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YoSHIAKI FUKUMA

Sectional class of ample line bundles on smooth projective varieties

Abstract. Let X be an n-dimensional smooth projective variety defined over
the field of complex numbers, let Ly, ..., L, ;,A; and As be ample line bundles on
X. In this paper, we will define the sectional class cl;(X, Ly, ..., L, ;;A;,As) for
every integer ¢ with 0 <14 <mn, and we will investigate this invariant. In parti-
cular, for every integer ¢ with 0 <14 <mn, by setting L; =---=L,_; =L and
A; = Ay = L, we give a classification of polarized manifolds (X, L) by the value of
lyX,L) :=el;X,L, - ,L;L,L).
~——
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1 - Introduction

Let X be a smooth projective variety of dimension » defined over the field
of complex numbers, and let L be an ample line bundle on X. Then (X, L) is
called a polarized manifold. Assume that L is very ample and let ¢ : X — PV
be the morphism defined by |L|. Then ¢ is an embedding. In this situation, its
dual variety XV — (PV)" is a hypersurface of N-dimensional projective space
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except some special types. Then the class cl(X,L) of (X,L) is defined by the
following.

deg(XV), if XV is a hypersurface in (PV)"
cdX,L) =
0, otherwise.

A lot of investigations by using el(X, L) have been obtained (for example [23], [27],
[32], [24], [28], [26], [1], [31] and so on). In this paper, we are going to define a
generalization of this invariant. Let X be a smooth projective variety of dimension
nandlet Ly,...,L, ;,A; and Ay be ample (not necessarily very ample) line bundles
on X. Then in Section 2 we will define the sectional class cl;(X, L1, ..., L,_;;A1,As)
for every integer ¢ with 0 < ¢ <n (see Definition 2.8), and we will study some
fundamental properties concerning this invariant. In Section 3, we consider the
following special case: Let L be an ample (not necessarily very ample) line bundle
on X and we set L1 =---=L,_; =L and A; =As = L. Then we will define
c,(X,L) :=cly(X,L,---,L;L,L). We will call this invariant the ith sectional class of
——

(X,L). In Section 3,n\;vle study this invariant cl;(X, L) for the case where L is not
necessarily very ample and will get some results about cl;(X, L).

Here we note the following: Assume that L is very ample. Then there exists a
member X; € |L; ;| such that each Xj is a smooth projective manifold of dimension
n—jandL,; := L|X7_ for every jwith 1 < j < — 1. In this case, we see that cl;(X, L) is
the class of the i dimensional polarized manifold (X,,_;, L,,_;). In particular, if i = »,
then cl, (X, L) is equal to the class cl(X, L) of (X, L) if L is very ample.

As we said above, there are a lot of works about the class cl(X, L) for very ample
line bundles L, that is, the case where ¢ = n and L is very ample. Classifications of
(X, L) concerning cl;(X, L) are known for the following cases.

e The case where 1 = n < 3 and L is very ample (see [23], [27], [24]).

e The case where 7 = 2, n > 2 and L is very ample (see [32], [28], [26]).

e The case where 1 = n = 2 and L is ample (see [31]).

In this paper, we give classifications of (X, L) by the value of cl;(X, L) for the
following cases, some of which are natural generalizations of the known results.

e The case where 7 =1, n > 3, cl;(X, L) < 4 and L is ample.

e The case where i = 2, n > 3, clo(X, L) < 16 and L is ample and spanned.

e The case where 1 = 3, n > 3, clg(X, L) < 8 and L is ample and spanned.

e The case where 1 =4, n > 5, cly(X, L) < 1 (resp. cly(X, L) = 2) and L is ample
and spanned (resp. very ample).
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In Subsection 3.1, we calculate cl;(X, L) for some special cases. The results in
Subsection 3.1 will be used in order to classify (X, L) by the value of cl;(X,L). In
Subsections 3.2, 3.3, 3.4 and 3.5 we obtain the classification of (X, L) by the value of
cli(X, L), clo(X, L), cls(X, L) and cly(X, L).

We see from the definition of the ith sectional class that it is somewhat hard to
calculate this invariant in general (see also [18]). But we expect that the tth sectional
class has properties similar to those of the class of i-dimensional projective mani-
folds, and we believe that this invariant is useful for investigating polarized mani-
folds. We also hope that we can give a characterization of special polarized manifolds
by the value of sectional classes. This is the reason why we define this invariant.

In our paper for the future, we will define and study the sectional class for the
case of ample vector bundles.

2 - Definitions and fundamental results

Definition 2.1. Let L4,..., L, be ample line bundles on a smooth projective
variety X. Then (X, Ly, ..., Ly,) is called a multi-polarized manifold of type m.

First we recall some invariants of polarized manifolds which are used later.

Definition 2.2 ([16, Definition 2.1.3]). Let X be a smooth projective
variety of dimension 7 and let £ be an ample vector bundle on X with rank £ = r.
We assume that » < n. For every integer p with 0 < p < n — r we set

p
Cpr(X, &)=Y erX)sy_r(E").
k=0

Notation 2.1. (1) Let (X, L) be a polarized manifold of dimension n. Then
the Euler-Poincaré characteristic y(L®") of L is a polynomial in ¢ of degree % (see
[21, chapter I, § 1]), and we put

AL =" (X, L) (t +§._ 1).
j=0

(2) Let Y be a smooth projective variety of dimension 7 > 1, let 7y be the tangent
bundle of Y and let Qy be the dual bundle of 7y. For every integer 5 with
0<j <1, weput

hi (), - e (Y)) = 4(@1) = / ¢h(Q]) Td(Ty).
Y
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(Here ch(.Q ) (resp. Td(7y)) denotes the Chern character of .Q’ (resp. the
Todd class of 7y). See [20, example 3.2.3 and example 3.2.4].)

(3) Let X be asmooth projective variety of dimension n. For every integers ¢ and j
with 0 <j <1 < n, we put

i—j—1 .
- (— D'R3Q)) if j #1,
Hy(Xi,j) = ; x
0 if j =1,
j—1

. (= D7RUQYT) i j #£0,
Hy(X;1,9) .= § =0

0 if j = 0.

Definition 2.3 ([9], [10] and [11]). Let (X, L) be a polarized manifold of di-
mension 7, and let ¢ and j be integers with 0 < j <1 < n. (Here we use Notation 2.1.)

(i) The ith sectional H-arithmetic genus /f’ X,L) of (X, L) is defined as fol-
lows:
X, L) =y, (X, L).
(ii) The ith sectional geometric genus 9;(X, L) of (X, L) is defined as follows:

9iX, L) = (= D', (X, L) = 1(Ox)) + 2( — "R (Oy).
j=0

(iii) The ith sectional Euler number e;(X,L) of (X,L) is defined by the fol-
lowing:
e(X,L) := C}" (X, L L,

(iv) The ith sectional Betti number b;(X, L) of (X, L) is defined by the following:
60(X7L) 1f ’L - 0,
bi(X,L) = A -1 .
(D' eX,L)- > 2(- DX, 0)| if1<i<n

J=0

(v) The ith sectional Hodge number hZ’ "i_j(X L) oftype (3,1 — 7) of (X, L) is defined
by the following:

WL = (= D {wd (X, 1) - Hy(X3i) - Ha(X:,5)},
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where

. hi j(CI" X, L), O X L) L > 0,
w!(X,L) ==
L, if i = 0.

Next we recall some invariants of ample vector bundles.

Definition 2.4 ([16, Definition 3.1.1]). Let X be a smooth projective variety of
dimension % and let £ be an ample vector bundle on X with rank £ = » < n. Then
the c,-sectional H-arithmetic genus ;(I,ZT(X ,€) and the c,-sectional Euler number
enr(X, &) of (X, E) are defined by the followingl:

22X, E) =tdyy (CY (X, E), -+, ChT (X, 6))enl).

n—r

en (X, ) :=C," (X, E)cy(E).

Remark 2.1. If » =n, then we see that )(fl{,,(X, &) =cy(&) and e, X, &) =
cun(E).

Definition 2.5 ([16, Definition 3.2.1]). Let X be a smooth projective variety of
dimension % and let £ be an ample vector bundle on X with rank £ = r < n. Then
the c,-sectional geometric genus g,,(X,E) and the c,-sectional Betti number
b, X, E) of (X, E) are defined by the following:

GnrX,E) o= (= ' 7 (X, 0 + (= )" y(0x) + Y (= Oy
k=0

(— 1)’7/”(%()(, &) — Yyt e( - 1)IniX, C)), if r <,
bnm(X7 5) =
en,n(X7 S), if » =mn.

Definition 2.6 ([16, Definition 3.3.1]). Let X be a smooth projective variety of
dimension % and let £ be an ample vector bundle on X with rank £ = r» < n. Then
the ¢,-sectional Hodge number h‘,’;jfi_y_j X, & of type (j,m — r — ) of (X, &) is defined
by the following®:

n,r

RITI(X L E) = (— 1)”"“-7‘{@05_,,”()(, &) -~ Hi(X;n —r,j) — Ho(X;m — m‘)}-

! Here td,_, means the Todd polynomial of weight % — .
% See Notation 2.1 (2).
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Here we set
hnfr,j(C;L’T(X; 5)7 e ,CVL.V (Xa 6))6’)‘(5)7 if r< n,

n—r

cn(E), if r=mn,

w) (X, E) = {

for every integer j with 0 <j <mn — r.
There are the following relationships among these invariants.

Theorem 2.1. Let X be a smooth projective variety of dimension n and let £
be an ample vector bundle on X with rank £ = r. Assume that r < n — 1. For every
nteger j with 0 < j < n —r, we get the following.

(i) by o(X, €) = iy HEZTHX, €).

(@) iy X, €) = iy, (X 6.
(iii) hz;}"vo(X &) =hY (X, E) = gy, X, E).
@iv) Ifn —r s odd, then b, ,(X, ) is even.

Proof. See[16, Theorem 4.1]. O
By using above invariants, we define some invariants of multi-polarized manifolds.

Definition 2.7 ([16, Definition 5.1.1]) Let (X, L1, ..., L,_;) be a multi-polarized
manifold of type n — ¢ with dim X = n, where ¢ is an integer with 0 <7 <mn — 1.
Then we define the ith sectional H-arithmetic genus xf] X,Ly,...,L,_;), the ith
sectional Euler number e;(X,Lq,...,L,_;), the ith sectional geometric genus
9:X,Ly,...,Ly,_;), the ith sectional Betti number b;(X,L,...,L,_;) and the ith
sectional Hodge number hZH X,Lq,...,L,_;) of type (j,1 —j) for every integer j
with 0 <j <17 are defined as follows.

X, Ly, Ly ) = ){Z{n,i(X,M @ ® Ly ),
9iX, Ly, ..o Ly i) i= Gy iX, L1 @ -+ @ Ly ),
ei(X, Ly, ..., Ly ) = eppu iX, L1 © - ® Ly_y),
bi(X,Lh v 7Ln—i) = bnﬁn—i(X; Li®o---® Ln—i)a

WX Ly, Ly ) = W (X Ly @ - ® Ly ).

nn—1i
Remark 2.2. (i) For the case of ¢« = n, as a matter of convenience, we set
X, Ly, L) = 2Ox), ¢:X,L,...,Ly ) :=k"(Ox),
ei(X7Lla cee 7Ln—i) = e(X)> b’i(X7L17 v 7Ln—i) = bn(X)7
WX, Ly, Ly ) o= R(X),
Here e(X) := Y2 (— DFRFX, ), bi(X) := kX, C) and hH~(X) := hi(Q) for
every integers ¢ and j with 0 <j <1 < n.
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(ii) Under the assumption that X is smooth, we see that XlH X,Ly,...,L,_;) (resp.
9i(X,Ly,...,L,_;)) in Definition 2.7 is equal to
X?(Xale et 7L7L*Z‘; OX) (resp' gi(Xale e 7L’i’l*i; OX))

in [13, Definition 2.1].

We also note that ){f(X, Ly,...,L, ;) (resp.g;(X,Lq,...,L,_;)) is defined for any
smooth projective variety X in Definition 2.7, but /f{ X,Lq,...,L, ;;Ox) (resp.
9:X,Ly,...,L,_;; Ox)) is defined for any projective variety in [13, Definition 2.1].

Proposition 2.1. Let (X, Lq,...,L,_;) be a multi-polarized manifold of type
n — 1 with dim X = n, where 1 is an integer with 0 <1 < n — 1. Assume that a line
bundle L is ample and Ly, = L for every integer k with 1 < k < n — 1. Then we have

X?(X7Ll7 e 7Ln—i) = X{_I(Xa L)7 gi(X7L17 cee 7Ln—i) = g?(XaL)7
e’i(Xa L17 s >L7’L—i) = ei(Xa L)7 b’L(X7 L17 . 7Ln—i) = bZ(XyL)7
hf’iij(X,Ll, oLy ) = hf’iij(X,L) for every integer j with 0 <j <1.

Here ){fl X,L), g;(X,L), e;(X,L), b;(X,L) and h{"i*j (X, L) are sectional invariants
defined in Definition 2.3.

Proof. See [16, Proposition 5.2.1]. O
Here we define the ith sectional class of multi-polarized manifolds.

Definition 2.8. Let X be a smooth projective variety of dimensionn > 1, let ¢
be an integer with 0 < ¢ <mnandlet Ly,...,L,_;,A1, Az be ample line bundles on X.
Then the ith sectional class of (X, L1, . .., L,,_;; A1, Ag)is defined by the following.

cli(X, Ly, ..., Ly_i; A1, As)
eO(Xale'”?Ln)v lfl:()v

( — 1){61(X,L1, A aLn—l) — eo(X,Ll, . aLn—hAl)
_eO(X7L17"'7L7171aA2)}a lflzlv

(—DYe;X, Ly, ..., Ly_) —e;i1(X, L1, ..., Ly i, A1)
- ei—l(X7L17 e 7L71,—iaA2)
+6’L‘72(X7L17"'7Ln7i7A17A2)}7 if 2 glgnv

where e, (X, L1, ..., L,_;) is the kth sectional Euler number of (X, Ly, ...,L,_p).

Remark 2.3. () If 7 is odd, then ¢;(X, L1, ..., L,_;) is even.
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Proof. First we note that 1 <1 because 7 is odd. Then by the definition of the
ith sectional Betti number b;(X, L1, ..., L,_;), we have
i1
(1) eX,Ly,...,L,p) = 22( D RIX, )+ (= D'0i(X, L, ..., Ly ).
=0
On the other hand, since 7 is odd, b;(X, Ly, ...,L,_;) is even by Definition 2.7 and
Theorem 2.1. Hence ¢;(X, Ly, ..., L,_;) is even. O

Soif ¢is odd and A; = A2 = A, then we see that cl;(X, Ly, ...,L,_;;A,A)is even.
(ii) If © = 0, then clo(X, Ly, ..., Ly;A1,A9) = Ly --- Ly > 0.

Definition 2.9. Let (X, L) be a polarized manifold of dimension 7 and let 7 be
an integer with 0 < ¢ < n. Then the ith sectional class of (X, L) is defined by the
following.

c,(X,L) :=c;(X,L,...,L;L,L).
\vd
n—1

Remark 2.4. Assume that L is very ample. Then there exists a sequence of
smooth subvarieties X D X; O --- D X),_; such that X; € |L;_;| and dim X; =n —j
for every integer j with 1 <j <n —1, where L; = L| X, In particular, X,,_; is a
smooth projective variety of dimension i and L,_; is a very ample line bundle on
X,,_i. Then cl;(X, L) is equal to the class of (X,,_;, L;_).

Remark 2.5. ([22, II-1]) Let X be an n-dimensional smooth projective variety
and let L be a very ample line bundle on X. Let X — PV be the embedding defined
by |L|. For every integer ¢ with 0 < 7 < n, Severi defined the notion of the ith rank
1;(X) of X as follows.

r(X) = / LN (CX).
Here CX denotes the conormal variety, XV denotes the dual variety of X and
LY = Oxv(1). Then we see that ;(X) = cl,,_;(X, L) (see [22, (6) Theorem in II]). We
also note that if ¢ = 0, then ry(X) = cl,,(X, L) is called the class of X.
Remark 2.6. By Definitions 2.8 and 2.9 we see that
eO(X7L)7 if i == O,
cl;(X,L) ={ (= D{er(X,L) —2e0(X, L)}, ifi=1,
(- D'{e;(X,L) — 2, 1(X,L) + ¢; 2X, L)}, if2<i<n.

Here ¢;(X, L) is the ith sectional Euler number of (X, L).
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Proposition 2.2. Let X be a smooth projective variety of dimension n and let
1 be an integer with 0 < i <mn. Let L1, ...,L, ;,A1,As be ample line bundles on X.
Then the following holds.

ci(X, Ly, ..., Ly_i;A1,Asz)

boX,Lq,...,Ly), if 1=0,
bl(XaLl7"'7L7L—1)

+bo(X,Ly,...,Ly_1,A1) — bp(X)
+b0(X;L17"'7Lnf1;AZ)_bO(X)a 7{](.1:]-;
bi(X,Ly,...,Ly;) — bi_2(X)

+b;1(X, Ly, ..., Ly, A1) — b;1(X)

+bi—1(X7L17 e 7L’n—i7A2) - bl—l(X)

+bio(X, Ly, ..., Ly_3,A1,42) — b 2(X), f 2<i<m.

Proof. Since

[ i ‘ iz . i3 .

(-1) (22( - 1)/b;(X) — 42 (—D'b;X) + 22 (— 1)]bj(X)>
=0 =0 =0

= —2b;_1(X) — 2b;_2(X),

the assertion holds by substituting the equality (1) in Remark 2.3 (i) for the formula
in Definition 2.8. O

Corollary 2.1. Let (X, L) be a polarized manifold of dimension n. For any
mteger 1 with 0 <1 < n, the following holds.

cliX, L)
bO(X7L)) lf ’L = 07
bi(X, L)+ 2by(X, L) — 2, ifi=1,

bi(X,L) — bi_o(X) + 2b;_1(X, L) — 2b;_1(X)
+b;2X,L) — b;_2(X), if 2<1i<n.

Next we study the non-negativity of the sectional class.

Theorem 2.2. Let X be a smooth projective variety of dimension n and let 1
be an integer with 1 <1 <mn. Let Lq,...,L,_;,A1,As be ample and spanned line
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bundles on X. Then
cl;(X, Ly,... JLy,_i; A1, As) > 0.

Proof. (i) First we assume that 2 < i. Then by Proposition 2.2, we get

ci(X,Lq,...,L,_;;A1,A9)

=b;X,Ly,...,Ly) = bi2(X) +b;1(X, Ly, ..., Ly_;,A1) — bi_1(X)
+b;1(X, Ly, ..., Ly_j,A2) — bi_1(X)
+bi_o(X,Lq,...,Ly_;,A1,A2) — b;_o(X).

In general, for every ample and spanned line bundles H1, . .., H,_;, by Definition 2.7
and [16, Proposition 4.1] we have b;(X,Hy, ..., H,_;) > b;(X) for every integer j with
0 <j < n. On the other hand, we obtain b;(X) > b;_o(X) by the hard Lefschetz
theorem [29, Corollary 3.1.40]. Therefore we get the assertion.

(ii) Next we assume that ¢ = 1. Then by definition we have

chX,L1,...,Ly_1;A1,42) = 291X, L1, ..., Ly_1) + Ly - - - L1 (A1 + A2) — 2,

where ¢1(X, L1, ..., L, 1) is the first sectional geometric genus of (X, Ly, ..., Ly, 1).
We note that ¢g;(X, Ly, ..., L, 1) > 0 by [15, Theorem 6.1.1], and Ly - - - L,,_14; > 1
for k =1,2. So we have ¢ly(X, L1, ...,L,_1;A1,A42) > 0. [}

Remark 2.7. By (i) in the proof of Theorem 2.2
Cll(X7L1> e aLnfl;AlaAZ) 2 0

holds for any merely ample line bundles L, ...,L,_;, A1, As.
By Definition 2.9, Remark 2.3 (ii) and Theorem 2.2 the following holds.

Corollary 2.2. Let (X, L) be a polarized manifold of dimension n and let i be
an wnteger with 0 < © < n. Assume that L is base point free. Then cl;(X,L) > 0.

Here we propose the following conjecture.

Conjecture 2.1. Let X be a smooth projective variety of dimension n and let
1 be an integer with 0 <1 <mn. Let Ly, ...,L,_;,A1,As be ample line bundles on X.
Then
Cli(X, Ll, . ,Ln,i;Al,Az) > 0.

By Remark 2.3 (ii) (resp. Remark 2.7), this conjecture is true for the case where: = 0
(resp. i = 1).
If © = 2 and x(X) > 0, then we can get the following lower bound.
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Theorem 2.3. Let X be a smooth projective variety of dimension n with
k(X)>0andlet Ly, ..., Ly, 2,A1,As be ample line bundles on X. Then the following
mequality holds.

clo(X, Ly, ..., Ly_2;A1,Az)

e

j=1

+ Z (Ly+- -+ Ly s+A)Ly -+ Ly 2A;+ Ly - Ly, 24 As.

Proof. First we note that
CIZ(XaLla s 7L1172;A1;A2)

=eX,Ly,...,Ly2)+201(X,Ly,...,Ly_2,A1) — 2
+201(X, Ly, ..., Ly _2,A2) — 2+ Ly ... L, 2A:As.

From [16, Theorem 5.3.1], we have

2
1 n—2
62(X7L1a"'7L17/2)2%(21{7') Ll 'n 2+ (ZL2> ’I’L 2.
=1

Moreover since x(X) > 0 we have
291(X,L1, s 7L77/—25Ak) -2 Z (Ll + -+ Ln—Z +Ak)L1 t 'Ln—ZAk

for k = 1,2. So we get the assertion. O

Next we consider the value of the sectional class of a reduction of multi-polarized
manifolds.

Definition 2.10. ([13, Definition 1.5]) Let & be a positive integer.

1) Let (X,Ly,---,L;) and (Y,A;q,---,A;) be n-dimensional multi-polarized
manifolds of type k. Then (X, Ly, - - -, L) is called a simple blowing up of a
multi-polarized manifold (Y, A1, - - -, Ay) of type k if there exists a blowing up
n:X — Y at apoint y € Y such that L; = n*(4;) — E and E|p =2 Opua(— 1)
for every integer j with 1 < j < k, where E =~ P" ! is the exceptional effective

divisor.
(2) A multi-polarized manifold ¢ ,E e ,fk) of type k is called a reduction of
(X,Ly,---,Ly) if there exists a birational morphism

n:(X,Ly,- L) — X, Ly, L)
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such that # is a composite of simple blowing ups and X, L, e ,Ly) is not
simple blowing up of another multi-polarized manifold of type k. This = is
called the reduction map.

Proposition 2.3. Let (X,Ly,---,L,_;,A1,A2) be a multi-polarized mamni-
fold of type m — i + 2 with dim X =n > 2, where 1 is an integer with 0 <1 < n.
Let (Y,Hy,---,H,_;,B1,Bs) be a multi-polarized manifold of type n —1i+ 2
such that (X,L1,---,L,_;,A1,A2) s a composite of simple blowing ups of
(Y,Hy,---,H,_;,B1,B2) and let y be the number of its simple blowing ups. Then

Cli(XaLla e 7L1’071Z;A13A2)

C]o(Y,Hl,...,Hn;Bl,BQ)—)/, ’L.fi:O,
= cll(Y,Hl,...,Hn,_l;Bl,Bz)—Zy, ’Lflz 1,
C]i(Y,Hl,...,Hn_i;Bl,Bz), ZfZSZSn—lO?"ZZWZZ

Proof. By Definition 2.8, Remark 2.3 and [16, Proposition 5.3.1] and its proof,
we get the assertion. O

Corollary 2.3. Let (X, L) be a polarized manifold of dimension n > 2 and let
(Y, H) be a polarized manifold such that (X, L) is a composite of simple blowing ups
of (Y, H) and let y be the number of its simple blowing ups. Then for every integer i
with 0 <1 <n, we have

clo(Y,H) — 7y, if 1=0,
cli(X,L) =< (Y, H) -2y, f 1=1,
c;(Y,H), if2<i<n—1lori=mn>2.

Proof. By nvputting I,:=L,---.L, ;:=L, Ay:=L, Ay:=L, H;:=
H,--- H,_;:=H,By:= Hand By := H, we get the assertion by Proposition 2.3. O

3 - On classification of polarized manifolds (X, L) by the sectional class

In this section, we study a classification of polarized manifolds (X, L) by the ith
sectional class cl;(X, L).

Notation 3.1. (1) Let Y be a projective variety and let £ be a vector bundle on
Y. Then Py(€) denotes the projective bundle over Y associated with £ and H(E)
denotes the tautological line bundle.
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(2) Let (X,L) be a hyperquadric fibration over a smooth curve C. We put
& .= f,(L). Then £ is alocally free sheaf of rankn + 1on C. Let 7 : Pc(€) — C
be the projective bundle. Then X € |2H(E) 4+ n*(B)| for some B € Pic(C) and
L = H(E)|y, where H(E) is the tautological line bundle of P¢(£). We put
e:=deg& and b := degB.

Definition 3.1. Let F be a vector bundle on a smooth projective variety X.
Then for every integer j with j > 0, the jth Segre class s;(F) of F is defined by the
following equation: c¢/(F")sy(F) =1, where F" := Home,(F,Ox), c;(F") is the
Chern polynomial of F" and s;(F) = ijo s;i(F Y.

Remark 3.1. (a) Let F be a vector bundle on a smooth projective variety X.
Let s;(F) be the jth Segre class which is defined in [20, Chapter 3]. Then
87(.7:) = §j(.7:v).

(b) For every integer ¢ with 1 < 1, 5;(F) can be written by using the Chern classes
¢;(F)with1 < j < i.(For example, s1(F) = ¢1(F), s2(F) = ¢1(F)* — c2(F), and s0 on.)

3.1 - Calculations on the sectional class of some special polarized manifolds

Here we calculate the sectional class of some special polarized manifolds which
will be used in the following subsection. See also [18].

Example 3.1.1. Let (X, L) be a polarized manifold of dimension » > 3 and let
g(X, L) be the sectional genus. Assume that L is spanned and ¢(X, L) < ¢(X) + 2.
Then (X, L) is one of the following types (see [6], [7] and [8]).

(@) (P, Opn(D)).

(b) (Q", O (1)).

(e) A seroll over a smooth curve.

(d) A Del Pezzo manifold with L™ > 23

(e) X is a double covering of P" branched along a smooth hypersurface of degree
6, and L is the pull-back of Op(1).

(f) Ascroll over a smooth surface S and (X, L) satisfies one of the types (2-1), (2-2)
and (2-3) in [8, Theorem 3.3].

(g) Ahyperquadric fibration over a smooth curve C and (X, L) satisfies one of the
types (3-1) and (3-2) in [8, Theorem 3.3].

3 Here we assume that L is spanned. So we see that L" > 2.
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Here we calculate the ith sectional class of the above (e), (f) and (g).
(I) If (X, L) is the type (e), then by [18, Proposition 2.2 in Example 2.1 (vii.7)], we
have

i 0| 1<i
LX,L) | 2 | 6.5

(IT) Next we consider the case (f). Here we use the same notation as in
[8, Theorem 3.3].

(I1.1) First we assume that (X, L) is the type (2-1) in [8, Theorem 3.3]. Then we
have Ky = —2H, — 2Hp, ¢1(€) = 2H, + 3Hj and c2(E) = (H, + 2Hp)(H, + Hp) = 3.
Hence K2 =8, Ksc1(E) = —10, ¢1(6)* = 12 and L" = s3(€) = c1(E)* — c2(6) = 9. On
the other hand since c2(S) = 12x(Og) — Kg =4, by [14, Corollary 3.1 (3.1.2)] we have

e;(X,L) 9 | -2| 7 8

Therefore

) 0 1 2 3
cl;(X, L) 9 |20] 20 | 8

(I1.2) Next we consider the type (2-2) in [8, Theorem 3.3]. Then Kg = —3H + E and
&= @H — E)**. Hence K% =8, c1()* = 4H — 2E)* =12, c2(€) = RH — EY* =3,
Kgc1(E) = —10 and s2(€) = 01(5)2 — ¢2(£) = 9. We also note that c2(S) = 12y(Og) —
K% = 4. Hence we have

e;(X,L) 9 |-2| 7 8

Therefore

1 0 1 2 3
cl;(X, L) 9 [20] 20 | 8

(IL.3) Next we consider the type (2-3) in [8, Theorem 3.3]. Then Kg = — 2H(F) +
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q(F)F =-2HF)+F, E=HF)Qp*G, degF =1 and degG = 1. Hence ng
4H(FY —4=0, c1(§)° = QH(F) + F)* =8, c2(E) = c2(p*G) + H(G)e1 (p*G)+ H(G)Y = 2,
Ksc1(€) = —4H (G = —4 and s9(E) = ¢1(E)* — ¢2(E) = 6. We also note that co(S) =
12(Os) — K% = 0. Hence by [14, Corollary 3.1 (3.1.2) ] we have

e;(X,L) 6 | —4| 2 0

Therefore

1 0 1 2 3
cl;(X,L) 6 | 16 | 16 | 8

(ITI) Finally we consider the case (g).
(ITL.1) First we assume that (X, L) is the type in the type (3-1) in [8, Theorem 3.3].
Then by [18, Example 2.1 (viii)] we have

1 0 1 2 3
cli(X,L) 6 | 16 | 16 | 8

(IT1.2) Next we consider the type (3-2) in [8, Theorem 3.3]. Then e = d — 3 and
b =6 —d. So by [18, Example 2.1 (viii)] we have

i 0 1 2<i<m

ciX,L) | d |2d+2| 46—-d)i@E—-1)+4d—-1)

Here we note that 3 < d < 9 holds in this case, and if d = 8 (resp. d # 8), then
3 <mn <4 (resp.n =3).

Example 3.1.2. Let (X,L) be a polarized manifold of dimension » > 3.
Assume that (X) = 0, L is spanned and g(X, L) = 3. Then (X, L) is one of (I-2), (I1I),
IV), AV’) and (V) in [19, Theorem 2.1]. Here we calculate the second sectional class
of (X, L), which will be used in Theorem 3.3.2.

(A) First we consider the case (I-2) in [19, Theorem 2.1]. Then by [18, Example 2.1
(viii)] we have clo(X, L) = 8¢ + 8b + 4(g(C) — 1) = 8¢ + 8b — 4 = 28.
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(B) Next we consider the case (I1T) in [19, Theorem 2.1].

(B.1a) If (X,L) is the type (III-la), then n =5 and clo(X,L) = co(S) +
3c1(E) + 2Kgc1(E) = 27 by [18, Example 2.1 (x)].

(B.1b) If (X, L) is the type (III-1b), then n = 4. If (S, ) = (P?, (9];)2(1)L‘92 ® 02(2)),
then by [18, Example 2.1 (x)] we have clo(X, L) = ¢2(S) + 301(8)2 + 2Kgc1(E) = 27.

If (S,€) = (]P27 T2 ® Op2(1)), then by [18, Example 2.1 (x)] we have clo(X, L) =
ca(S) + 3¢1(€)* + 2K¢1(€) = 217.

(B.1¢) If (X, L) is the type (ITI-1¢), then S = P2, rank(€) = 2 and ¢,(€) = Op2(4).
Hence clz(X, L) = ¢2(S) + 3¢1(E)* + 2Ksc1(E) = 27.

(B.2) If (X, L) is the type (I11-2), then S is a Del Pezzo surface with K2 = 2 and £is
an ample vector bundle of rank two on S with c1(6? = 8 and Kgci(E) = —4. Hence
clo(X, L) = c2(S) + 3c1(E)* + 2Kgc1(€) = 26.

(C) Next we consider the case (IV) in [19, Theorem 2.1]. By [18, Proposition 2.1 in
Example 2.1 (vii.6)] we have clo(X, L) = 4 - 3% = 36.

(D) Next we consider the case (IV’) in [19, Theorem 2.1]. Since clo(X, L) and
cls(X,L) are invariant under simple blowing ups by Corollary 2.3, we have
clo(X,L) =4-3% = 36.

(E) Next we consider the case (V) in [19, Theorem 2.1].

(E.1) If (X, L) is the type (V-1), then by [18, Proposition 2.2 in Example 2.1 (vii.7)]
we have clb(X,L) =8 - 7' = 56.

(E.2) If (X,L) is the type (V-2), then (X,L) is a Mukai manifold, that is,
Ox(Kx + (n — 2)L) = Ox. Hence by [9, Example 2.10 (7)] we have g2(X, L) = 1 and
X, L) =1—-hOx) + g2(X, L) = 2, where g2(X, L) (resp. x5/(X, L)) is the second
sectional geometric genus (resp. the second sectional H-arithmetic genus) of (X, L).
Furthermore by [12, Proposition 3.1] we have

hy (X, L) = 105X, L) — (Kx + (n — 2)L)’L" 2 4 2k} (Ox) = 20.

Here h;*l(X , L) denotes the second sectional Hodge number of type (1, 1). Hence by
[11, Theorem 3.1 (3.1.1),(3.1.3) and (3.1.4) we get bx(X, L) = 2¢2(X, L) + hy (X, L) = 22.
Since b;(X, L) = 29(X, L) = 6 (see [11, Remark 3.1 (2)]) and by(X, L) = L", we have

ea(X,L) =2by(X) — 2b1(X) + bo(X,L) =2 -2 -0+ 22 = 24,
e1iX,L) =2byX) - b01(X,L)=2—-6=—4,
eoX,L) =by(X,L) =4.

Therefore we get clo(X, L) =24 —2(—4) +4 = 36.
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Example 3.1.3. Let (X, L) be a polarized manifold of dimension % > 3 such
that 2°(L) > n + 1 and L" < 2. Then we see that 4(X,L) < 1 and (X, L) is one of the
following types.*

@) (P", Opn(1)).

(i) (Q", O (1)).

(iii) X is a double covering of P" whose branch locus is of degree 29(X, L) + 2 and L
is the pull back of Op:(1). In this case we see that g(X,L)>1, and if
9(X,L) =1, then (X, L) is a Del Pezzo manifold.

If (X, L) is the type (iii), then by [18, Proposition 2.2 in Example 2.1 (vii.7)] we have
liX,L) = Qg(X,L) +2)2¢(X,L) + 1) ! for i > 1 and cly(X,L) = 2.

Example 3.1.4. Let (X, L) be a polarized manifold of dimension » > 3 such
that ba(X, L) = h*(X, C) + 1. Here we calculate cl;(X, L) if (X, L) is the type (e) in
[17, Theorem 3.1].

() If (S, &) is the type (e.1), then ¢;(E) = O,2(3), 61(8)2 =9, c2(S) =3, c2(E) =2,
Kg =9, Kgsc1(E) = —9and s2(€) = (:1(5)2 — c2(€) = 7. Hence by [18, Example 2.1 (x)]

1 0 1 2 3
cl;(X,L) 7| 14|12 | 4

In this case, (X, L) = (Ps(&), H(E)) is a Del Pezzo 3-fold with L? = 7.

(i) If (S, &) is the type (e.2), then ¢;(€) = O2(2), c1(E =8, c2(S) =4, co(E) = 2,
Kg =8 Kgc1(€) = —8and s2(8) = ¢1(E)% — ¢2(€) = 6. Hence by [18, Example 2.1 (x)]

i 01|23
LX,L) | 6 | 12|12 ] 4

In this case, (X, L) = (Ps(&), H(E)) is a Del Pezzo 3-fold with L? = 6.

(iii) If (S, &) is the type (e.3), then ¢1(&) = 2H(F) + n*c1(9), c1(E)? =8, ¢5(S) = 0,
c2(€E) =2, Kg =0, Ksc1(€) = —4 and s2(8) = 01(5)2 —c2(£) = 6. Hence by [18,
Example 2.1 (x)]

1 0 1 2 3
cli(X,L) 6 | 16 | 16 | 8

4 A(X,L) denotes the 4-genus of (X, L) (see [5, (2.2)]).
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(iv) If (S, &) is the type (e.4), then there exists a line bundle O,(2b) such that the
branch locus C € |02(2b)|. In this case ci(E) =f"02(2), 61(6)2 =38, c(S) =
2¢2(P%) + 29(C) — 2 = 4b% — 6b + 6, c2(E) = 2, KZ=2(0b- 3)%, Kgc1(€) = 4(b — 3) and
$59(E) = ¢1(E)% — ¢2(€) = 6. Hence by [18, Example 2.1 (x)]

i 0 1 2 3
ci(X,L) | 6| 4b+8 | 40> +2b+6 | 4b

If b = 1, then (X, L) = (Ps(£), H(E)) is a Del Pezzo 3-fold with L? = 6.

3.2 - The case where i = 1

In this subsection, we consider the case where ¢ = 1. Here we assume that n > 3.
In this case by [11, Remark 3.1 (2)] we have

(2) chiX,L) = —e1(X,L) + 2¢0(X,L) = 29X, L) — 2 + 2L".

Since g(X, L) > 0and L™ > 1, we see that cl; (X, L) > 0. We also note that cl; (X, L) is
even.
Next we consider a classification of (X, L) with small el; (X, L).

(I) First we consider the case where cl;(X,L) = 0.

Proposition 3.2.1. Let (X, L) be a polarized manifold of dimension n > 3. If
cly(X,L) = 0, then (X, L) is isomorphic to (P", Opn(1)).

Proof. Ifel;(X,L)=0,thenwe have g(X,L) = 0and L" = 1 from the equality
(2). Therefore we see from [5, (12.1) Theorem and (5.10) Theorem] that (X, L) is
isomorphic to (P”, Opn(1)). O

(IT) Next we consider the case where ¢l (X, L) = 2.

Proposition 3.2.2. Let (X, L) be a polarized manifold of dimensionn > 3. If
chi(X,L) =2, then (X, L) is one of the following types.
(a) (Q", 04 (1)).

(b) A Del Pezzo manifold and L™ = 1. In this case, X is a weighted hypersurface
of degree 6 in the weighted projective space P(3,2,1,...,1).

(e) A scroll over an elliptic curve B and L™ =1. In this case, (X,L)=
(Pg(&), H(E)), where & is an ample vector bundle of rank n on B with c1(€) = 1.
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Proof. Then by the equality (2) we have (g(X, L), L") = (0,2) or (1, 1). If (X, L)
is the first type, then by [5, (12.1) Theorem and (5.10) Theorem] (X, L) is the type (a)
above. If (X, L) is the last type, then we see from [5, (12.3) Theorem] that (X, L) is
either the type (b) or the type (c) above. O

(IIT) Next we consider the case where cl;(X, L) = 4.

Proposition 3.2.3. Let (X, L) be a polarized manifold of dimensionn > 3. If
ey (X, L) =4, then (X, L) is one of the following types.

(@) (Pp(&),H(E)), where £ = 01(1) @ Opi(1) @ Opa(D).

(b) A Del Pezzo manifold and L" = 2. In this case, X is a double covering of P"
branched along a smooth hypersurface of degree 4 and L is the pull-back of
Opr (D).

(¢) A scroll over an elliptic curve B and L"=2. In this case, (X,L)=
(Pg(&), H(E)), where & is an ample vector bundle of rank n on B with c1(E) = 2.

(d) Kx = 3 —n)L and L" = 1 hold.”

(e) (X,L) is a simple blowing up of (M,A), where M is a double covering of
P" with branch locus being a smooth hypersurface of degree 6 and
A = (O (1)), where m: M — P" is its double covering.

) (Ps(&),H(E)), where (S,E) is one of the types 1), 2-i) and 4-b) in [4, (2.25)
Theorem].

(g) A hyperquadric fibration over a smooth curve C. In this case C is one of the
following types.®
(g.1) Cis an elliptic curve, b =1 and e = 0.
@2 C=PLE2O0L(-1D)®O0u(—1)® O & Op and b = 5.

(h) (Pc(&), H(E)), where Cis a smooth curve of genus two and & is an ample vector
bundle of rank n on C with c¢1(€) = 1.

Proof. By the equality (2) in 3.2 we have (9(X, L), L") = (0,3), (1,2) or (2,1). If
(9X,L),L"™) = (0,3), then by [5, (12.1) Theorem and (5.10) Theorem] (X, L) is the
type (a) above. If (g(X, L), L") = (1,2), then we see from [5, (12.3) Theorem] that
(X, L) is either the type (b) or (c) above. If (9(X, L), L") = (2, 1), then by using a list of

® For some examples of this type, see [3, §2].
5 We use Notation 3.1 (2).
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a classification of polarized manifolds with g(X,L) =2 and L" =1 (see [3, (1.10)
Theorem, (3.7) and (3.30) Theorem]) we see that (X, L) is one of the types from (c) to
(h) above. O

3.3 - The case where i = 2

Here we classify polarized manifolds (X,L) such that L is spanned and
clb(X,L) < 15.

Theorem 3.3.1. Let (X, L) be a polarized manifold (X, L) with dim X =n > 3.
Assume that L is spanned and clo(X, L) < 15. Then (X, L) is one of the following.

@) (P", Op(1)). In this case clo(X, L) = 0.
(b) (Q", O (1)). In this case clo(X,L) = 2.
(e) A scroll over a smooth curve. In this case 3 < clo(X, L) < 15.

(d) (Ps(&), H(E)), where (S, E) = (P2 O02(1) @ Op(1)).
In this case clo(X,L) = 3.

(e) A Del Pezzo manifold (X, L) with L™ > 2. In this case clo(X, L) = 12.

Proof. We note that
clo(X, L) = bo(X, L) — bp(X) + 2(b1(X, L) — b1(X)) + bp(X, L) — bp(X)
= (b2(X, L) — b2(X)) + (b2(X) — bo(X)) + 49X, L) — h'(Ox))
+ (bo(X, L) — by(X)).
We also note that by(X,L) > 1 = by(X) and ba(X) > by(X). Since L is spanned,

we have by(X,L) > bo(X) and ¢g(X,L) > h'(Ox) by [11, Proposition 3.3 (2)] and
[2, Theorem 7.2.10]. Hence we get the following.

If 0 < clo(X, L) < 3, then g(X, L) = h'(Ox) holds.

If 4 < clo(X, L) < 7, then g(X, L) < h*(Ox) + 1 holds.

If 8 < clp(X, L) < 11, then g(X, L) < h'(Ox) + 2 holds.

If clo(X, L) = 12, then g(X, L) < h}(Ox) + 2 or L" = 1 holds.

If clo(X, L) = 13, then g(X, L) < h'(Ox) + 2 or L" < 2 holds.

If clo(X,L) = 14, then g(X,L) < hX(Ox) +2 or L" <2 or by(X,L) = by(X)
holds.

o If clo(X, L) = 15, then g(X,L) < hN(Ox) + 2 or L" < 2 or by(X, L) < ba(X) + 1
holds.
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Hence by [12, Theorem 4.1],[17, Theorem 3.1], Examples 3.1.1,3.1.3 and 3.1.4 and
[18, Example 2.1], we get the assertion. O

Next we consider the case where clo(X, L) = 16.

Theorem 3.3.2. Let (X,L) be a polarized wmanifold (X,L) with
dim X = n > 3. Assume that L is spanned and clo(X, L) = 16. Then (X, L) is one of
the following.

(@) (Pc(&), H(E)), where C is a smooth projective curve and & is an ample vector
bundle of rank n on C with c¢;(£) = 16.

(b) A hyperquadric fibration over an elliptic curve with e =4, b = —2 and & is
ample.”

() (IPs(&),H(&) and (S, &) = (Pe(F), 7" (G) @ H(F)), where C is an elliptic curve,
F and G are indecomposable vector bundles of rank two on C with deg F = 1
and deg G = 1, and 7 : Po(F) — C is the projection map.

Proof. By the same argument as the proof of Theorem 3.3.1, either of the
following 4 types occurs.

M) gX,L) <hMOx) +2. (i) L" <2. (i) (X, L) < bo(X) + 1.
(iv) g(X,L) = h{(Ox) + 8, L" = 8 and ba(X, L) = ba(X) + 2.

If (X, L) satisfies one of the cases (i), (ii), or (iii), then we see from [12, Theorem
4.1], [17, Theorem 3.1], Examples 3.1.1, 3.1.3 and 3.1.4, and [18, Example 2.1] that
(X, L)is one of the types (a), (b) and (¢) in Theorem 3.3.2. So we may assume that the
case (iv) occurs. Then AX, L) =n+L" — (L) <n+3 - n+1) < 2.

Claim 3.3.1. R#YOx) = 0 holds.

Proof. If AX,L) <1, then by [5, (5.10) Theorem and (6.7) Corollary] we get
the assertion. So we may assume that A4(X,L)=2. Then since L is spanned,
(L) = n + 1 and L" = 3, the morphism X — P" defined by |L| is a triple covering.
So by [29, Theorem 7.1.15], we get the assertion. O

Hence g(X, L) = 3. Since Bs|L| = 0, we see from Example 3.1.2 that this case (iv)
cannot occur. O

7 We use Notation 3.1 (2).
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3.4 - The case where i = 3

Here we consider a classification of (X,L) such that L is spanned and
cs(X,L) <8.

Theorem 3.4.1. Let (X,L) be a polarized manifold with dim X =n > 3.
Assume that L is spanned and clg(X,L) < 8. Then (X, L) is one of the following.
(a) (P", Opn(1)). In this case cl3(X, L) = 0.
(b) A scroll over a smooth curve. In this case cls(X,L) = 0.
(e) (Q",Oun(1)). In this case cl3(X, L) = 2.
(d) (P, 0(2)). In this case ely(X,L) = 4.
(e) A simple blowing up of (Pg, O(2)). In this case cl3(X,L) = 4.
() (P' x P! x P, @3 prOp(1). In this case cly(X, L) = 4.
(@) (P? x IP?, @2, p;Op(1)). In this case cl3(X, L) = 6.
(h) A hyperquadric fibration over a smooth curve C, and one of the following
holds.®
(1) gC)=1, n=3 L>=6e=4, b=—2, and £ is ample. In this case
cls(X,L) =8
h.2) gC)=0, n=38, L>=9 e=6 b=—-3 and &= Op() @ 0@
O01(2) @ 01(2) (see [3, (3.30) Theorem 9)]). In this case clz3(X,L) = 8.
1) (Ps(&),H(E)) and (S, E) is one of the following.
(1.1) (Pz, 0.2(1) ® O2(1)). In this case cl3(X, L) = 0.
1.2) (Pz, O2(1) @ O2(2)). In this case cl3(X, L) = 4.
(1.3) (02 O2(1) @ Op(1)). In this case cl3(X, L) = 4.
(i.4) Sis a double covering f : S — P? branched along a smooth hypersurface
of degree 2, and &€ = f*(O02(1)) @ f*(O2(1)). In this case cl3(X, L) = 4.
(i.5) (PZ, T'2). In this case cls(X, L) = 6.
1.6) (Pc(F),n*(G) @ H(F)), where C is an elliptic curve, F and G are in-
decomposable vector bundles of rank two on C with degF =1 and

degG=1, and n:Pc(F)— C is the projection map. In this case
cls(X,L) =8

8 We use Notation 3.1 (2).
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(1.7) Sis a double covering f : S — P? branched along a smooth hypersurface
of degree 4, and € = f*(O2(1)) ® f*(O2(1)). In this case cl3(X, L) = 8.

(i8) (P, x P}, [H, +2H] & [H, + Hg)) and H, (resp. Hg) is the ample gen-
erator of Pie(IP,) (resp. Pic(Pp)). In this case cls(X,L) = 8.

1.9) S is the blowing up of P2 at a point and € = [2H — E1*2, where H is the
pull-back of O2(1) and E is the exceptional divisor. In this case
cs(X,L) =8

Proof. We note that
cls(X, L) = bs(X, L) — b1(X) + 2(b2(X, L) — bo(X)) + 01(X, L) — b1(X)

=(bs(X, L) — b3s(X)) + (bs(X) — b1(X)) + 2(b2(X, L) — bo(X))
+ 2(g(X, L) — h*(Ox)).

We also note that clg(X, L) is even and b3(X) > b1(X). Since L is spanned, we have
b3(X, L) > bs(X), bo(X, L) > be(X) and g(X, L) > h'(Ox) by [11, Proposition 3.3 (2)]
and [2, Theorem 7.2.10]. Hence we get the following.

o If0 < cly(X,L) <2, then be(X, L) < bo(X) + 1 holds.

o If cls(X, L) = 4, then by(X, L) < bo(X) + 1 or g(X, L) = h'(Ox) holds.

o If cl3(X, L) = 6, then ba(X, L) < ba(X) + 1 or g(X, L) < h'(Ox) + 1 holds.

o Ifcls(X,L) =8, then by(X, L) < bo(X) + 1 or g(X, L) < h'(Ox) + 2 holds.

By [12, Theorem 4.1], [17, Theorem 3.1], Examples 3.1.1 and 3.1.4, and [18,
Example 2.1] we get the assertion.? O

3.5 - The case where i = 4

Here we consider a classification of (X, L) such that L is spanned (resp. very
ample) and cly(X, L) <1 (resp. cly(X, L) = 2).

Theorem 3.5.1. Let (X, L) be a polarized manifold (X, L) with dim X =n > 4.
Assume that L is spanned and cly(X, L) < 1. Then (X, L) is one of the following.

(@) (P", Op(1)). In this case cly(X, L) = 0.
(b) A scroll over a smooth curve. In this case cly(X,L) = 0.

9 We note that the type (2-1) (resp. (2-2), (2-3), (3-1) and (3-2)) in [8, Theorem 3.3]
corresponds to (i.8) (resp. (i.9), (i.6), (h.1) and (h.2)).
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Proof. We note that the following equality holds.
cli(X, L) =by(X, L) — b2(X) + 2(b3(X, L) — bs(X)) + b2(X, L) — b2(X)
=04(X, L)) — by(X) + (b4(X) — b2(X)) + 2(b3(X, L) — b3(X))
+ b2(X, L) — b2(X).

Since L is spanned, we see from [11, Proposition 3.3 (2)] that by(X,L) > by(X),
b3(X,L) > b3(X) and bo(X, L) > be(X) hold. Furthermore by the strong Lefschetz
theorem, we have b4(X) > b2(X). Hence if cly(X, L) < 1, then b2(X,L) < bo(X) + 1.
Since 7 > 4, we can easily check that (X, L) is one of the above types by [12, Theorem
4.1], [17, Theorem 3.1] and [18, Example 2.1]. O

Remark 3.5.1. If L is spanned, then there does not exist (X,L) with
(X, L) =1.

Theorem 3.5.2. Let (X,L) be a polarized wmanifold (X,L) with
dim X = n > 5. Assume that L is very ample and cly(X,L) = 2. Then (X,L) 1s
(Q", Oy (1)).

Proof. By the same argument as above, (X, L) with cly(X, L) = 2 satisfies one
of the following.

(D bo(X,L) <be(X)+1.  (II) by(X,L) = by(X).
(D If ba(X, L) < ba(X) + 1 holds, then by [12, Theorem 4.1], [17, Theorem 3.1] and
[18, Example 2.1] we see that (X, L) with cly(X, L) = 2is (Q", O (1)).
(IT) Next we assume that by(X, L) = b4(X) holds. Then by [12, Theorem 4.2], we
see that (X, L) is one of the following types since we assume that n > 5.
(IL.1) (P", Opn(1)).
(I1.2) A scroll over a smooth projective curve.

(I1.3) (Ps(&),H(E)), where S is a smooth projective surface and £ is an ample
vector bundle of rank » — 1 on S.

(I1.4) X is the Pliicker embedding of G(2,5) and L = Ox(1). In this case n = 6.

(I1.5) X is a nonsingular hyperplane section of the Pliicker embedding of G(2,5)
in P and L = Ox(1). In this case n = 5.

Then by calculating cly(X, L), we see from [18, Example 2.1] that cly(X,L) =0
(resp. 0, c2(&), 5 and 5) if (X, L) is the type (IL.1) (resp. (I1.2), (I1.3), (II.4) and
(I1.5)). Hence we find that the type (I1.3) is possible and in this case c2(€) = 2.
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But by [30, Theorem 6.1] and [25], the rank of £ is two and so we have n = 3. This
contradicts the assumption that » > 5. O
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