following conditions be fulfilled:

1. a(-) € CY[0,1], a(y) > 0fory € [0,1];

2. o # 0 1is a complex number with |arg o| < g

Thenthe operator () : w — L(A)u := (L(4, Dy, Dy)u, L1(A)u, Lyw), for |arg 4] <
0 < g and sufficiently large |2, is an isomorphism from W3((0,1); W3(0,1),
L3(0,1)), 1 < p < o0, onto

_1 . _1
5 (0,1)4 B 7 (0,1),

2,p,%
where

1
"0,1), 1<p<2,

_1 1 1
B;,p’l(oa 1):=qW; <(0, 1); Of(min {w, 1 —a}) 7 ju(e)Pde < 00), p=2

(0, 1);0(0) = u(1) = 0), p > 2,

_1 _1
By} (0.1) = By /(0. 1):u(0) = (1) = 0),
and, for these A, for the solution of the problem (5.1)-(5.3) it holds the following
estimate

2
(54) "” ||?/L(.7€, Z/) |‘LP((O,1),L2(O.1))+||Dgzcu(xa y) ||Lp((0,1);L2(0,1))

+H[Dy (@@) Dy, 1)) |1, (0.1):2501)

< CIANf @)L, 0.1)00.0) T 1/ (@)

”B;’fw,l)

_1 _1
W g, HE O o+ HIRD 0 [
2,p \7?

Proof. Inthe space H = L2(0,1), consider an operator A which is defined by
the following equalities

D(A) == W5((0,1),u(0) = u(1) = 0), Au:= (~a(y)u'(y))"
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Then, we can rewrite the problem (5.1)—(5.3) in the operator form (3.1), (3.2) and
apply Theorem 2. From condition 1 it follows that the operator A is selfadjoint,
positive-definite in H = Ly(0,1), i.e., the only thing remains is to write down

explicitly the interpolation spaces (H(A), H )OA:JO’ where ¢ = % —+ 2i and 6 = 2i
By virtue of [20, theorem 4.3.3], P P
(H(A),H)y, 1 = (W3((0,1);u(0) = u(1) =0), Lz (0, 1))%%1,
B, (0.1), 1<p<2,
1
= wéan;fmmqmlxnlmmﬁmw<m>,pz
0
1-1
B, ;((0,1);u(0) = u(1) = 0), p > 2,
. 1-1
ie., (H(A),H)%+$’p = lep”w (0,1) and
(H(A)H)y , = (W3((0,1);(0) = u(1) = 0), Lz(0, 1))2%40
21 91
=B, ,/((0,1);u(0) =u(1) =0) =B, ; (0,1).
The theorem is proved. O

Consider now, in the square [0,1] x [0, 1], the eigenvalue problem

Po(x,y)  0v(@,y) 2
) — ; A =1
(5.5) oz o T wv(@,y) = o, y),
ov(1,y)
IALY) L w1, y) =0,
(5.6) oo LY
v(0,y) =0,
ov(x,0)  do(x,1) .
. - = - =0,1,2
(5 7) ay] 8y] b j 07 ) )37

where @ > 0 is some number. Rewrite the problem (5.5)—(5.7) in the operator form

—u"(x) + Au(x) = Pu(x), e (0,1),

w'(1) + Ju(l) =0,
u(0) =0,

where u(x) =v(x,-) is a vector-function with values in the Hilbert space
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H = L,(0,1) and the operator A is defined as follows

=3
Obviously, the operator A, defined by the formula (5.8), is selfadjoint and positive-
definite and A~! is a compact operator in L»(0,1) since the embedding
D(A) C Ly(0,1) is compact. Some standard calculations show that the eigenvalues of
the operator A are equal to x;,(A) = 16k*zn* + w, k =0,1,2,.... Then, by virtue of
Theorem 3, for the eigenvalues of the boundary value problem (5.5)—(5.7) the fol-
lowing three series are obtained:

(58) D(A) = Wg((o, 1); w9 (0) = w9 (1), j =0, 1,2,3), Au +ou.

AV~ —2VRIPR, k — + oo,

and
AR =\ 16kt 4y, I8P = —\/16kint + 6,

where y,, ~ n%n2, 8, ~ n?n® when n — +oco. Using, e.g., [16, Lemma], one can write
the last two series as asymptotic formulae (with respect to one index instead of two
indexes of the series):

2 2

271'2 3 2 2\ 3

22~ (—) s, 2B~ —(i> m, m — + o0,
Y 14

l72[
where y = [ (cost):dt.
0
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