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1 - Introduction

Mixtures of gases are ubiquitous. We are surrounded by them in everyday life,
use them in science and technology and need them to control their behaviour in
different environments and physico-chemical situations. Although we are aware of
their presence, it is not uncommon to treat them in a simplified manner, as simple
gases with the properties which reflect corresponding properties of the constituents
in the average sense. However, contemporary applications are rather demanding



[3] NON-EQUILIBRIUM MIXTURES OF GASES: MODELLING AND COMPUTATION 137

and require deeper knowledge of the processes in which the mixtures are involved,
proper modelling and reliable simulations. This wide spectrum of problems cannot
be approached by a unique theory. Consequently, there are different approaches to
mixtures, more or less interconnected, which treat them at different scales and
different levels of accuracy.

These notes are intended to give an account on the recent research directed to-
wards one particular model of gaseous mixtures — the multi-temperature model. This
model is developed within the theoretical framework given by extended thermo-
dynamics [60]. It is a macroscopic theory which presents a bridge between the
classical continuum theories, like thermodynamics of irreversible processes (TIP)
[25], and the kinetic theory of gases as a mesoscopic theory [22]. The model goes
deeper than the classical continuum approach by extending the list of state variables.
On the other hand, it provides an information about the non-equilibrium processes
coarser than kinetic theory, but still valuable in the sense of accuracy. Being
somewhere in between could be comfortable, but not always pleasant: at least at the
beginning there will always be more people who support traditional approaches than
the ones who take the challenge and proceed along the new path. This account is an
outcome of our intention to expose the extended thermodynamics of mixtures, in all
its beauty, to a wider audience.

The paper is organized as follows. Section 2 contains a brief review of continuum
and kinetic modelling of gases. Although the material about classical continuum
models and the Boltzmann equation is well-known, it will help to put our main tool,
the extended thermodynamics, into a proper perspective. Namely, it “borrows”
certain methods and structures from former approaches (entropy principle, moment
equations), but also brings new tools (method of multipliers). In Section 3 the mix-
ture theory is developed using the formalism of extended thermodynamics. A review
of the classical mixture theory is given for completeness. Basic postulates, the so-
called metaphysical principles, are elaborated and the method of multipliers is used
in exploitation of the entropy inequality. Consequently, the closed set of governing
equations is derived for the mixture of Euler fluids with multiple temperatures.
Section 4 is devoted to a deeper analysis of multi-temperature mixtures. The notions
of equilibrium and average temperature are defined, and the entropy and the dy-
namic pressure are carefully analyzed. Classical limit of the MT mixture is studied
using the Maxwellian iteration — generalized Fick’s law of classical TIP is recovered
and non-local equations for the temperatures of the constituents are derived. Also,
the Maxwell-Stefan model of diffusion is reconsidered with the aim of comparison
with extended models. This analysis reveals that certain classical models may be
considered as truncated equations of extended models, and phenomenological
coefficients of the latter ones can be calculated in such a way. In Section 5 the shock
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structure problem in a binary mixture is studied. The simplicity of the model permits
the systematic analysis of the shock structure, in contrast to the numerical simu-
lations based upon kinetic theory which represent a collection of limited number of
particular cases. The influence of Mach number, equilibrium concentration and mass
ratio of the constituents is analyzed. It is revealed that temperature overshoot of the
heavier constituent depends non-monotonically on the mass ratio. This outstanding
feature appears to be the consequence of the small amount of exchange of internal
energy between the constituents. It is also shown that other dissipative mechanisms,
like momentum and heat transfer due to viscosity and heat conductivity, cannot
attenuate the temperature overshoot. Since the multi-temperature model is fully
developed within the framework of extended thermodynamics at the Euler level,
Section 6 is devoted to the delineation of the path which connects the kinetic theory
of mixtures with it. It requires usual analysis of the kinetic theory itself, definition of
corresponding macroscopic variables and a proper scaling of Boltzmann equations
which will lead, in the first approximation, to the local Maxwellians with different
velocities and temperatures of the constituents. The paper is concluded with final
remarks indicating topics which remained outside the scope of these notes.

Remark about notation. In the following text we shall use both direct and index
notation. Although it certainly makes the exposition incoherent, in certain situations
it is much more convenient to use the direct notation, while other situations call for
the use of index one.

2 - A review of continuum and kinetic modelling of gases

The modelling is the first issue which we shall focus on in the study of gases and
their mixtures. The choice of the model depends on the level of accuracy desired in
the study. Different modelling approaches rely on the different assumptions, usually
depending on the scale on which the processes are described. Although they refer to
different scales, different models can be interconnected in the asymptotic sense. The
aim of this Section is to give a short review of the continuum and kinetic modelling of
gases and provide a framework for subsequent study of the mixtures.

2.1 - Classical continuum theories of fluids

In continuum theories one describes a gas as a continuous medium. Its state
is determined by the associated fields of the mass density p € R", the velocity
v € R? and the temperature T € R", termed state variables. The time rate of
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change of the state variables is determined by the balance laws of mass, mo-
mentum and energy [41]:

ap . .
% + div(pv) = 0,
(1) %/;V)+div(pv®vft):0,

(3 p?
(2pv8t+p8)+div{ (;pv2+pe)v—tv+q} =0.

The balance laws have to be adjoined with the constitutive relations which
provide a mathematical description of the material response by relating the in-
ternal energy density ¢ € R, the stress tensor t € M**® and the heat flux q € R
to the basic fields p, v and T'. These relations have to obey restrictions imposed by
the material objectivity (independence of the observer) and the entropy princi-
ple. The simplest set of constitutive relations describe an ideal inviscid gas
(Euler fluid):

kg

(2) SZWT’

kg
t=—pl, p=p_-T, q=0
where m is the atomic mass, kg the Boltzmann constant, y the ratio of specific heats
and p the pressure. In such a way one obtains the closed system of Euler gas dy-
namies equations.
Along with the balance laws and the constitutive relations, the entropy inequality
presents the third important ingredient of continuum theories:

3) 6(8/28) + div(psv + @) = X > 0,

where s € R is the entropy density, @ € R? is the non-convective entropy flux and
2 € R is the entropy production. At first, it was used to determine the physically
admissible processes for a given set of balance laws and constitutive relations. On the
other hand, modern continuum theories [23] use it as a master equation which im-
poses thermodynamic restrictions on the constitutive relations, such that all ther-
modynamic processes are compatible with it. The second approach is exploited in
thermodynamics of irreversible processes (TIP) to derive the constitutive relations
of Navier-Stokes-Fourier type [25].

To get an appreciation of the way in which the entropy inequality is used in TIP,
recall its basic assumptions: (a) every infinitesimal volume is considered to be in the
state of local thermodynamic equilibrium and (b) the non-convective entropy flux is
proportional to the heat flux. These assumptions come out from the classical equi-
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librium thermodynamics, the first one yielding the Gibbs’ relation:

NS _4
4) ds—T(de pzdp), ¢—T.

Rewriting the balance laws (1) and Gibbs’ relation (4); using the material derivative
d/dt = 9/0t + v - Vy, one arrives at:

dp .

a—kpdlvv—o,

dv .. ds 1/, »p,
pa—dlvt—(), &_?G_?'D)’
p%—t:gradv+divq:0,

where A : B = tr(AB). By combining them, one can recover the entropy inequality
(3) in the form:

ds . /q
—_ — = >
pdt+dlv<T) 2 >0,
where the entropy production reads:
(5) s gmadT+ 22 02+ L (Lre s p )divy > 0
ST E T T\3 p =

t? and D” being deviatoric parts of the stress tensor and the symmetrized velocity
gradient:

0 =t — %(trt)l, D-— % (gradv n (gradv)T), ) o ) %(tr D)L

In TIP (5) is interpreted as the sum of the products of thermodynamic forces and
thermodynamic fluxes. To secure the inequality for any thermodynamic process,
TIP assumes linear relations between the forces and the fluxes of the same tensorial
order, thus arriving at the quadratic form. In particular, the Navier-Stokes-Fourier
constitutive relations are obtained for the heat flux, the stress tensor and the dy-
namic pressure 7:

1
(6) q=—«xgradT, t’= 2uDP, n= —<§trt+p> = —Adivv,

where k¥ > 0, 4 > 0 and 4 > 0 are the phenomenological coefficients which have the
physical meaning of heat conductivity, shear viscosity and bulk viscosity, respectively.

This brief review reveals that modelling in the context of classical continuum
theories comprises three basic ingredients: the balance laws, the constitutive rela-
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tions and the entropy principle. The first presents the set of physical laws valid for
any continuous media. The second one describes the response of specific materials
while the third one imposes thermodynamic restrictions on the constitutive rela-
tions. As an outcome, the closed system of governing equations is obtained which
describes the physically admissible thermodynamic processes.

One has to bear in mind that heat conductivity and viscosities are determined
only up to the sign. No further information on them can be obtained within this
framework, but rather brought from experimental evidence or some deeper theo-
retical insight going beneath the macroscopie level.

Another drawback comes from the particular structure of constitutive relations
(6). To illustrate, we shall analyze two particular problems (see [60], Chapter 2, for
details). First, consider the heat conduction through a rigid conductor at rest.
Assume p = const. and v = 0, which turn the balance laws (1); 2 into identities, while
the energy balance law (1); together with the Fourier’s law (6); reduces to:

aT  «
() 5= ;?TAT :
er = 0¢/IT. Second, consider incompressible isothermal shear flow of a fluid de-
scribed by p = const., T = const., v = (0, v(x1, 1), 0). This reduces the balance laws
(1)1 3 to identities, while the momentum balance law (1); together with (6); yields:

(8) w_u e
ot poxt

Both equations, (7) and (8), share the same mathematical structure — they are

parabolic and they predict the infinite speed of propagation of disturbances.

Although this fact is overlooked in most engineering applications, it is nevertheless

non-physical and requires a proper explanation. One possible way to do that is

provided by the kinetic theory of gases.

2.2 - Kinetic theory of monatomic gases

Kinetic theory is concerned with modelling the gases through a large number of
mutually interacting particles. Apart from classical treatises [22, 45], there are a lot
of expositions of the subject ranging from (mostly) physical to mathematical aspects
[50, 37, 20, 82, 21, 77, 81]. We shall give a superficial review of the topics which are of
interest to our subject.

The phase space of particles includes the macroscopic variables, time ¢ € [0, co)
and position x € R?, as well as the microscopic ones. Therefore, it may be said that
kinetic theory describes the gases at the mesoscopic level, in contrast to classical
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continuum theories which describe them at the macroscopic level. In the simplest
case of single monatomic gas, whose particles are modelled as elastic spheres, the
microscopic variables will be the velocities of particles & € R?.

Particle interactions — collisions — are assumed to be binary (interaction of more
than two particles at the same time is rare event) and elastic. The interaction time is
assumed to be much shorter than the mean time of free flight between the collisions.
Therefore, change of the state of particles is governed by the momentum and energy
conservation laws for binary elastic collisions:

9) E+é& =¢+&,
&P+ 1E ] = (g + &P,

where (&, £,) denote the velocities of outgoing particles, while (£, &) are the velocities
of incoming particles.

2.2.1 - The Boltzmann equation

The main tool in the analysis is the velocity distribution function f := f(t,x, & € R"
which statistically describes the state of the gas. Actually, f(¢, x, &) dx dé determines
the number of atoms in the infinitesimal volume dx dé in the phase space at time ¢. The
time rate of change of the distribution function is determined by the Boltzmann
equation:

o ., f
(10) E+;éia—%—Q(f,f)7

where the collision integral Q(f,f) determines the change of f due to mutual in-
teraction of particles. It reads:

(1) Q%ﬁ=//UﬂﬁM&&@@®%w

R® 82

where ¢ € S2, and the collision cross section B(& — &,, 6) describes the model of in-
teraction between the atoms (hard spheres, repulsive potential, ... ).

A remarkable property of the collision integral (11) is that there exist test
functions y(&), collision invariants, independent of the collision cross section and the
distribution function, such that:

(12) /W@Mﬁﬂ%=0

R3
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They satisfy the relation w(&') + w(&)) = w(&) + w(&,) and the complete set of collision
invariants is:
vo=1 w; =& (=123 y, =

They also relate the distribution function f to the macroscopic quantities — mass,
momentum and energy density (m is the atomic mass) — through the moments of the
distribution function:

p 1
(13) pY; = [ m| & |f@¢x,&déE
pIvI? + 2pe R? &

Since the momentum density implicitly defines the mean mass velocity v = (1)1;)?:1,
one may define the peculiar velocity as C = (C,L-)?:l, C; = &; — v;, which yields proper
definitions of the internal energy density and non-convective fluxes of momentum
and energy, i.e. the pressure tensor p;; and the heat flux g;, through the so-called
central moments of the distribution function:

P /%m|C|2f(t,x,v+C)dC,

R3

(14) Py = / mC;Cif(t,x,v+ C)dC = —t;,

R?

g = /%m|C|zCif(t,x,v+C)dC.

R3

Note that one half of the trace of the pressure tensor equals internal energy density,
the relation exclusively applicable to the monatomic gases. Since pressure
p = tr{p;}/3, using the thermal equation of state (2); one may relate the kinetic
temperature to the mean kinetic energy of the atoms:

2m

_m 2
3kBp/m|C|f(t,x,v+C)dC.

R

Taking into account (12), as well as the definitions of macroscopic variables (13) and
fluxes (14), transfer equations for the moments of distribution function [y, f dé can
be deduced from the Boltzmann equation (10):

d 2.9
]RS

R?
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that exactly reproduce the macroscopic conservation laws of mass, momentum and
energy:

3
+Z (pvz =0,

d 3.9 .
(16) g(/’”j) + ;a—xi(m}jvi +p;) =0, (j=1,2,3),

) 1 5 3 B
8t< pivf? +p6> sz{(sz +pa)vl+2pﬁv]+ql} =0.

=

It must be noted that the system (16) is not closed: the pressure tensor p;; and the
heat flux ¢; are neither in the list of state variables, nor have prescribed relation to
them. This problem will be further enlightened in the subsequent text.

By deferring the solution of the closure problem we opened the door to other
remarkable properties of the Boltzmann equation — equilibrium distribution and
celebrated H—theorem. By equilibrium distribution fz it is assumed the velocity
distribution function which annihilates the collision integral, Q(fz,fz) = 0. It can be
shown that log f is a collision invariant and, after using the definitions of macro-
scopic variables (13) and kinetic temperature (15), the following form of equilibrium
(Maxwellian) distribution is obtained:

3/2 2
_pf m [
(17 5= (anBT> P {_ (ks /m)T}'

Note that only for uniform and constant in time macroscopic variables p, v and 7'
equilibrium distribution fz identically satisfies the Boltzmann equation (10).

However, fr with macroscopic variables p(t, x), v(¢,x) and T'(t, x) determine the so-
called local equilibrium distribution (local Maxwellian) which also annihilates the
collision integral.

Apart from the macroscopic balance laws, the Boltzmann equation induces
also the kinetic counterpart of the entropy inequality. Formal definitions of the
entropy density H, the entropy flux J; and the entropy production functional
D(f) are:

18) M= / Flogfae Ji= / &if log £ Az, D(f) = / log f QUf.f) dé.

R? R?

The H—theorem describes the dissipative character of the Boltzmann equa-
tion.
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Theorem 2.1. Assume that the cross section B is positive a.e. and f > 0 is
such that Q(f, ) and D(f) are well defined. Then:

1. The entropy production is non-positive, D(f) < 0.
2. The following statements are equivalent
(a) Forany & e R, Q(f. /) =0;
(b) The entropy production vanishes, D(f) = 0;
(¢c) Thereexists p >0, T >0andv € R? such that

pop(om NGl e
m \2nkpT 2(kp/m)T |
Along with dissipation, given in the first part, the H—theorem relates the equi-

librium (global and local) to the vanishing of entropy production. This is equivalent to
the vanishing of entropy production in classical continuum physics. Namely, in

equilibrium described by (17), either local or global, the pressure tensor becomes
diagonal and the heat flux vanishes:

pijg =Py, g =0.

In the case of local Maxwellian, this provides a proper kinetic interpretation of the
local equilibrium state, used as an assumption in TIP.

In general, the kinetic entropy density, entropy flux and entropy production (18)
are related through the following balance law:

OH  ~0T;
(19) -+ ; o, ~ PN =0,

for any solution f of the Boltzmann equation (10). Up to the sign, this is equivalent to
the entropy inequality (3) in the continuum approach. As a final remark, note that
status of the entropy inequality is different in continuum and kinetic approach: in
continuum theory it is a basic principle, while in kinetic theory it is a theorem — a
consequence of fundamental relations.

2.2.2 - Hydrodynamic approximation

The fact that macroscopic balance laws can be recovered from the Boltzmann
equation motivates the question of hydrodynamic approximation derived from it and
proper solution of the closure problem [22, 50, 7, 52]. To that end it is convenient to
rewrite the Boltzmann equation in the dimensionless form. Let ¢y be the macroscopic
observation time scale, [ the macroscopic length scale, T the reference temperature,
V= \/m the reference velocity, and ¢, = /v the acoustic time scale. By
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introducing dimensionless variables, distribution function and cross section:

T TS S S, o B
xl_la é?,_,v7 f_(m/v/p())fv B_\/éﬂdz’l)7

where p, is the reference mass density and d the molecular diameter, the di-

>

mensionless (scaled) Boltzmann equation can be derived:

o S~ 0f 1 . ..
20 Sh—A—‘r 1A — T sJ )y
(20) o " s~ R @D
where:
ta A m
Sh=—, Kn=-, Il=———,
to l V2mp,d?

are the Strouhal number, the Knudsden number and the mean free path, respec-
tively. Assuming Sh = O(1), we may focus on the Knudsen number which can serve
for the classification of different flow regimes according to degree of rarefaction [78]:

() Kn <0.01 — the hydrodynamic regime;

(b) 0.01 < Kn < 0.1 — the slip flow regime;

(¢) 0.1 £ Kn <10 - the transition regime — ET and BE;
(d) Kn=10 — the free flight — DSMC.

In the hydrodynamic regime and, to a certain extent, in the slip flow regime one can
rely on the continuum approach and the Navier-Stokes-Fourier model. The transi-
tion regime calls for deeper insight which can be achieved by means of extended
thermodynamics (ET) or the Boltzmann equation (BE). For a free flight regime, the
direct simulation Monte Carlo method (DSMC) is adequate.

Further analysis of the scaled Boltzmann equation (20) will be performed for
Sh = 0(1) and Kn ~ ¢ < 1 treated as small parameter (hats are dropped for sim-
plicity):

1

@) T Z G =AU,

where f* is parameter dependent solution of (21). Equation (21) is the singularly
perturbed Boltzmann equation and can be rewritten using the material derivative
and the peculiar velocity:

3 : 3
‘ U _Lopm p=? 0
Df*+ 3G =3 QU D=t > g

Its solution is sought in the asymptotic form, and the material derivative operator is
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formally expanded, as well:

(22) £=f0+3" % D=Dy+ Y D,
k=1

k=1

Inserting (22) into (21) one obtains the system of recursive equations. First two of
them read:

(23) QY. fM =0
3 5f(0)
0) 1)y _ (0) .
2Q(f©. D) = Do f +;cla1

clearly showing that f* in first approximation can be approximated by the local
Maxwellian, £ = f5. Note that ¢ and x dependence of the local Maxwellian (17) is
not explicit, but through the hydrodynamic variables p, v and 7. Second approx-
imation is found as a solution of the integral equation (23)z. Since solution f* has to be
compatible with macroscopic variables (13), the following compatibility conditions
also have to be satisfied:

/mwaf('“)dé=0, VE>1,0=0,... 4.
R®

The idea of the Chapman-Enskog expansion is not only to asymptotically expand
the solution, but also to expand the corresponding macroscopic equations and use
them to eliminate the material derivatives from (23)g:

ov;
DOP + Z L= a ka = 07
<k>
) 3, 0p|
pDov; + 8—5 =0, pDyv; + Z o1, w9, vE>1

(k)
3 kg N 3 kg O;

S p-2DyT == 5T ) =
2" m " “0];8@ 0 gl +va ) 0x; Zaxj

The left column consists of the conservation laws in the first approximation, while the
right column gives all the higher order approximations, p(; = pi; — (1/3)tr(p;;) being
the traceless (deviatoric) part of the pressure tensor. By writing the second approx-
imation in the form gf ¥ = f©4, and linearizing the collision integral in (23); in the
neighborhood of ¥, one arrives at a linear integral equation which can be solved for ¢:

A 3 oT m 3 8’U<i
(24) ¢__T;Ci%_l@—TB”;CiCJ%'

1
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The coefficients A and B can be appropriately expressed in terms of the collision in-
tegral. The details of this procedure can be found in [22, 52, 7] and will be omitted here.
Nevertheless, the consequences of (24) on the macroscopic non-convective fluxes are
important for our appreciation of classical TIP. The pressure tensor p; and the heat
flux g; vanish in first approximation, p(g? =0and qgo) =0, so that:

, m ,
pi = [ mCCr = Zs’fpi’:; qT—/ CICPF de = Ze’“qi’”
R3

Therefore, taking (24) the following second approximation for the pressure tensor
and the heat flux is obtained:

i or
_o, 2V W _ _, 9%
el o

> oy -
where u and A can be calculated once the collision cross section is specified. This
result shows that Navier-Stokes-Fourier constitutive relations can be recovered as a
part of the asymptotic solution of the Boltzmann equation. Moreover, it shows that
they give a proper description only for processes whose deviation from the state
described by the local Maxwellian f© = f; is not large.

This section will be concluded with some remarks motivated by the asymptotic
method of Chapman-Enskog. First, the notion of the local thermodynamic equili-
brium, which TIP borrowed from classical thermostatics, has a precise meaning in
the kinetic theory — it is a state described by the local Maxwellian (17). Moreover, the
macroscopic variables p(t,x), v(t,x) and 7T'(t,x) cannot be arbitrary, but satisfy the
Euler gas dynamics equations [7]:

oy S~ 0 B
EJF;(?—%(/’%) =0,

b 5.0
(26) o (7o) + Z e, (pvjvi + pdj) = 0,

o o
a::( pivl? +p8>+zaxl{( pvl? +p6+10>v1}—07

where pressure p and internal energy ¢ are described by thermal and caloric
equations of state:
kp 3 p
=p—T, e=-=.
p=p b =5 P
Second, small deviations from the local thermodynamic equilibrium are expressed
by f ~ fO(1 + ¢), where ¢ is determined by (24). It leads to a second approximation
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of the pressure tensor and the heat flux in the form:

27) pi=poi+pl, ¢=4q",
where pil) and qgl) are described by (25). In this case, the macroscopic variables

satisfy the so-called compressible Navier-Stokes equations:
3
+ Z (poi) =0,

g(p’vj) + Z%(Pvﬂ)i +pjii)=0

4 |v\ + pe
ot P

3 3
0 1,
+12;8—%{<§P|V| +P8+p)f)l+2pﬂv]+ql}_0’

j=1

for p;; and q; determined by (27). Thus, Chapman-Enskog method is the asymptotic
method of solution of the Boltzmann equation, but it also puts the notions and con-
stitutive relations of TIP in the new perspective.

2.2.3 - The method of moments

Grad proposed the method of moments in his seminal paper [34], accompanied
with a precise description of the mathematical apparatus needed for it [35]. It pro-
vides another look on the relation between the Boltzmann equation and the mac-
roscopic description of the non-equilibrium processes in gases. First, the moment of
order n of the distribution function is defined as:

(29) Fi = / mé; - & f e
R?

To (29) proper transfer equations are naturally associated by averaging the
Boltzmann equation (10) over the velocity space:

(30) 7«1 Ay + Za Ll Ak = 1 )

where the fluxes F';,..; 1 and the source terms P;,..;, are defined as follows:
11 Uk / mékén ézn f dé ) P; i1 / mézl 'fl,,Q(f f ) dé
R

Note that P =0, P, = 0, Zil P;; = 0 due to collision invariants.
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The moment equations have some features that will be important for our further
study. They become apparent if we write them in a proper way:

d 5.0
IS LR, =
o+ 2 g T =0

d 3.0
~Fi +Y = —Fi, =0,

ot — &)Ck
o 3.0
(31) EFMZ + ;a—%ﬂ@k =P,

9 5.9
&Filu.i“ + ;a—mkﬁvilmi"k = Pil.“i“,

In particular, they possess hierarchical structure which is due to the fact that fluxes
of order m become densities of order m + 1. Higher order moments provide deeper
insight into the state of gas, although there is no proper “macroscopic” explanation of
their character. They present an interpolation between hydrodynamic and kinetic
description [38].

Hierarchy of the moment equations is infinite, in general. However, if the system
is truncated at order 7, the fluxes of order n + 1 and the source terms remain un-
determined. This brings the closure problem into the focus. Usually, densities are
used as the state variables and undetermined fluxes and source terms are supposed
to be expressed in terms of them. Grad proposed a solution of the closure problem by
means of expansion of the non-equilibrium distribution function in terms of tensorial
Hermite polynomials [34, 35]. The choice of Hermite polynomials is rather natural
due to the structure of equilibrium distribution, and quite convenient due to the
orthogonality of the polynomials. However, in formal sense this solution is equivalent
to a polynomial expansion of the non-equilibrium distribution function in the
neighborhood of the local Maxwellian fz:

3 3 3
(32) f=re (Cb +> aiCi+ Y aiCiCi+ Y apCiCiCr+ - )
=1 ig=1 i k=1
The coefficients a, a;, . . . in the expansion are functions of £ and x. The structure of
approximate distribution function (32) is dictated by the choice of the moments in the
truncated set of moment equations. Namely, once the set of moments (densities) is
chosen, the corresponding coefficients of the same tensorial order in the expansion
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are retained. Their structure is determined by the compatibility of approximate
distribution function with the moments through relation (29). Thus, the coefficients
depend on ¢t and x indirectly, via moments.

Probably the most famous set of moment equations is the 13 moments system for
monatomic gases. Choice of the moments is motivated by their physical inter-
pretation: apart from the hydrodynamic state variables p, v; and T, the non-equili-
brium fluxes p; and g; are chosen, as well. Their identification with the moments is
straightforward:

k 3
p=F, poi=Fi pf+3p 2T =3 Fi
i=1

k 3 3
pYiv; + py = Fyj, <p|v|2 + 3/7%3 T) v; 42 ;pikvk +2q; = ;Fikk.

Approximate Grad’s 13 moments non-equilibrium distribution function then
reads:

(33) flst{H <2k T) lzmﬁcc +5Zqz Z(Zk T|C| )H

As a consequence, one obtains the balance laws for moments of the distribution
function fi3. The first group of equations, corresponding to the hydrodynamie mo-
ments F', F'; and the trace of Fj;, are the conservation laws of mass, momentum and
energy (28). In addition, the balance laws for F; and the trace of Fyj;, represent the
evolution equations of momentum and energy fluxes:

(pvivj + pij)

)
Z =—{pvivjvr +vipjk + VP + vepij + P} = P,

+
9 ) (1 :
(34) 5 ép|v| + pe |v; + Zpikvk +qi
+

k=1

3 3
0 1
Za—%‘] { (§p|v|2 + ps) ViV + Z(vivkpjk + VP + vkpijk)

1 2
+ §ﬂ|V| Dij + Qv + Vi + @i ¢ = Qi

Thanks to (33), the non-convective fluxes can be expressed in terms of the central
moments:



152 SRBOLJUB SIMIC, MILANA PAVIC-COLIC and DAMIR MADJAREVIC [18]

pi]llij) = / mC;C; Ckfl3 dC = 5 (Q1 ik + q;5k1 + Qkézj)

R3

2
g = /mCC|C|f13dC_——pU 2 oy

R?
as well as the source terms, that are given here in linearized form [52]:

1
P - ./W%@Qqﬁﬁwdé~—fpu

R?

1 2
Qﬁzé/mm%mmmy%~§%
T

R?

_sm(m 1
~16p \nkgT) @2’

where Q%2 is an integral expression related to the cross section.

At this stage we shall draw the attention to some important features of the system
just derived. First, Grad’s 13 moments distribution (33) represents a finite-dimen-
sional approximation of the exact non-equilibrium distribution function. It corre-

where:

sponds to the finite (truncated) set of moments chosen as state variables and their
transfer equations. However, the choice of the moments is neither automatic, nor
arbitrary. It depends on one’s aims in the study of non-equilibrium processes.
Second, the closure of the system is obtained in the spirit of kinetic theory, by ex-
panding the non-equilibrium distribution in the neighborhood of the local
Maxwellian, and making it compatible with the chosen moments. Finally, the de-
viatoric pressure tensor p;, and the heat flux g; are no longer determined by the
constitutive relations of Navier-Stokes-Fourier type. Now they belong to the set of
state variables and their behaviour is determined by the evolution equations —
balance laws (34). It can be shown, by one kind of asymptotic analysis, that NSF
relations (25) are truncated form of the balance laws (34) in which the time and
certain convective rate of change is neglected.

Final remark is concerned with the entropy density and the entropy flux in the
context of the moments method. In the local equilibrium state, described by the
local Maxwellian fz, the entropy density and the entropy flux have the following

form:
_ P po(_m N 3 _
PoE = km{IOg(m(anT) ) 2}’ % =0
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Moreover, the Gibbs’ relation is also recovered in local equilibrium:

1 p

If one determines the entropy density and the entropy flux using Grad’s 13 moments
distribution (33), the following results are obtained [60, 52]:

1k p 1k PPy
ps1® = psp — Amp? Z PP — 5 o 03 2 990
ij=1 '

The entropy density is obviously extended, retaining its convexity with respect to the
state variables, whereas the entropy flux is no longer proportional to the heat flux.
These relations will appear to be of great importance in the further study of non-
equilibrium processes within extended thermodynamics.

2.3 - Extended thermodynamics of monatomic gases

Extended thermodynamies (ET) emerged as an attempt to give a systematic and
physically consistent resolution of the paradox of infinite pulse speeds ([60], Chapter
2). At first instance, it actually extended the methods of TIP. To take into account
non-equilibrium effects it extended the Gibbs’ relation by thermodynamic fluxes, i.e.
stress tensor and heat flux, and eventually reached the extended version of the
entropy inequality. Two main outcomes may be mentioned at this stage. First, the
entropy flux was no longer proportional to the heat flux but contained additional
terms. Second, reduction of the entropy production rate to a quadratic form yielded
relations for the stress tensor and the heat flux whose nuclei contained classical NSF
terms. Nevertheless, they also contained material derivatives of thermodynamic
fluxes giving these relations the form of balance laws. Apart from removal of the
paradox of infinite pulse speeds for heat conduction and shear waves, the most
striking result was, however, apparent similarity with Grad’s 13 moments equations.

Success of the early version of extended thermodynamics motivated further
applications. It reached maturity through a stream of results which enlarged its
scope and put it into a proper relation with TIP, as well as with kinetic theory. A
complete information with exhaustive list of references can be found in the mono-
graph of Miiller and Ruggeri [60]. In the sequel, a brief overview of the basic
structure of extended thermodynamics will be given, bringing only the principal
ideas to the forefront and enabling to build the extended mixture theory on them.
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A refrain which resonates in almost all applications of ET is the property of
finite pulse speeds, which is brought by the particular structure of mathematical
models — hyperbolic systems of balance laws [12]. Let u(x,t) € R" be the vector
of state variables. The governing equations are balance laws, which have the
following local form:

o oF
ot P 8.901

(35) =P.

In ET it is assumed that the densities F'(u) € R”, the fluxes Fi(u) € R",
i=1,2,3, and the productions P(u) € R"” depend on the state variables only
locally, i.e. they depend on their values at point x and time {. Therefore, the
constitutive relations for densities, fluxes and productions are local in space—
time, which give the system (35) the structure of a quasi-linear system of first-
order PDE’s:

3
A°(u> ZA% )— = P(u),

where A’ = E)FO/@u and Al = 8Fi/8u. The possible speeds can be calculated
from the eigenvalue problem:

3
(36) (—)vAo(u) + ZniAi(u)> r=0

i=1

with the eigenvalues A and the eigenvectors r, where n; are the components of
the unit vector n. The system (35) is hyperbolic in the t-direction if det A® # 0
and the eigenvalue problem (36) admits only real eigenvalues 4 and a set of
linearly independent eigenvectors r for all unit vectors n. Note that the as-
sumption of local dependence of fluxes on the state variables rules out the NSF
constitutive relations in which fluxes depend on the values of state variables in
the neighborhood of a given point.

Apart from the hyperbolicity, ET imposes another two important requirements
on the governing equations. First one is the invariance with respect to the Galilean
transformations, e.g. the principle of relativity. It permits identification of the ve-
locity dependence of densities, fluxes and source terms. It is particularly important
for the identification of convective and non-convective parts G' of the fluxes,
F' = F% + G'. Ruggeri [66] showed that balance laws in two inertial reference
frames related by the Galilean transformation are equivalent if and only if one is a
linear combination of the other. If the state variables are represented as u = (v, w),
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then there exists a matrix X(v) such that:

F(w,v) =XWF(w), F'(w)=F(w,0),
(37) Gi(w,v) =X¥)G(w), G'(w)=G'(w,0),
P(w,v) = X(v)P(w), P(w)=P(w,0),

where the terms with hats are the so-called intrinsic parts of densities, fluxes and
source terms. Moreover, for any v! and v2, it holds: X' +v?) = X(v)X(¥?),
X(0) =1

Second restriction is imposed by the entropy inequality:

o G~ o

(38) W-‘ri:la—xiZZSO,
where —1°, —h' and — X are the entropy density, the entropy flux and the en-
tropy production, respectively. The entropy inequality is adjoined with an ad-
ditional requirement of convexity of the entropy density for the reason of
thermodynamic stability, but there were no a prior: restrictions on the structure
of the entropy flux i’ [58]. To exploit the entropy inequality in the spirit of
continuum mechanics, i.e. as a restriction on the structure of constitutive rela-
tions, one has to devise a procedure more general than the use of Gibbs’ in-
equality, if it is to be applied on the system (35). Liu [53, 54] developed the
method of Lagrange multipliers by taking the entropy balance law (38) as a
master equation, and the governing equations (35) as constraints. The Lagrange
multipliers 4 € R" are used to remove the constraints and extend the entropy
inequality:

on’ <okl F5) N ) O
A = — B < 0.
(39) TR D et (at‘L;axi P|=x<0

Due to the local dependence of densities and fluxes on the state variables, (39) yields

the entropy—entropy flux integrability relations:

0 FO 7 Fi
o OF oW 0

40 o= 2
(40) ou ou’ Ou ou’
as well as the residual inequality:

(41) Z=4-P<0.

Actually, once the multipliers A are determined from the integrability conditions
(40), equation (41) helps to determine the structure of source terms P compatible
with the entropy inequality (38). However, the Lagrange multipliers are not ex-
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hausted by their supporting role in the entropy principle — they can act as the
principal state variables (main field, entropic variables) due to entropy convexity
[64]. The mapping u+— A implies the transformation of the system (35) into a
symmetric hyperbolic form, particularly useful in the study of existence and un-
iqueness of solutions [65, 12].

Euler (elastic) fluids represent a simple, but useful example of hyperbolic
system, whose properties will be exploited in the sequel. The state variables
u=(p,v;,e = (v,w), w=(p,¢), are governed by the Euler gas dynamics equa-
tions (1). Densities and fluxes have the form:

p
Fo(u) = pUi F'w)=| o,
Lpv® + pe pe
0 0;
G'(u) = —lj G/(w) = =ty
—tivi + ‘i
while non-convective fluxes are determined by the constitutive relations
tij = —p(p, &) i, ¢; = 0. Galilean invariance is achieved by means of the matrix X:
1 0 0 0 O
L 00 vv 1 0 0 0
X(v) = Vi 51']' 0] = Vo 0 1 0 0 ,
%?]2 v 1 v 0 0 1 0
P v v w1

whereas Lagrange multipliers read:

oy (Ho—1)

A=| 1| = y ,
J 1
A ~4

where g = ¢ — T's + p/p is the free enthalpy.

We arrived now to the main issue of ET: how to include the viscous, heat con-
ducting fluids into the scope, without loosing the hyperbolicity of the governing
equations? First answer came with extended TIP. Later development gave rise to
rational extended thermodynamics — a macroscopic theory closely related to the
kinetic theory of gases, especially Grad’s moments method. In this context ET relies
on the following pillars:

(a) extended list of the state variables, u = (p,v;, & t;, ¢:);
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(b) extended set of the governing equations — balance laws for the stress tensor ¢;;
and the heat flux g; have to be included;

(c¢) formal hierarchical structure of balance laws is “borrowed” from the equa-
tions for moments in the kinetic theory of gases;

(d) closure problem is resolved by the application of entropy principle.

In fact, the core idea of ET in this context is to use the truncated hierarchy of
moment equations ab initio [12]:

FJrZiFk*

d N
—Fiy+Y —F;=0,

ot — c%ck
0 2. 9
&Filiz + kza_mkFilizk = Piiy,
=1

zluzg + E a mgzgk - nzziga

and to resolve the closure problem using the entropy principle. The moments F7,..;,
can be related to the moments of the distribution function (29), as well as the central
moments p; ; = [mC; ---C;, fdé
F=p, Fi=p;+pvi, Fy=p;+2pvj+pvivj,
Fiy = Pijie + Sp(ijvk) + 3pvjvk) + pUivL,
Fije = pijin + 4paievny + 6pjvrvn + 4pavivvy + poivoguy,

where the braces denote symmetrization and®:
pi = 0; Pij =Dij = —bijs  Pppre = 2q.

Since only 13 moments have apparent physical interpretation in the case of mona-
tomic gases, 13 balance laws will be selected from truncated system for the densities:
1

P = (F.F3, Fyp, By i), Fri = Fyj = 5Fppd,

which obviously correspond to mass, momentum and energy density, and mo-
mentum and energy fluxes acting as densities in the extended set of variables. The

! In the remaining part of this section the Einstein’s summation convention will be used.



158 SRBOLJUB SIMIC, MILANA PAVIC-COLIC and DAMIR MADJAREVIC [24]

governing equations then read:

OF + 0 F; =0,

OF; + 0;Fy; = 0,

O pp + i ppi = 0, OF gy + OuF e = P
O ppi + OkF ppite = Ppi -

(42)

The left column contains the conservation laws of mass, momentum and energy, while
the right column comprises the balance laws for momentum flux deviator and energy
flux. Application of the entropy principle introduces the Lagrange multipliers:

A= (A, 45, 4, Ay, Appi),

<g

that have the form:

avvlv] 5; 5 ‘Iﬂ)wz)

”_
2"
1,
P

’ﬂl*—‘ ’ﬂl

gV + 5p2 (v qi + 2%”]”1))

: 1 2p
=7 ( 30 W’k)
1(1 p 2
~T a7 i +5 5 | Vigj +viq; — gvk% i

Appi = 5Tp2 4

Ay =

where the stress tensor is decomposed as follows t;; = —p d;; + ;. Therefore, the
final structure of densities is:

F=p, F;=pv;, F,=pr*+2pe,
Fuy=p (vz‘vj - ;7)25@') = 0,
Fpi= (/)v2 + 2pe + 2p)v; — 20,v; + 2q;,
while the fluxes determined through the closure procedure read:

Fiji = pvovjur, + (pvi + 2/5)q:) 05k + (pvj + 2/5)g;) 0
+ (pvr + 2/5)q)dij — vigji — VT — Vo,
1
Fjpe = Fije — 5 Fpprdy,
Fopij = (0% + Tp)vivy + (p 655 — 00 — 03400 — G010

14 4
+ g(%‘vj + qvi) + 3%’%5@' + % (bpoy; — Tayj).
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Finally, the source terms in balance laws have the following structure:

(43) Py, :%Gij, Pppi :T%Gijvj Tzqf]i,
where 7,(p, &) and 7,(p, ¢) are the so-called relaxation times.

This is the right place to introduce the notion of an equilibrium subsystem. If we
reconsider the residual inequality (41) in 13 moments case, we can see that the en-
tropy production rate vanishes when A;, and 4,,; vanish. This condition is fulfilled
for g;; = 0 and ¢; = 0, i.e. Py, = 0 and Pp,; = 0. Thus, in equilibrium the entropy
principle is applied to the balance laws which correspond to non-vanishing multi-
pliers, i.e. to the conservation laws of mass, momentum and energy. This set of
equations — Euler gas dynamics equations — represents the equilibrium subsystem
of the 13 moments equations.

Several remarks will be given at the end of this analysis. First, hyperbolicity of
the system (42) is not easy to be checked. As a first step one may calculate the
characteristic speeds in equilibrium state uy = (p, 0, Bkp/2m)T,0,0) in the one-di-
mensional case:

)1 = —1.6503cs, Jo = —0.6297cg, /5 = 0, /4 = 0.6297cs, 45 = 1.6503cs,

where cs = {(Bkg/ 2m)T}1/ % is the speed of sound. It was shown that there exists a
region of hyperbolicity in the state space with equilibrium state in its interior.
Therefore, the 13 moments model is not globally hyperbolie, but has this property in a
certain neighborhood of equilibrium state. Second, source terms suffer from the same
deficiency as other continuum theories with closure achieved through the entropy
principle: relaxation times 7, and 7, have phenomenological character and can be
determined only up to the sign. For further information about their structure one has
to divert either to some deeper theoretical arguments (e.g. kinetic theory), or to
experimental data. Third, it can be shown by an asymptotic analysis that the balance
laws for momentum and energy flux recover classical NSF constitutive relations in
the limit of small relaxation times. The importance of this result is twofold: on one
hand it supports the statement that NSF theory describes small deviations from the
local equilibrium state; on the other hand it shows that NSF constitutive relations are
truncated forms of balance laws in which inertial and convective parts are neglected.
All these aspects will be re-examined from the standpoint of mixture theory.

3 - Extended thermodynamics of mixtures

By a mixture we consider a body composed of identifiable constituents. Once we
distinguish them, we can recognize diverse phenomena which occur in mixtures, such
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as diffusion, dissociation, chemical reactions, energy exchange and dissipation etc.
The aim of the mixture theories is to describe these processes, as well as to produce a
theoretical framework which unites mechanical and thermodynamical description in
the spirit of modern continuum approach [23]. One of the important steps towards this
goal was made by Green and Naghdi [39]. However, a consistent mixture theory was
not developed in this sense until the work of Miiller [59]. Nice account on basic theory,
historical development and applications can be found in [5, 6]. A comprehensive
treatment of the flow modelling and non-equilibrium processes in mixtures, including
important mathematical issues, is given by Giovangigli [30].

In the study of mixtures different levels of description may be adopted, which are
reflected in different choices of the state variables. To get an impression about them,
we shall label » different constituents by Greek indices which run from 1 to », and
recognize the following descriptions in the increasing order of complexity:

(1) (p,v,e) — constituents are not distinguished; mixture properties are averaged
out through the global state variables;

(2) (p,,V,e) — this level of description is the hallmark of classical TIP; as for pure
materials, it suffers from the paradox of infinite pulse speeds;

3) (p,; Vs, &) — this choice of state variables was introduced in extended ther-
modynamics of mixtures; its proper use removed the paradox of infinite pulse
speeds;

@) (p,,Vy, &) — multi-temperature extended model; it brought the mutual ex-
change of energy between the constituents into focus.

Only at level (1) there is no distinction between the constituents. In all other cases,
there is always certain information about the composition, mechanics and thermo-
dynamics of the mixture.

The main goal of this section is to expose the multi-temperature (MT) model of
mixtures developed within the framework of ET [69]. Basic feature of the model is that
it ascribes to each constituent its own temperature field 7',. This assumption goes along
the basic postulates of rational thermodynamics of mixtures, discussed in the sequel,
which introduce the internal energy densities of the constituents as the state variables.

Although the MT model will be built up as a macroscopic one, basic motifs come
from deeper levels in the structure of matter. Namely, temperature can be viewed
from the two different standpoints: as a macroscopic variable, thermodynamic
temperature is an equilibrium quantity; at mesoscopic level, kinetic temperature is a
measure of the mean kinetic energy of particles. The latter approach seems to be
more appropriate in the description of non-equilibrium processes.

What kind of multiple temperatures do appear in the non-equilibrium processes?
Even in single-component gases, multiple temperatures could appear due to violation
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of the equipartition of energy with respect to the translational degrees of freedom. In
such a way the whole tensor of internal energy can be introduced or, more simply, the
translational temperatures 7, T, and T.. As a consequence, in propagation of normal
shock waves, one can distinguish temperature 7' in the direction of propagation and
temperature 7', in the perpendicular plane. This motivated a BGK-like model in
kinetic theory with the anisotropic equilibrium distribution [46, 4] and the MT model
for continuum and near-continuum flow [84]. In the context of polyatomic gases, whose
molecules are not spherically symmetric, the non-equilibrium processes are accom-
panied by an excitation of the non-translational (rotational and vibrational) degrees of
freedom [85, 61, 40]. New degrees of freedom formally introduce new temperatures.
These temperatures are eventually relaxed after certain number of molecular colli-
sions; e.g. the rotational temperature Ty requires about 10 collisions for relaxation,
while the vibrational temperature T, has longer relaxation time. Finally, in mixtures,
the constituents with disparate masses eventually reach different kinetic energies
(temperatures) in the non-equilibrium processes [1, 51]. Typical examples are tem-
peratures ofions (7) and electrons (¢) in plasma, 7', > T;, and temperatures of atoms in
the mixture of inert gases like helium and argon (my, < Mma;). These last examples
motivate the study of the multi-temperature mixtures at a macroscopic level.

This section will thus be devoted to the modelling issues in the mixture theory.
First, a brief review of the classical theory will be given. Then, rational thermo-
dynamics of mixtures will be described, which provides a general framework for
extended thermodynamies of mixtures. Finally, the multi-temperature model will be
developed using the principles of ET.

3.1 - Classical mixture theory

Classical mixture theory is well developed within TIP [25]. Its description is
relied on the state variables u = (p,,v,¢), « = 1,...,n, which distinguish the con-
stituents only through their mass density contributions and retain the velocity v and
the internal energy ¢ of the mixture. Governing equations incorporate the mass
balance laws for the constituents, which describe their mass rate of change due to
mass flux p,v, and chemical reactions t,:

op, . _
5 T div(p,v,) = 15,
0 .
(44) % +div(pvev—-1t) =0,
(L p?
w—&-dw{(%p@z +ps)v —tv+q} =0.

The velocities of the constituents v, are not state variables, but constitutive quan-
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tities. Usually, they enter into the model through the diffusion fluxes:
Jac = PyUy, Uy =Vy —V,

where u, is the diffusion velocity. The Gibbs’ relation is extended to take into ac-
count the contribution of the constituents:

ds 1(de pdp &2 dey

a-T (&;E;(ﬂbﬂn)ﬂ
where 1, are the chemical potentials of the constituents, and ¢, = p,/p are their mass
concentrations.

The constitutive theory based upon restrictions imposed by the entropy in-

equality yields the following constitutive relations for the heat and diffusion flux:

n—1

1 He — Ky
(45) q= —ﬁLgradT— ZLC grad(T>,
c=1
1 n—1 _
Jp = —ﬁLb grad T — E;Lbc grad(w),
c=
b=1,...,n—1, while equations for the stress deviator and the dynamic pressure

have the same form as in NSF theory for single-component fluids. Equation (45); is
generalized Fourier law, while equations (45)s represent generalized Fick’s law. L—
coefficients in (45) are the phenomenological coefficients. Constitutive relations
generalize the classical laws of the heat conduction and diffusion through cross-
effects — influence of the concentration gradient on the heat flux (Dufour effect) and
the temperature gradient on the diffusion flux (Soret effect).

3.2 - Rational thermodynamics of mixtures

A new approach to the thermodynamics of mixtures given by Miiller perfectly
fitted within the framework of rational thermodynamics. The formal structure of
the model is well described by the metaphysical principles, i.e. postulates put for-
ward by Truesdell [80], which read:

(I) All properties of the mixture must be mathematical consequences of prop-
erties of the constituents.
(IT) So as to describe the motion of a constituent, we may in imagination isolate it
from the rest of the mixture, provided we allow properly for the actions of the
other constituents upon it.

(ITI) The motion of the mixture is governed by the same equations as is a single
body.
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To elaborate them, we shall start with the first principle. If p,, v, and ¢, determine
the state of the constituents, then the state (properties) of the mixture p, v and ¢
ought to be related to them through the functional relations:

(46) P = [)(pmvm 89!)7 V= fl(pmvm 80!)7 &= é(pwvmga)'

The second principle states that the rate of change of the state variables (p,,v,, &) is
determined by the same physical laws — balance laws of mass, momentum and
energy — which nevertheless take into account the mutual interaction of the con-
stituents through the appropriate source terms z,, m, and e,:

88/:: + diV(paV“) = To,
A,V .
(47) (/gtv ) + div(p,v, ® v, — t,) = m,,
03P+ pes) o [(1
w + dlv{(épavi + p“é:i)V“ —t,v, + (Iz} =e,.

This principle reflects the ideas of classical dynamics of particle systems (and kinetic
theory of gases). Finally, the third principle postulates that the state variables for
the mixture evolve in accordance with the same equations as if it were a single body:

ap

o + div(pv) = 0,
0 .
(48) %+d1v(pv®v—t) =0,
A(Lp?
w—&-div{(%pvz+pe)v—tv+q} =0.

In Truesdell’s own words [80], “in its motion as a whole a body does not know whether
it is a mixture or not”.

To all the formal statements (46)-(48) one more has to be added. The mutual in-
teractions t,, m, and e, describe the processes of mass, momentum and energy
exchanges among the constituents. However, these quantities has to be conserved
when the mixture is regarded as a whole. Therefore, the axioms of balance for
mixtures states:

(49) f::x:o, En:ma:(), ieazo,
=1 =1 a=1

without which it would have been impossible to get (48). To recover the conservation
laws for the mixture, one has to sum up the balance laws for the constituents (47),
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exploit the axiom of balance (49), and properly define the state variables and fluxes of
the mixture in terms of the properties of the constituents:

n 1 n
P = E Pus VZ_E PoNos, Uy =Vy —V,
o=1 poc:l

1 n 1 n 9

& = - Pobay &€ =EI +5- Py,
ﬂ; 2/); ’
n

t= Z(tm = Pallz @ Uy),

o=1

n
q= ;{qa +p, (ax + %ui) u, — taua},
where u, is the diffusion velocity of the constituent, and ¢; is the intrinsic part of
internal energy density. Note that the internal energy density ¢, the momentum flux
(stress tensor) t and the internal energy flux (heat flux) q are not simple sums of the
corresponding properties of the constituents, but take into account relative motion of
the constituents through the diffusion velocity.

Final step in modelling the thermomechanics of mixtures is the choice of gov-
erning equations. The state of the mixture is described by 5% variables (p,, v,, &) and
it seems at first sight that the balance laws (47) provide the desired model. However,
this is not the only choice since one may use the properties of the mixture as state
variables at the expense of dropping the state variables for one constituent (say n)
from thelist, (p, v, &, py, v, &), b = 1,...,n — 1. Consequently, one should replace the
balance laws for the nth constituent with conservation laws for the mixture (48), so
that the governing equations read:

p

ot

A(pv)
ot

o 1.2 .
MMN{(W +,,8>V_tv+q} o,

+ div(pv) = 0,

+divipvev—1t) =0,

(51) . ot 2
6_tb + div(p,vi) = T,

0 .
% + div(p,vy @ vy — tp) = my,

A(3P5Y5 + Pyts)

(1
P + div 5760 + Pyt Vo — Ve + 4 p = €p.



[31] NON-EQUILIBRIUM MIXTURES OF GASES: MODELLING AND COMPUTATION 165

In conclusion, we have to mention that a crucial step towards the modelling
of mixtures in ET was made by Miiller [59] who extended the list of state
variables of classical TIP by including the velocities of the constituents,
(p,v,&,py,Vp), but not taking their internal energies, and thus creating the
multi-velocity model. This extension led to a hyperbolic model of mixtures,
since non-local constitutive relations for diffusion fluxes were replaced by the
balance laws for momenta of the constituents. Moreover, it was shown that
these equations recover the generalized Fick’s law (45); in the limit of small
relaxation time [44]. An interesting interpretation of these equations was given
by Ruggeri [67] in the case of binary mixture of Euler fluids. Namely, the
mixture heat flux q is proportional to the relative velocity of the constituents
w = v; —va. The governing equations can then be recast into the form which
describes the binary mixture as a single heat conducting fluid with the struc-
ture, brought in through concentration variable. This set of equations also
generalizes the Cattaneo equation in which the notion of thermal inertia is
properly explained.

3.3 - Multi-temperature mixture of Euler fluids

Our main concern will be the MT model for mixtures of Euler fluids [69]. At
the beginning of this Section we gave the physical motivation for introduction
of the multiple temperatures, and provided the conceptual framework through
the metaphysical principles and corresponding mathematical consequences.
However, we still need a proper closure of the model (47), or (51). To that end
we shall rely on the fundamental principles of ET — the Galilean invariance and
the entropy principle.

The relativity principle (Galilean invariance of governing equations) implies re-
strictions on the velocity dependence of densities, fluxes and source terms. The
balance laws (51) obviously possess the conservative form (35) to which we can apply
the Galilean invariance conditions (37). For the vector of densities F°, and its in-
trinsic part FO:

p p
poF 0%
1,2 e
FO _ 2PV + pe FO_ P
Po ’ Pb ’
P (VF 4 uf) Py

10(v+ w)*+pyes 105U5 + Pyes
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one can easily recover the transformation matrix X(v) which fulfills (37);:

1 0 0 0 0 O
ook oi of o o
?}2 Vg 1 0 Ok 0
0 0 0 1 0 O
00 ok o i ok i

0 Ok 0 %?)2 Vg 1

(52) X(v) =

It also satisfies the condition (37)s for the vector of non-convective fluxes G' and its
intrinsic part G*:
Oi 02’
. —ty i
G' =

)

—tikvk + qi

The main benefit of the Galilean invariance comes from revealing the velocity de-

pendence of source terms P. For:

0 0
0" 0"
p=| 0| pw=|"]
Tp Ty
my T
€y éb

(87)3 yields the following relation:

Ty = Tp,
(53) m, = 7,V + my,
N R
ey :rbE+mb«v+eb.

In further analysis of the closure problem we shall restrict to Euler fluids:

(54) tc( = —Pu I> q, = Oa

and reduced form of the momentum and energy flux for the mixture which now
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depend on the diffusion velocities solely:

n n
t=-—pl-> pu,®@u, p=> p,
a=1 a=1
n 1
q= Z{p% (ea + éui) +px}ua,
=1

where p is the total pressure. Even more, we shall assume that the partial pressures
P, and the partial internal energy densities ¢, are determined by the thermal and
caloric equations of state of ideal gases:

kg kg
o = Py _Tacy o= . 1~
(55) Px=Pay - oy gy

-
The main consequence of these assumptions is global hyperbolicity of the MT model
for mixtures. It can be proved by calculating the characteristic speeds for the system
(47) in the case of Euler fluids. It consists of # blocks of Euler gas dynamics equa-
tions for the constituents. Since characteristic speeds do not depend on source
terms, they can be calculated almost trivially:

1 234 5
(56) /I;) = Uy — Qy, }vi 34 — Vo /lfx) = Vg +
1/2
Vn =Vy N, Uy =<7 k—BT :
oan o ) o um:z o ’

where v, is the normal component to the wave front of the particle velocity of
constituent o, n is the unit normal to the wave front and a,, is the local speed of sound
of the constituent o. Characteristic speeds of the system (51) are the same as the ones
of (47) since they are obtained by the transformation of variables [27].

The second step in the closure procedure is the application of the entropy in-
equality:

Oh" + 0; (K™ +¥') = X <0,

where h° is negative entropy density of the mixture, defined as:
n
W= —ps == p,ss,
a=1

and ' are the components of the non-convective entropy flux. The entropy in-
equality imposes restrictions on the source terms and help us to determine at least
some of their possible functional forms. Using the method of Lagrange multipliers it
can be applied either to (47), or to (51). The detailed procedure can be found in [69],
whereas we shall concentrate here on the most important results. By applying the
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integrability relations (40) to the system of balance laws (47) the following set of
Lagrange multipliers is obtained:

- . 1 1 v 1
A — Py Avx A"h — _ a2 e
Ql ’ y ) (T“ <:uoc 2101>7T“7 Ta>7

where 1, are chemical potentials of the constituents. The Lagrange multipliers for
the composite system (51) are determined by the following relations:

A = (Aﬂ7 AV) AS’ Aﬁb? AVb) ASb)?

Ay O U )

APv :;1/)(7 _)i/)n’ Avb :/]Vb _/‘ivn7 A% :A;Ih'h _;1“117.
An important feature of the main field (the multipliers) is the relation to its intrinsie

(velocity independent) part through the matrix of transformation X, 4 = iX.
Therefore, the residual inequality can be reduced to:

Y=A-P=4-P<0.

In such a way we obtain:

—_

f—
2= (Apb%b —|—/ivb - my —i—/Alabéb)
1

S (mbd nobi),
Tb Tn

=1

(o5) e (e}
Tb Tn b Tb Tn b=

The residual inequality imposes a restriction on the structure of source terms —

o
I

=

b
+

they must have the form which does not violate it for any thermodynamic process.
The simplest way to obey this condition is to choose the source terms such that the
entropy production rate 2 becomes a negative semi-definite quadratic form, i.e. to
express them as linear combinations of the Lagrange multipliers. This can be done in
two ways. Simpler form of the source terms read:

n—1 1,2 1,2
# = §¢<M_WC””7%>
- b - )
c=1 ‘ TC Tn

n—1
~ U, uy,
58 m;, = — i
( ) b ;:1 Ve (Tc »

) n—1 1 1
eb:*zebc ot )
c=1

Cc n

~
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and they do not contain cross-coupling. The phenomenological coefficients ¢, ;.
and 0. constitute positive definite matrix functions. The source terms which take
into account cross-couplings have the form:

n—1

o =- Z ((plr)c A + 926/1&)’

c=1
n—1 R n—1 . .
my ==Yy A, f=—) (“’ZC A+ 0;;6/186).
c=1 c=1

In most of the applications in the sequel we shall analyze the non-reacting
mixtures for which %, = 0. As in other models derived within the framework of
ET, phenomenological coefficients cannot be determined. This limitation will
be overcome by making proper relations with experimental data or Kkinetic
theory.

4 - Analysis of multi-temperature mixtures

The MT model of mixtures was built upon the principles of extended thermo-
dynamies, relativity and entropy principle, with the use of basic postulates of rational
thermodynamics, i.e. the metaphysical principles. Although the model is closed,
there are still open questions to be answered. We shall, therefore, turn our attention
to the problem of defining the average temperature of the mixture and the appro-
priate structure of total pressure. Furthermore, the classical limit of the MT model
will be revealed, as well as its relation with the Maxwell-Stefan diffusion model,
particularly important in phenomena in which non-Fickian diffusion occurs. Finally,
an indication will be given about the validity of the model. Most of the results in this
section can be found in [72, 70, 71], while the Maxwell-Stefan diffusion is discussed in
this context for the first time.

4.1 - Equilibrium, average temperature, entropy and dynamic pressure

In the sequel, we shall restrict our attention to the non-reacting mixtures, 7z, = 0.
The residual inequality (57) in this case reads:

=

(59) r= 1 (AVb 1y +A“héb) <0,

o
I

and one possible form of source terms, which satisfy it for any thermodynamic
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process, is the following:
n—1 n—1
L u Uy A 1 1
(60) m, = ;V/bc (Tc Tn>7 ep = ; 9bc< 7.t Tn>’

where v, and 6, are positive definite matrix functions. The entropy inequality is a
statement about dissipation, and the entropy production rate 2 presents its mea-
sure. The source terms (60) then provide an information about the cause of dis-
sipation in MT mixtures. These are mutual exchange of momentum (m;) and mutual
exchange of internal energy (é;) between the constituents. Note that only mutual
interactions appear as sources of dissipation since we neglected internal dissipation
within the constituents (due to viscosity and heat conductivity) assumed to be Euler
fluids.

Equilibrium state is the state in which the entropy production vanishes, X~ = 0.
Since we took the source terms as linear combinations of the Lagrange multipliers,
vanishing of the entropy production can be achieved through vanishing of the source
terms. Direct consequences are the following:

(61) m,=0 = u=v,—-v=0,
=0 = T,=T,

i.e. the velocities and the temperatures of the constituents are the same. This mo-
tivates introduction of new variables which describe the non-equilibrium state in a
more natural way — the concentration variable c,, the diffusion velocity u, and the
diffusion temperature @,:

(62) 612&7 U, =V, —V, @a:Ta—T

From the definitions of p and v, (50) the following restrictions on new variables
emerge:

(63) ica =1, z%:pau“ =0.
o=1 =1

Since u, and 0, describe departure of the velocities and temperatures from certain
mean values (not necessarily equilibrium ones), we can propose the following change
of variables:

(P Vs To) = (p,v, T, ¢y, 0, Op).

However, we still do not have a proper definition of the average mixture tem-
perature 7.

Average temperature can be defined in different ways. For a two-component
system at kinetic level it can be defined in terms of the algebraic average of the mean
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square velocities for the two distributions [28]. At macroscopic level it can be defined
through the total pressure, i.e. Dalton’s law. It is nevertheless deeply physically
motivated to use the energy definition of the average temperature based upon in-
trinsic (thermal) part ¢; of internal energy (50), pe; = >_._; p,é,. Intrinsic part of the
internal energy is a global (mixture) state variable which is supposed to depend on
the (mean) mixture temperature T, & = ¢/(p,, T'). On the other hand, internal en-
ergies of the constituents ¢, are functions of their temperatures T, &, = &,(p,, Ts).
Since the average temperature T reflects the mean kinetic energy of the particles in
the whole mixture, it must be recovered from the internal energies of the con-
stituents as if they all have the same temperature:

n n
(64) pgl(pw T) = Z/)aga(pav T) = Zpa‘gd(pm T%)
=1 =1

This definition is obviously implicit. The explicit form of the average temperature
can be obtained only in linear approximation:

7o e Py 0e(p,, T)
Z::l PzCVm ' Ve aT“ '

The linear approximation implies also the restriction on the diffusion tempera-

(65)

tures 6,:
n
ZpucVo:@a =0.
o=1

This definition of the average temperature does not take into account the dynamic
(diffusive) contribution to the internal energy. This choice can be defended on purely
theoretical ground [15], or through the measure of its contribution in the non-
equilibrium processes [56], which will be done in the next section.

The use of (64) gives rise to direct proof that the entropy attains its maximum in
equilibrium. Starting from the definition of the entropy of the mixture, ps = > p,Su,
we may expand it in the neighborhood of equilibrium state 7, = T

n n asa
5= PP D)+ pure (P2 O
a=1 a=1 o

+3325, 250, e+ 0@
20(:1/)%8]12 pfx? o a’”

The same can be done with the definition of the average temperature (64):

L De, 1. %,
pra—Ta(pom T)@Ot - _égpa a_Tg(pom T)@z + O(@i)

=1
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Since we are restricted to Euler fluids, we may exploit the Gibbs’ relation for the
constituents:

Do
T,ds, = de, — 2 dp,,
,03 Py

to obtain the following relations in equilibrium:

sy, 1 Oe,

8_71(1(po(7T) T aT (pr)

s, 1 Oe, 182%
W(paaT) - T2 aT (pa7T)+ T aTQ (pr)v

and eventually obtain the following expression for the entropy in the neighborhood
of equilibrium:

(66) ps = lexsa(pw )= 5 Zpa(:va@z +06).
o

Since cy, > 0, there exists a neighborhood of the equilibrium state @, =0 in
which the non-equilibrium part of the total entropy is negative definite quadratic
form of ©,, and thus the entropy of the mixture reaches its local maximum in
equilibrium. This estimate is a consequence of particular definition of the aver-
age temperature (64) and cannot be obtained in such a direct way using other
definitions.

An interesting observation can be given about the total pressure of the mixture,
p=>_p.p,, T,). It can be expanded in the neighborhood of equilibrium state
T, =T (6, =0) to obtain:

p=po+7mp,, T, 0), po= pr(pw D),
=1

where py represents the equilibrium pressure and ny(p,, T, @) is the non-equili-
brium part, the so-called dynamic pressure. The notion of dynamic pressure is
usually related to the excess of the trace of stress tensor from the hydrostatic
pressure. Classical NSF theory connects it to the bulk viscosity of the fluid [25], and
thus to the momentum transport. In contrast to that description, the dynamic
pressure is here related to thermal non-equilibrium, i.e. it appears as a consequence
of the non-zero diffusion temperature 0,. It is easy to show that the dynamic
pressure can be expressed in the first approximation as:

< 1 Opn
Tg= ) 1,60y, Tp= {ﬂ CVi o (ﬂb, T) — pyev = (p ,T)}
b; PuCvn U OTy orT, ™"
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while for the mixture of ideal gases it reads:
n—1
=) ppCvs(Vy — Vu)Os.
b=1
Note that it vanishes (at least theoretically) when the mixture is consisted of mo-
lecularly similar constituents, with the same ratio of specific heats, y, = y,,.

4.2 - Classical limit of the MT mixture

Extended models tend to describe the non-equilibrium processes in a more ela-
borate way than the classical ones. This usually leads to a greater complexity in the
mathematical structure. To compare the extended model with the classical one, the
process of reduction is needed. One possible procedure was indicated by the
Chapman-Enskog expansion used in kinetic theory of gases. It is relied on the ex-
istence of a small parameter and an asymptotic expansion of both the solution and the
macroscopic equations. A similar procedure, Maxwellian iteration, can be established
for macroscopic equations of extended models. It was, actually, the way in which the
classical NSF constitutive relations were recovered from the balance laws (42). The
procedure was established by Ikenberry and Truesdell [47] and successfully applied in
many circumstances in continuum mechanics as a sort of macroscopic Chapman-
Enskog procedure, i.e. an asymptotic expansion in powers of relaxation times.

To grasp the idea, before embarking to the analysis of mixtures, consider the
system of 2 x 2 balance laws in one space dimension:

(67) o + Oy f(u,v) =0,
O+ 0iglu,0) = ),

where t denotes the small parameter — relaxation time,  can be regarded as an
equilibrium variable, whereas v is a non-equilibrium one, (67)2 being its governing
equation. Relation vy = h(u) determines the equilibrium manifold on which the
source term in (67)e vanishes, and the system is reduced to a conservation law:

(68) O+ D F ) = 0,  F(u) = fu, h(w).
Equilibrium value of v is treated as zero—th iteration, v = vy = h(u). First itera-
tion vV is calculated by plugging v© into the left-hand side of (67), and vV into its

right-hand side. The time derivative of « is replaced using (67); with v = v©. As an
outcome, one obtains:

(69) v = h(u) — t{g.(u, h(w)) + h'(w)g,(u, h(u))
— 1 W) [fulw, () + B (w)f,(w, h(w))] } 0.
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First iteration (69) shows that the deviation from the equilibrium, vV — h(u), is
proportional to the gradient of equilibrium variable.

The procedure described above can be applied to the MT model of mixtures (51).
The role of non-equilibrium variables is reserved for the diffusion fluxes J, = p,u,,
and the diffusion temperatures 6,. Taking into account the source terms (58), their
equilibrium values (zero—th iteration) are:

V&O) =v = u;°> = O,JECO) =0,

TV =T = 0¥ = 0.
Omitting the details of calculation, which can be found in [72], first iteration of the
source term (60); in the momentum balance laws (51); is

nl

b T a=1 e ’ “ Pa pn'

After some transformations, the following expression for the diffusion fluxes is ob-
tained:

n—1

(70) J, 0 — Z Lo grad( ) + Ly grad (%) ,

where the phenomenological coefficients have the form:

(0)
ab’

R R (A (=T I LA

It is inevitable that (70) has the same form as the diffusion flux of classical TIP
[25], as well as first Maxwellian iteration obtained for the single-temperature

Loy = —T? [F—lwlefl}

n—1

b=1

mixtures [60].
Turning our attention to the diffusion temperatures, we derive first iteration of
the source terms (60)z in the energy balance laws (51)q:

n—
(1) (0) (1 PaCvd
o — 0 (4> ol ) By = Oog + LIV
b Tzz C ‘ pnCVn

After some transformations, one arrives at the explicit form of first iteration of the
diffusion temperatures [72]:

(71) 6L = —k, divv,
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where the phenomenological coefficients have the following structure:

n—1

ke=TY [as—la*l}:ng,
b=1

o, T {p(@ym ()" (%) <@>®}
N0 ’

(&) oTy op oT opy
Equation (71) determines the diffusion temperatures in the non-local form, like the
constitutive relations of classical TIP. Note, however, that there is no counterpart for
(71) in TIP. Nevertheless, Gouin and Ruggeri [33] derived the same equation as
constitutive relation using the procedure akin to the exploitation of the entropy in-

equality in classical TIP. Second remark is concerned with the mixture of ideal gases.
In that case, the phenomenological coefficients read:

Z::l pocCVct(yb - yoc)

z::l ,D o:CVot
Qp # 0 when the constituents have different molecular structure (different ;’s),
which is possible since the mixture of Euler fluids is not restricted to the mixture of

2 = pyTew

monatomic gases. However, when all the constituents have the same ratio of specific
heats, Q, = 0, first Maxwellian iteration does not distinguish the temperatures of the
constituents from the average temperature of the mixture. This deficiency can be
overcome if we proceed to second iteration, which is a matter of current research.
Using a variant of the Chapman-Enskog expansion, Goldman and Sirovich [32]
showed in the case of binary mixture of monatomic gases that the diffusion tem-
perature is second order effect, which is in accordance with the conclusion made
above.

4.3 - Maxwell-Stefan diffusion model revisited

Fick’s law of diffusion is probably one of the most popular models, but it is not
universal. There are processes in which “anomalous” (better to say non-Fickian)
diffusion occurs and another description is required. Extended thermodynamics
offers another view on the diffusion phenomena. It does not relate the diffusion flux
directly to the concentration gradient as its cause. It rather goes deeper, taking into
account mutual interactions of the constituents as a cause of the change of momenta
(and internal energies) of the constituents. Eventually, one ends up with the balance
laws instead of the non-local constitutive relations.

A different approach to diffusion was proposed by Maxwell and Stefan [22]. It is
based upon momentum principle and gives rise to a model which has considerable
advantages with respect to the Fick’s one, especially in the multi-component mix-
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tures (when the number of the constituents is n > 3). We shall give a brief account of
the Maxwell-Stefan diffusion model in the sequel, mainly following the exposition of
[79], and then make a comparison with extended thermodynamics of mixtures.

4.3.1 - Maxwell-Stefan diffusion model

The study of the Maxwell-Stefan diffusion model will be restricted to ideal gas
mixtures. The mass conservation equation:

Ip,,
ot

+ div(p,v,) = 0,

is a fundamental physical law in diffusion modelling. It describes the rate of change
of the mass or molar densities, or equivalently the mass or molar concentrations.
However, there appear the diffusion fluxes, J, = p,v,, whose structure is not known
beforehand and ought to be related to the basic field quantities. The Maxwell-Stefan
model gives a way to describe these relations by means of the momentum transfer
between the constituents.

The model itself is built around certain assumptions:

(Al) temperatures of the constituents are equal and constant;
(A2) total pressure of the mixture is constant;
(A3) there exists a concentration gradient of the constituents.

These assumptions imply certain consequences:

(C1) concentration gradient implies the gradient of partial pressure;

(C2) the pressure gradient is balanced by the momentum exchange between the
constituents;

(C3) the momentum exchange is proportional to the difference of velocities of the
constituents.

The consequence (C1) comes from the assumptions (Al) and (A3), and the thermal
equation of state for ideal gases:

k
(72) Do = P, m—BT — n,kpT,

where n, = p,/m, are the number densities of the constituents. The consequence
(C2) expresses the momentum principle, —Vp, = m,. It treats the pressure gra-
dient as a force which causes the change of momentum, rather then a part of the non-
convective momentum flux. Finally, although it looks like assumption, (C3) is a
consequence of the momentum exchange through collisions between the con-
stituents at the molecular level (see [22] and [79]).
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Although the Maxwell-Stefan model showed to be superior over the Fick’s one in
multi-component mixtures, the nucleus of the idea will be presented in a simpler
setting of binary mixture. Afterwards, it will be generalized to the multi-component
case. Consider a binary gaseous mixture whose constituents are labeled by 1 and 2
and whose molecules have masses #m; and ms. The balances of momenta can be
written in the following forms:

(73) Vp1 = —fismne(uy — ug) = —fix122(0; — U),
Vpe = — foymine(uz — u1) = —forx122(uz — wy),

where 1, x2 are the molar concentrations and fi5, /5, fi2, f21 are the drag coefficients.
Note that the difference of diffusion velocities is equal to the difference of velocities
of the constituents, u; — ug = v; — vo. Assumption (A2) of constant total pressure p,
P = p1 + P2, and temperature T helps to recast (73) in the following form:

1 20102 1 2122
74 di=-Vpi=—-—u;—up), dg=-V ———(uz — uy),
(74) 1 pp1 D12(1 5) b ppz 02(2 )
where we introduced the Maxwell-Stefan diffusivities:
P _ksT _p _ksT
B f12 n 12 2 f21 nfz*l ’

From (72) and the assumption (A1) it follows d, = (1/p)Vp, = Va,, and one easily
obtains the Maxwell-Stefan relations:

(75) le — le—lz (LI1 llz), sz — 9;)1—22 (u2 — u1)
This form of the Maxwell-Stefan relations facilitates derivation of an important
property of diffusion coefficients. Namely, since x; + 22 = 1, we have Va; + Vae =0
which leads to D12 = Dy — the symmetry of the binary diffusion coefficients.
Generalization of relations (74) to the multi-component mixtures is straightfor-
ward. By the momentum principle, the motion of o constituent is driven by the
negative gradient of partial pressure, and the rate of change of momentum is caused
by the drag exerted by its relative motion with respect to the other constituents. This
observation leads to the natural generalization:

(76) d,=Lvp, = Zwﬂ (1, — up).
p p=1

This may be regarded as the simplest possible model within the Maxwell-Stefan
framework depicted above. Other equivalent forms may be found in [79]. However,
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few remarks have to be given. First, the structure of (76) trivially excludes collisions
between the molecules of the same species from the rate of change of momentum.
Moreover, collisions between the molecules which do not involve o' constituent are
also excluded, and one may speculate about their possible influence on the rate of
change of momentum of ot constituent. If we assume that (76) contains the term
ug — u,, B,y # o, it is easy to show that it can be “absorbed” into existing terms by a
simple manipulation:

ug —u, = (u, —u,) — (u, — up).

In other words, terms of the type uz —u, are redundant in the Maxwell-Stefan
diffusion relation for the constituent «. Second, the symmetry of diffusion coeffi-
cients in the binary mixture came out as a consequence of the constraint on molar
concentrations, which can be generalized to

zn:xazl = iV%:O.
o=1 =1

This relation, however, is not sufficient to prove the symmetry of diffusion coef-
ficients in the multi-component mixtures. Nevertheless, more subtle arguments
eventually lead to this conclusion, i.e. D, = Dj, (see [79] for details). Finally, the
Maxwell-Stefan relations (76) help us to close the diffusion problem. They provide
the relation between the velocities of the constituents v, and field variables, which
in conjunction with the mass balance laws form a complete system of governing
equations. In such a way they represent the constitutive relations. Although we
took into account mainly theoretical issues, the Maxwell-Stefan model is widely
applied in practical calculations and presents a mathematically challenging pro-
blem [16, 17].

4.3.2 - Maxwell-Stefan model and extended thermodynamies

The first step in a comparative analysis of the Maxwell-Stefan model and ex-
tended thermodynamics of mixtures will be concerned with the binary mixture.
Attention will be restricted to the isothermal processes in ideal gases,
T, =T = const., i.e assumption (Al) is fulfilled. Taking into account the source
terms (60), the balance laws of momenta read:

I(pyv .
O(pov: .
(gzt z) + div(pyve @ v2) + Vpe = —%(u2 — ).
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The comparison of (77) and (74) reveals a striking similarity — ET balance laws
reduce to the Maxwell-Stefan relations if the inertial and convective contri-
butions are neglected. Therefore, the Maxwell-Stefan relations can be regarded
as a truncated form of the balance laws of momenta in extended thermo-
dynamics of mixtures. In view of the remark given above, they can be regarded
as valid for rather slow processes. However, the possibilities for comparative
analysis are not exhausted in formal similarity of these models. The source
terms in (77) determine the rate of change of momentum, just as the right-
hand sides of (74). By a simple comparison, one may determine the phenom-
enological coefficient y;:

(78) Vil = mel—jc;

The main benefit of this relation is the possibility of calculation of the phenom-
enological coefficient in terms of the Maxwell-Stefan diffusivity, which can be
determined by other means. In such a way, the main drawback of extended
thermodynamics — indeterminacy of phenomenological coefficients — is removed.

Promising results obtained in the case of binary mixture motivate the study of
the general case. There we meet a formal obstacle. Gradient of the partial
pressure in Maxwell-Stefan relations (76) is balanced by the momentum ex-
changes due to collisions of the constituent « with all other constituents. On the
other hand, under the isothermal assumption, the balance laws of momenta in ET
read:

O o . n—1 ;
(79) (pyV2) + div(p,v, ® v,) + Vp, = m, = U —uy,),
ot = T
foro=1,....,n—1, and m,, = — Zﬁ;ll myg. Again, the Maxwell-Stefan relations

(76) can be regarded as a truncated form of the balance laws (79) in which inertial
and convective terms are neglected. However, to recast the source terms m, to
the form comparable with the right-hand sides of (76), we have to rearrange the
velocities:

ug —u, = (u, —uy,) — (u, — up).

In such a way, the source terms can be written as:

n—1 Wap n—1 W
80 S (ﬁz T~> )
-1 =

B#o
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By equalizing (80) with the right-hand side of (76), a simple calculation shows that
phenomenological coefficients have the form:

Lol
(81) "’“ﬂ:_D,fPT’ o, f=1,....,n—1, 0 #p,

"
V= | D o | PT-

1

pa

Comparison of the Maxwell-Stefan diffusion model and extended thermo-
dynamics of mixtures gave an efficient procedure for expressing the phenomen-
ological coefficients in terms of the Maxwell-Stefan diffusivities. The procedure may
be regarded as valid only if it gives positive definite matrix of phenomenological
coefficients — the condition dictated by the entropy principle. In the case of binary
mixture the result coming from (78) is trivial, y; > 0, due to the positivity of dif-
fusivity. In the case of ternary mixture, coefficients can be calculated using (81):

X1X2 X103 L1d2
= =—4+—=—= T, = — T = ,
Y1 ( DIQ D13 ) p Y12 D12 p Va1

X201 X203
= (22423 pr
Vo2 ( Do | Dy ) p

Positive definiteness can be checked using the Sylvester’s criterion — all the principal
minors have to be positive — which leads to:

L1X2 X123

A1 = =(—=—+—=")pT >0,
1=¥n (Dlz D13>10

Ao = W11Wog — WiaWa

L1X3 Xok'g X103 X2y L1d2 LU\ 9,50
B ( D13 Dys  Dig Doy Dz Dsg >p >0,
both inequalities being unconditionally satisfied as sums and products of positive
quantities. This result strongly supports our idea to relate extended thermo-
dynamics to the Maxwell-Stefan diffusion model. In the case of general multi-com-
ponent mixture, this condition yet remains to be proved.

We would like to put this comparative analysis into a broader context. Namely,
Ruggeri [68] showed that constitutive relations of the non-local type can be regarded
as the truncated balance laws. This has been proven by direct calculation for Navier-
Stokes relations for Newtonian fluids, Fourier’s law of heat conduction, Darcy’s law
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in porous media, and now for Maxwell-Stefan relations. It was also proved in [68] that
the entropy inequality is satisfied as long as the state variables during the processes
remain in some neighborhood of the local equilibrium state (in a generalized sense).
This also motivates the calculation of the phenomenological coefficients in balance
laws by the comparison with truncated balance laws, i.e. the constitutive relations.
Possible objection could be made about the accuracy of the coefficients calculated in
this manner — they obviously represent a kind of first approximation since the
comparison is always made for the linearized source terms. However, these re-
strictive assumptions can be compensated by the nonlinearity of the source terms in
general case. For example, we may take the coefficients (81) calculated for an iso-
thermal process and use them in the analysis of non-isothermal ones, or even multi-
temperature processes, with expectation that the nonlinearity of the source terms
will capture the non-equilibrium effects that are missing in phenomenological
coefficients. There is no general result which can support this observation.
Nevertheless, it will be shown in the next Section that this could lead to satisfactory
results confirmed through a comparison with experimental data.

Final remark is concerned with physical justification of extended models. In its
development within ET, the mixture theory passed first through the multi-velocity
stage. It helped to remove the paradox of infinite pulse speeds of diffusion, and re-
covered the Fick’s law in classical limit. On the other hand, the Maxwell-Stefan re-
lations appear as truncated form of the momentum balance equations for the con-
stituents. One may justly ask for an experimental validation of the proposed model.
We shall just mention the work of Kerkhof and Geboers [48, 49] who used the viscous
multi-velocity model to describe the isothermal diffusion in a binary mixture. They
assumed the steady flow, with negligible convected momentum through the long
cylindrical capillary. They also assumed the velocity slip at the boundary. Their aim
was to test the hypothesis of the presence of interspecies friction (momentum ex-
change between the constituents) through comparison with experimental data of
Remick and Geankoplis [63]. As a matter of fact, they obtained an excellent agree-
ment which supported the multi-velocity model.

5 - Shock structure in multi-temperature binary mixture

Shock waves are moving singular surfaces on which jump discontinuities of the
field variables occur. In the physical reality, due to dissipative mechanisms they are
observed as narrow transition regions with steep gradients of field variables within,
i.e. shock waves are endowed with the structure. The shock structure problem
consists of a mathematical description of this region through particular solutions of
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the appropriate mathematical models. This problem is challenging both from the
mathematical and physical points of view. Mathematically, the questions of existence
and uniqueness are very important for the solutions with jump discontinuities, as
well as for the continuous ones. Physically, the continuum hypothesis becomes
doubtful in this situation, thus limiting the range of validity of the continuum the-
ories of fluids. On the other hand, the shock structure problem is a standard test for
the models of non-equilibrium processes, through which they can be validated.

Theoretical studies of the shock structure problem in mixtures can be traced back
to Sherman [73] where the continuum description was used. Although it contained
some results which were refuted in the subsequent studies, this analysis drew at-
tention to a lag of velocity profile of heavier constituent and triggered further in-
vestigations. Bird [8] applied the direct simulation Monte Carlo (DSMC) method in
the analysis of binary mixture and observed some interesting phenomena: apart from
the lag of velocity profiles, there is a difference in temperatures of the constituents;
moreover, equilibration of the temperatures is the slowest relaxation process in the
mixtures. In parallel, there were some experimental studies, although not much [42, 19],
which gave a new insight into this problem. Certain theoretically predicted features
were confirmed, and other carefully examined. Abe and Oguchi [1] made a careful
comparison of the experiments with numerical simulations based upon the Boltzmann
equations for mixtures. Their analysis confirmed the existence of the temperature
overshoot of a heavier constituent — a region within a profile where the temperature
increases above the terminal temperature of the mixture. They also gave an ex-
planation using the heat conduction arguments. Recent studies within the framework
of kinetic theory represent collections of valuable, yet particular results, mainly de-
voted to the development of deterministic numerical schemes for the solution of
Boltzmann equations [51, 62]. However, the complexity of numerical schemes pre-
vented massive calculations and systematic study of the shock structure.

In view of these facts, we shall first test the MT model against experimentally
determined shock structure in Helium-Argon mixture [42]. This will be followed by
the systematic analysis whose aim is to reveal the influence of the three parameters —
the mass ratio, the Mach number and the equilibrium concentration — on global
parameters of the shock structure — the shock thickness and the temperature
overshoot of heavier constituent. The results of the analysis will show that the mac-
roscopic MT model can be put at the same level of accuracy as more refined models of
the kinetic theory [1], or the results of DSMC [8], at least for the weak shocks.
However, the main advantage of the MT model is the possibility to apply it with only
moderate numerical efforts and the use of standard numerical packages. Finally, the
study will be completed with some results concerned with the influence of other
dissipative properties on the shock structure, like viscosity and heat conductivity.
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5.1 - Formal aspects of the shock structure problem

Although there are useful resources for the study of the shock structure problem
[24], we shall give some general remarks about it to make the exposition self-con-
tained. Consider the hyperbolic system of conservation laws in one space dimension:

(82) au + 8,F(u) = 0,

where u € R" is the vector of state variables and F(u) € R" is the vector of fluxes. To
(82) one may adjoin the eigenvalue problem:

(83) (= A+ DFu))r =0,

where I is the identity matrix, DF(u) is Jacobian matrix of F, 4;(u) are real eigen-
values — the characteristic speeds — and r; € R" are the corresponding eigenvectors.

The system of conservation laws (82) admits weak solutions with jumps, where
the jumps of the state variables are determined as solutions of the Rankine-
Hugoniot equations:

(84) [F(w)] = s[u],

s being the shock speed and [()] = (); — (), subscripts indicating the states in front
(0) and behind (1) the shock. Nontrivial solutions of the Rankine-Hugoniot equations,
which are of interest for our analysis, bifurcate from the characteristic speeds, i.e
they exist in the neighborhood of s = 4;(uy). However, not all of them are admissible
and one must take into account the appropriate selection rules. For our purposes, it
will be sufficient to use the Lax condition (where we implicitly assumed that all the
eigenvalues are distinct):

/11(110) <... < }vi(uo) <s < 2#1(“0) <. < A.n(uo),

/11(111) <. < )Ni,l(lll) <s < /11(111) <... < /ln(ul).

It can be combined into a single inequality for the so-called :—shock:
(85) },Z‘(ll()) <8< )Z(ul)

Classical continuum models introduce the dissipation through the non-local
constitutive relations, which give rise to dissipative models with the diffusive terms:

(86) au + 9,F(u) = e9,(Bw)dyw),

where B(u) is the viscosity matrix and ¢ > 0 a small parameter. Shock waves in these
systems are regularized, i.e. endowed with a continuous structure. When the tra-
veling wave solution is assumed, the shock structure can be represented as a het-
eroclinic orbit in the phase space. Existence of the shock structure is naturally re-
lated to the Lax admissibility condition (85), but the existence of heteroclinic orbits is
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not a prerogative of the admissible equilibrium states — they exist even for the non-
admissible solutions of Rankine-Hugoniot equations of (84) (see [75] for more details
in the context of Navier-Stokes-Fourier model).

Dissipation can be introduced through the relaxation terms as well. If we extend
the set of state variables, the source terms of relaxation type appear in the extended
set of governing equations which have the form of balance laws:

- 1
(87) U+ 0,FU) = ;Q(U),
with the following structure:
u\ ueR" _ f(u, w)
(5 (W)’WGR’”’ © (g(u,W)>’

_ 0
QW)= (q(u, w) ) '

In (88) U c RY , N = n + m, is the extended set of state variables, F(U) is the cor-
responding vector of fluxes, Q(U) is the vector of source terms and 7 > 0 a small
parameter — the relaxation time. It is an important assumption that there exists an
equilibrium manifold in the extended phase space, determined by the relation:

(89) q(u,w) = 0.

We shall also assume that (89) can be solved for v, so that the equilibrium manifold is
explicitly determined:

(90) qu,w)=0 = wg=h() as 7 —0.

On the equilibrium manifold, the system (87) is reduced to an equilibrium sub-
system:

(91) o+ 0,f(u,h(u)) =0, f(u,h(u) =F),

which coincides with the system of conservation laws (82). To the differential part of
(87) one may adjoin the eigenvalue problem:

(92) (— AL+ DF(U)R = 0,

whose eigenvalues 4;(U), if they are real, ought to satisfy the subcharacteristic
condition on the equilibrium manifold:

(93) min_A;(u, h(u)) < 2;(w) < max ;(u, h(u)).
1<j<N - 1<j<N

The shock structure is assumed to be a traveling wave solution of (87) which
asymptotically connects the equilibrium states. To that end we assume the solution
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in the form:
(94) U=v©, ="

T

and reduce the system of balance laws (87) to a system of ODE’s — the shock
structure equations:

d .
(95) 01—é[-—sU+F(U)}=Q(U).
They are equipped with the boundary conditions:
(96) flim U =0y, lim UE) =Ty, “1irin U'©¢) =0,
E——00 {—o0 ¢—=+00
for which it is assumed:
97) Jim w() = wgo = hwy),  lim w(c) = wp = haw),

i.e. the solution approaches the equilibrium manifolds at infinity. By integrating the
conservative part of the system (95), one obtains —su + f(u, w) = const. Using the
boundary data (97), the Rankine-Hugoniot equations for the equilibrium subsystem
(91) are recovered:

(98) f(uy, h(uy)) — su; = f(ug, h(up)) — suy.

Therefore, we may conclude that shock structure connects the equilibrium states of
the system (87), i.e. stationary points of (95), which correspond to the solution of the
Rankine-Hugoniot equations of the equilibrium subsystem (91). In view of that fact,
the critical value of the shock speed s ought to be the one from which nontrivial
solution of the Rankine-Hugoniot equations bifurcate, i.e. the one which coincides
with the characteristic speed of the equilibrium subsystem.

Linear stability analysis of the equilibrium states (stationary points), through the
spectral analysis of linearized variational equations of (95), yields that there are
exactly » eigenvalues (corresponding to the conservative part of the system) which
are identical zeros:

(99) 2y =2 U) =0, k=1,...,n.

The remaining m eigenvalues (corresponding to the non-equilibrium part of the
system) obey the following relations:

(100) ;u(jl)(UO) < ;L(‘jZ)(UO) <. < }v(jm—l)(UO) <0< i(jm)(UO)’
Z(jl)(U1) < ;L(jZ)(Ul) < ... < /’]'(]"m—l)(Ul) < l(j’”)(Ul) <0,

i.e. the highest eigenvalue has different signs at the upstream and the downstream
equilibria. Moreover, it is the only eigenvalue which changes the sign, and it occurs
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when the shock speed crosses the highest characteristic speed of the equilibrium

subsystem:

( d“(jm)
(101) 29U, o)) = 0, = Uy, £ () # 0.

This result, drawn from several convincing particular cases, which indicates the oc-
currence of transcritical bifurcation pattern, is rather a conjecture than a genuine
theorem. The proof of this statement, as well as a proper bifurcation analysis, is still an
open problem for the hyperbolic systems of balance laws. In [74, 76] one may find a good
collection of examples which confirm the conjecture stated above. In the case of viscous
dissipative systems one may refer to a recent result of Achleitner and Szmolyan [2].

The promising aspect of the inequalities (100) is that the stationary points U, and
U; behave like the saddle and the stable node, respectively, albeit in a generalized
sense since they are non-hyperbolic. This permits the numerical solution of the shock
structure problem (95)-(96) as an initial value problem [83].

5.2 - Shock structure equations in MT binary mixture

Shock structure problem will be analyzed as a stationary problem, i.e. the shock
structure is considered as a plane traveling wave, moving at a constant speed s.
Considering the problem in a binary mixture, we shall choose governing equations in
the mixed form (51), with state variables (p,v, T, py,v1, T1).

First step in the analysis will be the choice of state variables and the recognition of
parameters. The constituents are assumed to be ideal gases, with the thermal and
caloric equations of state (55). The average temperature of the MT mixture will be
defined by means of the intrinsic (thermal) part of internal energy in equilibrium (65):

(102) (prevy + peev,)T = prev, T1 + pacy, T

By restricting the analysis to the binary mixture of monatomic gases,
71 = 79 = y = 5/3, we may express the total pressure and the intrinsic part of internal
energy in the same form as in the case of a single component gas:

_ _ kg _ _ ks
P=pPitp2=p_-T, per=pier+pses =P Dm

b

provided we introduce the average mass m = m(c), and the average temperature 7'
of the mixture in the following form:

1 1-
- - ¢ =™ o™y,
mlc) my Ma My Mg

(103)

where cis the concentration variable related to the mass densities in the following way:
pr=pc, py=pl—o).
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In the sequel, we will introduce the difference of temperatures ® = Ty — T4, the so-
called diffusion temperature, and the ratio of masses of the constituents:
my

=—, O0<u<l,
h= u<

where we assumed m; < my. The temperatures of the constituents can now be
expressed in terms of the new variables T, @ and c, using u as a parameter:

T'=T-f©06, Te=T+1-f()O,

where the auxiliary function f(c) reads:
1—
) nd—c)

Tetul—o)

Finally, we will also use the diffusion flux J of the constituent, instead of its velocity
vi. Since the relative velocities obey the relation p;u; + pouz = 0, due to (50), the
diffusion flux of constituent 1 is defined as:

J=piu; = —pous.
Therefore, we take the change of variables:
(p,V, T7p1ﬂV17 Tl) - (pava T7 C7J> @)a

and rewrite the system of the governing equations in terms of them. The complete
set of equations can be found in [69]. We shall be restricted here only to the shock
structure equations.

The source terms (58) in the case of non-reacting (z, = 0) binary mixture have the
following form:

o u; Uz A 1 1
(104) m; = —yp <T1 T2> , e =—0n ( T + T2) )
where y; and 01; are the phenomenological coefficients. They can be related to the
state variables and relaxation times for diffusion 7p and temperature t7 [55]:

1 1
(105) w=—"1wyp g, = PGPV e
W P Tr P1Cv; + Palyy

We have already seen that ET does not possess an inherent method to determine the
phenomenological coefficients completely. However, by the methods of kinetic
theory of gases one can relate the relaxation times 7 and 77 to the diffusivity Do of
the binary mixture of monatomic gases [22, 9]:

My + M

_eme+ (1 —c)my
T kgT

(106) p = kBT Dlz, T D12-
In fact, kinetic theory establishes the relation (106); between tp and D12, while the other

one comes as a consequence of the ratio between the relaxation times in the case of
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monatomic gases [14, 72, 55]:
r my + Mg
i cme+ 1 —c)m

(107) > 1.

Diffusivity of the binary mixture, derived from the model of hard spheres, is de-
termined as [22, 9]:

(108) Dyp =

3 Mml -+ Mo 12
8ndz, \ 2m  mymg ’

where n = p/m is the mixture number density, n = ny + ne = p;/my + py /Mg, and
diz = (d1 + d2)/2 is the average atomic diameter of the mixture constituents, whose
diameters are d; and ds.

For the shock structure related to plane shocks, i.e. to the shock waves whose
singular surface is plane, one space variable, say x, will suffice for the description of the
problem. The shock structure will be assumed in the form of a traveling wave, moving
at constant speed s in the direction x orthogonal to the singular surface, and
asymptotically connecting the equilibrium states in front and behind the shock wave.
Under these assumptions, the shock structure will depend on a single variable
& = x — st, and the model is transformed into a set of ordinary differential equations
where the velocity, the diffusion flux and the source term (momentum exchange) are
described by a single component, i.e. v = (v,0,0),J = (J,0,0) and m; = (921, 0,0), in
Cartesian coordinates. The shock structure equations then read:

d

d(u—i— + J2 ) 0

d{<1u+s+) (7%] +E>J}—0
az|\g™ e pl—0) )

(109)

d

d_f(perJ) =0

d J? .
{pcu +— +2uJ+p1} = My,

¢ pe

d 1 (u+J)2+cs+ (u+J> = Nu +e
dé e pCel + P1 e =m 1,

where § determines the so-called thermal inertia:

1 Pa
= s . &y +— + .
§ 91— 92 I = Py 2

2

The problem of the shock structure will be studied in the dimensionless form. For
that purpose, we shall introduce the dimensionless variables by scaling the state
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variables and the independent variable & with the appropriate upstream equilibrium

values, indicated by the subscript 0:
a0y =l a=t p-L j_
Po ao Ty Po®o

~ e - f Uo
@:— = — = —
) T()’é l()’ 0 a0

where u = v — s is the relative mixture velocity with respect to the shock wave, [y is
the upstream reference length and ay = {y(kg /mO)TO}l/ % is the upstream speed of
sound; mg = m(coy) is the equilibrium average mass of the mixture and M, is the
upstream Mach number. For the sake of simplicity, tilde will be dropped in the sequel.

The upstream reference length [, is usually taken as the mean free path of the
atoms. The average mean free path in the mixture will be expressed in terms of the
other, more primitive properties of the constituents [9]:

n n
(111) lo = %101)0 +§<lz>o,

-1
1 ’ 1/2 ’ 1/2
(o = —5- lnl (1 + m) +12 (1 + m> ,
”d12 ma me

where 7, are number densities of the constituents, and n = nq + ng is the mixture
number density.

Using the scaled variables (110), we obtain the following set of dimensionless equa-
tions:

d
d_é<pu +—%p * c(lc)) 0,
d

— 12+L@ T_A'_Jizu
a2 T Tam ™ T —o

ud 1
(ot a)} =0
d
d—f(pcu+J) =0,
d . JF 1my
d—é{pcu +E+2M+;Epc(T—f(c)@)}

= - l—omﬂ(T7 C, @)J7
pao

df(1 JN\?, 1 my J

= Z—Omﬂ(T, ¢, O)Ju + l—oe,,(p, T, ¢, 0)6.
Tpao 0o

(112)
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Auxiliary functions in the source terms read:

T+[1-c—f(0)]O T
[T - f(OlT + 1A —f(c)o] '

1 my m pc(1 — ¢)T?
2y — 1) my mg [T — f(©)OIT + (1 —f(c)O]’

and the ratios of masses can be expressed as:

m,(T,c,0) =

e.p,T,c,0) =

my_ ctul-o my__ 1 0 om__ ou

m - co+ul—c) m c+ul—c) my c+ul—c)
In (112), the dimensionless thermal inertia has the following form:
1 1 [mg my m ] J? [1 1 }

= Q- ———0O |+ 55—
Br—1|m 2 my me 20 (2 1 —c)

One may note that the shock structure equations (112) comprise only two di-
mensionless groups:

11 D= Z—O, 17 T = l—O
Tpo Trao

The shock structure equations (110) obviously have the structure (95). There still
remains to determine the boundary conditions. Mere observation of the source
terms in (112) yields that the diffusion flux and the diffusion temperature vanish both
in upstream and downstream stationary points, i.e. Jo = J1 = 0, Oy = ©; = 0. Thus,
for a given upstream equilibrium state Uy = (pg, %o, 1o, ¢o,Jo, @p) one may de-
termine the downstream equilibrium state U; = (py, %1, T1, ¢1,J1, ©1) by integration
of the conservative part of the system (112); 4. The nontrivial solution in di-
mensionless form reads:

_ o -
3+ M;
S
3+ M;
Mo 1M,
1
(113) Uy = , Ui=|1 3 )
C — -
0 16 14 M(Z)—i—5M0
0
- 0 - CO

Note that relations between the mixture state variables p;, %1, 71 and py, uo, T,
correspond to the solution of the usual Rankine-Hugoniot equations between the
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state variables at the shock wave for a single fluid. On the other hand, the con-
stituent-related state variables c, J and @ have the same equilibrium values in front
of and behind the shock. Since the diffusion flux J and the diffusion temperature ©
vanish in equilibrium, they can be regarded as genuine non-equilibrium variables.
Also, the concentration is the same in both equilibrium states, ¢; = ¢g, and in the
sequel it will be termed equilibrium concentration, without special regard to the
upstream or the downstream state. Finally, the downstream equilibrium can be
regarded as a one-parameter family of states, parametrized by the Mach number
(i.e. the shock speed), U; = U(Uy, My).

After complete analysis of the mathematical model of the shock structure, we
may conclude that three parameters distilled after the scaling procedure: M, — the
upstream Mach number, 1 — the mass ratio of the constituents and ¢y — the equili-
brium concentration. First parameter measures the strength of the shock and it is
omnipresent in all shock structure problems. The other two parameters are peculiar
for the mixtures. Our aim is to analyze the influence of these parameters on the
structure of shocks in the binary MT mixture.

The shock structure equations (110), along with boundary conditions (113), will be
solved numerically. The details of numerical procedure are thoroughly explained in
[56]. We shall give only two important remarks. First, the idea to analyze the shock
structure problem by the methods of dynamical systems theory was proposed by
Gilbarg and Paolucci [29]. It can be formalized and efficiently applied as long as the
numerical procedure does not meet any kind of singularity. This question was raised
as early as Grad [36] faced the problem of appearance of the non-smooth profiles in
13 moments equations. Later on Weiss [83] offered an answer using the singularity
analysis. Finally, Boillat and Ruggeri [13] proved that a continuous shock structure
does not exist if the shock speed is greater than the highest characteristic speed of
the full system in the upstream equilibrium. In the case of mixtures, the problem of
non-existence becomes more delicate because of several parameters which influence
the solution. We shall restrict the analysis to the weak shocks for which the existence
of smooth solutions is imminent.

5.3 - Comparison with experimental data

Our first aim is to compare the predictions of the hyperbolic MT model with the
experimental data reported by Harnett and Muntz [42]. Measurement of the data
was based upon electron beam fluorescence technique for three different mixture
compositions. We shall make a comparison between the numerical solution and the
experimental data for the upstream Argon mole fraction y,, = 0.247 and the up-
stream Mach number M, = 1.63. These data correspond to the Helium upstream
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concentration (mass fraction) ¢y = 0.234. To make the comparison with experiments
feasible, it is needed to choose the unique length scale. In [42] the mean free path was
determined using the viscosity of the mixture at sonic conditions, Iy = u*/(pyro)-
Consequently, the conversion rule &= (lym /ZO)EHM will be applied to the experi-
mental data, where ZHM is the dimensionless length used in [42]. The results given
here were presented with more details in [55].

Figures 1 show the numerically obtained profiles of the velocities and the tem-
peratures for the MT model, superposed with the experimental data of Harnett and
Muntz [42]. In the case for which the comparison is made, the Argon velocity profile
is obtained directly from experiment, while the Helium velocity profile and both
temperature profiles are obtained indirectly. Also, we compare only the so-called
average temperatures of the constituents, as defined in the kinetic theory of gases,
since parallel and orthogonal temperatures are indistinguishable in our MT model.
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Fig. 1. Dimensionless velocity (a) and temperature (b) profiles. MT model: solid line — Ar,
dashed line — He. Experiment: squares — Ar, circles — He.

Velocity profile of Argon has a very good agreement with the experiment, while
slight discrepancy can be observed in the Helium velocity profile. This can be at-
tributed to the fact that experimental Helium profile is determined indirectly.
However, the tendency and the gradients of velocities are in satisfactory agreement.
The diffusive separation in numerical solution is of the same kind as in the experiment.

In the case of temperature profiles, certain discrepancies between the MT model
and the experimental results can be observed. The first discrepancy is concerned
with opposite sense of temperature diffusion © in numerical simulation and ex-
periment: there is a lag in the Helium temperature rise in experimental data, while
the Argon temperature has a lag in numerically calculated profile for the MT model.
The same discrepancy was observed in the numerical simulations of Abe and Oguchi
[1], the discrete velocity models by Monaco [57] and the DSMC by Bird [8]. The same
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pattern is observed also in more recent studies of the shock structure in binary
mixtures of hard spheres [51]. Therefore, our profiles seem to agree with other
theoretically obtained ones.

The second discrepancy in the temperature profile is concerned with a
temperature overshoot of Argon — existence of an interval within a profile where
the temperature becomes higher than the terminal one. In our calculation, the
maximum relative temperature overshoot is (Tay)max — 71)/(T1 — To) = 0.06.
Harnett and Muntz [42] observed that the parallel temperature of Argon has an
overshoot in the case of y,, = 0.115 upstream Argon molar fraction, although it
is within the uncertainty of the temperature measurement. On the other hand,
mean Argon temperature does not exhibit an overshoot. These observations
were supported by the asymptotic analysis [43]. Since the overshoot of mean
Argon temperature occurred also in simulations with low Argon concentration
[8], they conjectured that an overshoot of the parallel Argon temperature re-
presents an onset of the mean temperature overshoot phenomenon, since it
competes with the influence of cross collisions between the two species, and
prevails in the case of low Argon mole fraction. These observations were con-
firmed in other profiles obtained numerically from the Boltzmann equations, e.g.
in [1] for the low Argon concentration and in [51] for the low concentration of
heavier constituent.

5.4 - Detailed analysis of the shock structure

Systematic analysis of the shock structure is clearly motivated by the satisfactory
agreement of numerical simulation with experimental data. The results presented in
the sequel can be found in [56] in the expanded form. The analysis will commence
with two particular cases: (a) My = 1.2, ¢y = 0.35, u = 0.05; (b) My = 1.6, ¢y = 0.21,
u=0.1.

In both cases a monotonicity of the mixture state variables u (Figure 2) and T'
(Figure 3) can be observed. Also, there is a lag in the velocity profile of heavier
component in either case, and the shock thickness is obviously different. It is im-
portant to note that the temperature overshoot does not exist unconditionally.
Therefore, we need a conspicuous analysis of the influence of parameters My, ¢y and
1 on the shock structure. We shall analyze their influence on the two quantities — the
shock thickness and the temperature overshoot. Shock thickness measures the re-
gion within the shock structure where the most significant variation of state variable
U OCCUrS:

Uy — o

(du/dS) oy

-
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Fig. 2. Velocity profiles in the shock structure (v — average velocity of the mixture, u; —
velocity of the lighter constituent, us — velocity of the heavier constituent): (a) My = 1.2,
¢o = 0.35, 1 = 0.05; (b) My = 1.6, cop = 0.21, u = 0.1.

We shall take the average velocity of the mixture to calculate the thickness. It is
important to notice that the dimensionless shock thickness is equal to the reciprocal
of the Knudsen number

~ o0 1
114 0= —=_—_.

( ) l() Kn

Its value will help us to distinguish between the different flow regimes. Temperature

overshoot (T'O) measures the relative increase of the temperature of heavier con-
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Fig. 3. Temperature profiles in the shock structure (7 — average temperature of the
mixture, 77 — temperature of the lighter constituent, 75 — temperature of the heavier
constituent): (a) My = 1.2, ¢y = 0.35, £ = 0.05; (b) My = 1.6, co = 0.21, = 0.1.
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stituent above the downstream temperature of the mixture:

Ty
TO = T, _ T, '

where T3 denotes the maximum temperature of the heavier constituent within the
profile, whereas T and T are upstream and downstream equilibrium temperatures
of the mixture, respectively.

The results presented in the sequel are based upon numerical calculations of the
shock profiles for 4394 combinations of parameters My, ¢y and w. For these values of
the parameters, Knudsen number is bounded 0.002 < Kn < 0.48, which leads to the
conclusion that the slip flow and the transition regime dominate.

54.1 - Analysis of the shock thickness

The dependence of the Knudsen number (shock thickness) on Mach number is
monotonous for the fixed mass ratio and upstream concentration (Figure 4). It in-
creases with the increase of Mach number, which amounts to a decrease of the shock
thickness. This is rather expected result which resonates with the behaviour of a
single-component gas in the range M, < 2.0. For larger Mach numbers in the single-
component gases Kn decreases with My, but we cannot proceed to them since the
continuity of the profile will be lost.

The Knudsen number increases monotonically also with the increase of the mass
ratio, for the fixed Mach number and upstream concentration (Figure 4). In other
words, the smaller the mass difference, the smaller the shock thickness. On the other
hand, in mixtures with larger mass discrepancy between the constituents (smaller p)
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(a) Mo=1.1-15 (b)

Fig. 4. Dependence of Kn on mass ratio x for fixed mass concentration cy. Mach number is
increased from M, = 1.1 with an increment 0.1. Arrow indicates graphs for increasing values
of M, 0-
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the thickness is increased. This observation will be of interest in the analysis of the
temperature overshoot.

Quite intriguing results were obtained when the Knudsen number is calculated in
terms of equilibrium concentration, for the fixed values of M, and u. For different
combinations of M, and u it was observed that Knudsen number increases when cg
tends to extreme values, i.e. to 0 or to 1, whereas it has a single local minimum in
between (Figure 5). One may say that the shock thickness decreases when one of the
constituents dominates, i.e when the mixture behaves like a single-component gas.
On the other hand, when a genuine mixture is at hand, the shock thickness is in-
creased, i.e. the shock profile becomes wider.
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Fig. 5. Dependence of Kn on mass concentration ¢ for fixed mass ratio 4. Mach number
is increased from M, = 1.1 with an increment 0.1. Arrow indicates graphs for increasing
values of M.

This result can be attributed to the fact that, for ¢y far from lower or upper bound,
the cross-collisions between the molecules of different species cause the intense
exchange of the momentum and energy between the constituents, described by the
source terms. This mechanism becomes equally important as self-collisions among
the molecules of the same specie. It causes the endurance of relaxation of the state
variables towards the equilibrium, so that more time (and space) is needed in a
traveling wave to attain the equilibrium state, which increases the shock thickness.

5.4.2 - Analysis of the temperature overshoot

Temperature overshoot is a phenomenon peculiar for mixtures. In binary mix-
tures it is the most significant in the case of small molar fraction of heavier com-
ponent. Abe and Oguchi [1] offered physical explanation of this phenomenon. They
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stated that in the case of vanishingly small mole fraction of the heavier component,
the main structure of the shock wave is determined by the lighter one. This causes
the deceleration of heavier component and, at the same time, conversion of the ki-
netic into the thermal energy. Nevertheless, the dissipation through conduction is a
slow process, which cannot diffuse the thermal energy gained by deceleration. As a
consequence, the internal energy (temperature) of the heavier component is raised
above the terminal one.
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(a) Mo = 1.1—2.1 with increment 0.1 (b) Mp = 1.1 — 1.5 with increment 0.1

Fig. 6. Dependence of TO on mass ratio u for fixed mass concentration c¢y. Mach number is
increased from M, = 1.1 with an increment 0.1. Arrow indicates graphs for increasing values
of M, 0.

In our model, the momentum and the energy transfer through viscosity and heat
conduction are neglected. We are focused on dissipation caused by the mutual ex-
change of momentum and energy between the constituents, where the most promi-
nent role is played by their mass ratio x. Vast amount of numerical simulations re-
vealed the two typical patterns (Figure 6). The first one is characterized by the ex-
istence of the minimal value of the mass ratio, below which the temperature overshoot
does not occur. For mass ratios above this value, the temperature overshoot increases
with the increase of x. This pattern is common for low values of the Mach number.

Different pattern appears when the Mach number is increased: TO varies non-
monotonically and there exists a value y* of the mass ratio which determines the local
minimum of the temperature overshoot. This phenomenon is observed in this study
thanks to a huge amount of numerical simulations, not performed previously. The
outstanding feature of the non-monotonic behaviour of temperature overshoot can be
given an explanation within the simplicity of our model, albeit in conjunction with the
results of the shock thickness analysis. For x < u* the temperature overshoot is in-
creased due to the large mass difference and low Kn. The flow is between the hy-
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Fig. 7. Dependence of TO on mass concentration ¢y for fixed mass ratio 1. Mach number is
increased from M, = 1.1 with an increment 0.1. Arrow indicates graphs for increasing values
of M, 0-

drodynamic and the slip flow regime, but the mass ratio is too small to yield sufficient
exchange of the energy between the constituents which could attenuate TO. For
1> 1 the Knudsen number is increased, which puts the flow into the transition re-
gime. Although the masses of the constituents become comparable, the exchange of
energy is prevented by the rarefaction of the mixture, i.e. the small number of cross-
collisions which could cause it. Consequently, the temperature of heavier constituent
cannot be attenuated, and the temperature overshoot is increased.

Therefore, in a simplified model of MT mixtures, where the viscosity and the heat
conductivity are neglected, the small mutual exchange of energy between the con-
stituents can be pointed out as the main physical reason for the increase of tem-
perature overshoot. It can occur for two reasons: (a) either there is a large mass
discrepancy between the constituents (small u), or (b) the mixture became more
rarefied.

The temperature overshoot can also be analyzed in terms of equilibrium con-
centration ¢, for the fixed mass ratio u. It is obvious that TO increases with ¢,, which
corresponds to the low fraction of heavier component (Figure 7). This is in sound
agreement with the known results obtained by other methods. Interestingly enough,
there is also a region of low values of ¢, i.e. high fraction of heavier component, for
which TO exhibits a slight increase.

5.4.3 - Remark about the average temperature

In the previous discussion we introduced the average temperature of the mixture
T according to the definition of the mixture internal energy, by using only its in-
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trinsie (thermal) part:
PEI = p1é1 + pata.

This assumption is equivalent to the fact that intrinsic internal energy of the
multi-component mixture must correspond to the intrinsic internal energy of
the mixture with a single macroscopic temperature [72]. In the kinetic theory
[10] average temperature of the mixture T, can also be based upon the com-
plete internal energy, where the kinetic energy of diffusion is also taken into
account:

2
1
pe=per+ Y 5 oty
a=1

This kinetic temperature T, can be expressed in the dimensionless form:

1y—1 J?

m m
11 Twn=c—T 1—-¢)—To+—F— |
(115) Kk le 1+ ( C)m2 2—|—2 R

where the following structure can be recognized:

Taee 1y—1 J?
Tan = T + T, _= .
ki =L+ Ra T =T T A — o7

Our aim is to estimate the relative contribution of the diffusive part of kinetic
temperature in the shock structure.

From Figure 8 we can observe that the influence of the T4 increases with the
increase of the strength of the shock wave (i.e. Mach number M). The diffusive part
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Fig. 8. Influence of the diffusion part T4 on the average temperature 7: (a) different
Mach numbers M; (b) different mass ratios p.
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T 4 increases also with the increase of the mass ratio. However, in the case of a weak
shock waves the fraction of the diffusion part in the mixture temperature remains
less then 0.3% . This result shows that relative contribution of the kinetic energy of
diffusion to the average temperature is small, under the conditions stated above, and
permits determination of the average mixture temperature from the intrinsie part of
internal energy.

5.4.4 - Shock structure in viscous multi-temperature model

Final remark is concerned with the influence of viscosity and heat conductivity on
the shock structure. To that end we shall use the classical NSF constitutive relations
for the stress tensor and the heat flux of the constituents:

1
(116) t, = _pocI +06, 0,= ZﬂzDaa D, = é (vvo: + (vvoc)T)7
q, = Ky VT,
where p, is the viscosity, and «, the thermal conductivity. In one-dimensional set-

ting, the dimensionless stresses and heat flow rates are determined by the following
relations:

~ Oy ~ Gu
O-O(: s qa:4
ILBT ILBTOL
Poma 0 Pomm 0%

As in the inviscid case, the tilde will be omitted when writing the dimensionless
equations. The shock structure equations (112) have to be adjoined with the con-
stitutive relations written in dimensionless form:

d(uJ> _ 3pooo o1

d¢ pc 4 yuyy /T —f(0)O
i (’LL _ J > . §p0a0/10 02
dé pl—c¢))

4 sy /T+ 1 - ()6’
d

97 foe) - - Polig o T

dé yTor1o /T — f(c)O’
_ Pol0 q2

YTorzo /T + (1 —f(c)@

In further analysis, the viscosity and the thermal conductivity of the constituents,
which appear in previous equations, will be expressed using the relations of kinetic

(117)

d
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theory of gases for the model of hard spheres:

_E g Moy _E Qg MmMony
Hip = 16 \/Ed% y ) Hao = 16 \/ﬁd% y ’

Bk o 1k
H105 20 = 4 mzlzoa

where, as we mentioned before, d; and ds are the atomic diameters of the mixture
constituents. Therefore, the presence of the viscosity and the thermal conductivity in
the model implicitly introduces the atomic diameters of the constituents as new
parameters. This fact entails another very important problem: with the change of the
mass ratio, the ratio DR = d; /dz also changes. Our analysis will be restricted to the
mixture of Helium and Argon, DR = dy./da, = 0.4366.

Our main concern is the influence of the additional dissipative mechanisms on the
temperature overshoot. On the basis of individual results (Figure 9) it can be con-
cluded that the introduction of new dissipative mechanisms is not enough to com-
pletely exclude the occurrence of TO. Specifically, in relation to the values of TO in
the inviscid case, the values of TO are considerably lower here. This also implies the
increase of the minimal value of the Mach number at which TO occurs. In comparison
with the inviscid case, TO is reduced but still present. Moreover, newly introduced
dissipative mechanisms also increase the width of the shock wave. Preliminary study
also shows that non-monotonic dependence of TO on the mass ratio u persists.
However, the systematic study is not performed yet, and it is a matter of ongoing
research.
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Fig. 9. Temperature profiles: 1 — inviscid model, 2 — viscous model; 7 - average
temperature of the mixture, 7 - temperature of the lighter component, T - temperature
of the heavier component.
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6 - Kinetic theory of mixtures

Main part of this study was devoted to extended thermodynamics of mixtures,
particularly to the multi-temperature model. Although ET is regarded as a macro-
scopic theory, it was shown in Section 2 that it presents a bridge between the two
levels of description — classical macroscopic level and mesoscopic level. Therefore,
the kinetic approach to mixture theory cannot be disregarded if we want to get a
proper impression about the accuracy of the multi-temperature model developed
within ET. This Section will not bring thorough analysis of the kinetic theory of
mixtures, but rather a sketch of the main issues and reveal the arguments which lead
to the multi-temperature approximation of the kind we advocated in the previous
Sections. Although the arguments are quite easy to follow, interested reader may
take [22] or [52] for reference.

6.1 - Kinetic modelling of mixtures

State of the monatomic gas is determined by the velocity distribution function
f(,x,8). In the case of mixture, to every constituent we ascribe its own velocity
distribution function f, (¢, x, &), @ = 1,. .., n. Restricting our attention to monatomic
gases only, the fundamental macroscopic quantity — the number density of the
constituent — is then defined as:

(118) nalt, %) = / £l %9 de

R

The rate of change of the distribution functions is then described by the system of
Boltzmann equations, one for each constituent. However, the collision operators
have more complex structure now. They comprise two mechanisms which cause the
change of distribution functions:

(1) elastic collisions — they describe mechanical interactions between the parti-
cles;

(2) reactive collisions — they describe chemical reactions which occur in the
mixture.

In the sequel we shall assume that no chemieal reactions occur, i.e. the change of
distribution function is only due to mechanical collisions and the Boltzmann equa-
tions read:

Wy s O
(119) -+ LGim—=) Qufufp)
ot ; O ﬂ; Aarlp
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To describe the interactions of particles at atomic level, let (&, €,) denote outgoing
velocities of the particles in collision, and (¢, &) denote their incoming velocities.
Interactions of the particles is governed by the conservation laws of momentum and
energy during the collision:

(120) Mo+ mpe, = myé +mué,,
Mo o2 Mg 2 _ Moy 2 Mg 2

Using these equations, the following velocity transformation is obtained, which
expresses the incoming velocities in terms of the outgoing velocities and the unit

vector w:
M€ + Mmpé, g
=l Tolé - &,
My + Mg My + Mg
My & + mpé, My,
g =—a T TolE— &,

My, + My My + My

where the transformation operator reads T,z = z — 2(w - z)z.
The collision operators which describe elastic collisions are bilinear operators of
the similar kind as in the single-component gas:

(121) Qulfrg) = //f’@*w@gmmm

][33 S2

The cross section must obey the properties of Galilean invariance:

¢ —¢.

e—¢
By, .
“le- é*|> ”('é é" &= é*|>

Proper relation to the macroscopic equations and the hydrodynamic approx-
imation can be established only if we know the collision invariants, i.e. the conditions

Baﬁ(é é*vw) - Bxﬁ(|é - é*|a ‘CO

and micro-reversibility:

Baﬁ(lé =&l

which secure the macroscopic equilibrium. In the case of mixtures without reactive
collisions the following relations hold:

(122) / Quf & dE =0,
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They have the following implications on macroscopic description: (a) the mass density
of each constituent is conserved and (b) the momentum and energy densities are
conserved only for the whole mixture. These consequences are in a full accordance with
the basic principles of extended thermodynamics applied to the non-reacting mixtures.

Finally, dissipative character of the kinetic model of mixtures is described by the
appropriate form of the H—theorem. To that end the entropy production functional

is defined as:
n n

Dfi, o of) =Y ) / Qup(fo f)(&) log £,(&) d&.
Rs

o=1 f=1 Y,

Theorem 6.1. Assume that the cross-sections B,g are positive a.e. and that
all f, = f.(&) > 0 are such that the collision operators Q.z and the entropy pro-
duction functional are well-defined. Then:

1. the entropy production is non-positive
D(fi,....fu) <0;
2. the following three properties are equivalent:

@) forany 1 <o,f<mandée R3
Qup(fo,Jp)(&) = 0;

(b) the entropy production vanishes

D(fi,....fu) =0;

(e) there exist T > 0, v € R® and n, > 0 such that

My, 3/2 Uz 2
JE(&) =1y (m) exp (— hepT |E—v| >

Note that the H—theorem determines the form of constituent equilibrium

functions, that are Maxwellian—like and have common macroscopic velocity v and
temperature 7'

Standard issue in kinetic modelling is the derivation of macroscopic equations. In
the single-constituent case it was rather straightforward. In the case of mixtures, the
macroscopic quantities can be defined in different ways, especially the ones de-
termined by the central moments, and certain attention has to be paid. We shall start
with the definitions of mass, momentum and energy densities of the constituents:

P 1
(123) PVsi = [ m,| & |fydé
pIval? + 2p,, R? &
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The macroscopic quantities of the mixture can then be defined in the usual manner:

n n
P = § Py, PV = E /AL U, =V, —V,
o=1 o=1

where u, is the diffusion velocity. Possible cause of confusion could lie in the fact that
we may define two different kinds of the peculiar velocities — one with respect to the
constituent velocities (C,), and another one with respect to the mixture velocity (C):

(124) C,=¢—v,, C=¢&—v.
Both of them can be used, in a proper way, to define the internal energy density, the

pressure tensor and the heat flux. When C,, is used, these central moments are re-
lated to the constituents:

(125) ps = [ gmlCrac
R?

(126) Puoij = /mxcaiijfadCz_tmja
R?

(127) Qui = /%ma|cx|zcocifudcy
R?

while the use of C leads to the central moments related to the mixture:

B n 1 9
(128) p=3 | gmaictrc,
R?
(129) pi=Y [ mCCitdc = -t
a=l s
R 1 2
(130) 0= / 5 7:ICEC£dC.
R3

In this way (125) and (128) can be related through the same relations proposed in
rational thermodynamics (50):

n 1 n
=3 (srghut), pu= 3 put pan
oa=1

=1
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With these relations one can derive the macroscopic equations:

1 ; 1
/M ; d¢+z/ma@;% ¢ |de
g3 &/2 =g \&2
n 1
-y / me| & | Qufafpdg,
[ &2

to obtain the balance laws for the constituents:

55;“ +div(p,v,) = 0,
A(p,vy .
(131) % +div(p, Vs @ Ve —t,) =m,,  t, = —p,,
(L p, 02 + pey 1
w + div{<§plvz + p181>va —t,vy, + ‘la} = ey,

that were postulated within the context of rational thermodynamics (47). Note that
only the mass density of the constituents is conserved, as anticipated by the collision
invariant (122);. Conservation of momentum and energy can be recovered by sum-
mation of the balance laws for the constituents, in accordance with (122)2, and thus
conserved only for the whole mixture. These results provide a different view on the
metaphysical principles of rational thermodynamics — they become macroscopic
consequences of the relations established at mesoscopic level.

6.2 - Kinetic framework for multi-temperature mixtures

The H-—theorem for the mixtures determines the equilibrium distribution
functions in the form where all the constituents have common velocity v and tem-
perature T'. This corresponds to the macroscopic equilibrium conditions derived in
the MT model in extended thermodynamics. We also know that macroscopic fields in
the local Maxwellian distribution (17), obtained as a first approximation in the
Chapman-Enskog expansion, satisfy Euler gas dynamics equations (26). However,
at this moment we do not have an appropriate counterpart of the local Maxwellian in
the case of mixtures which will produce the macroscopic equations of Euler type. It is
our goal to find the kinetic framework which will lead to the macroscopic multi-
temperature model at Euler level.

The key for derivation of the MT model at Euler level is a proper scaling of the
Boltzmann equations for mixtures. Natural attempt is to scale the Boltzmann
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equations as follows (see e.g. [50]):

3 n
(132) W 56 % 1IN Quuh )
i—1 =1

E 5905 E —

It is easy to show that in the limit we have:
e—0 = Qaﬁ(f%aj}}) = 07

and that the local equilibrium distribution reads:

3/2
oy [ _ M e 2
fEx(é)—na<2nkBT> eXp< ZkBTIé \ )

where 1, = n,(t,x), v =v(t,x) and T' = T'(t, x). Obviously, under the scaling given in
(132), the velocities and the temperatures of the constituents cannot be distinguished
at the Euler level. Equivalent result was also obtained in the case of kinetic model for

mixtures of polyatomic gases [26]. Therefore, some other scaling with a proper
motivation has to be found.

It was (again) Harold Grad who conjectured in 1960 that in a binary mixture,
consisted of species with disparate masses, the approach to equilibrium exhibits an
epochal relaxation: first convergence to the local Maxwellians with independent
temperatures, then equilibration between the species. In a more formal way, the
approximate local Maxwellian distributions are reached by the species in times of the
order of different self-collision times 71; and 792, while equilibration between the
species is reached after that, in time of order 7 7:

1/2
T2 <m1) /
— x| — ,
T22  TAT mg

where m; and ms (11 < ms) are the molecular masses. Goldman and Sirovich [32]
supported this idea and divided the approach to equilibrium in binary mixtures in
the two phases: (1) Maxwellization — the approach of the distribution functions
towards the local Maxwellians with different velocities and temperatures and (2)
equilibration — vanishing of differences in velocities and temperatures in the local
Maxwellians. These observations recognize the local Maxwellians, with different
velocities and temperatures, as an intermediate phase in the process of equili-
bration towards common velocity and temperature.

The idea of sequential (epochal) relaxation led to the formal reordering in the
Boltzmann equations for the binary mixture [31]. There were different re-
ordering strategies with the common property that collision process in one
species is weakly affected by the presence of other species. Therefore, the
dominant term in the Boltzmann equation for constituent o should be the colli-
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sion integral Q,,(f..f.), describing the collisions of the molecules of the same
species. This (formally) gives rise to another, species-dependent scaling of the
Boltzmann equations:

(133) Ly Z G = L Qu A + Z Qi)
(/?#rx)

This scaling obviously leads to the following limiting behaviour:
e—=0 = Qu(fuf)=0

and the new local equilibrium approximation of the distribution function:

m, 3/2 5
(134) i@ = (g ) e~ v ).

where n, = n,(t,x), v, = v,(t,x) and T, = T,(t,x). This equilibrium approximation
determines the local equilibrium with different velocities v, and temperatures T, for
the constituents. The macroscopic fields are not arbitrary, but satisfy Euler gas
dynamics equations for mixtures (131), with:

kB Sp
p%:p[xEToh &y = 2/):
pg) = Do (5177 qs?) 0.

The source terms in (131) are calculated as the moments of the collision operator at
the Euler level:

(135) m, — / 102E Qupfis fizp) dE,
F=1 s
(o)

Z / mﬁé Qaﬁ(oncafE[;’)dg
=1
(B#2)

The scaling with dominated self-collisions (133) was used to derive the hydrodynamic
closure of kinetic equations for mixtures [10, 11]. There were analyzed also reactive
collisions. It is important to note that the source terms, derived from elastic collision
integral, have the form which matches the form of the source terms derived in ET in
the limit |v, —vg| — 0, T, — T — 0, i.e in the case of small deviations from equili-
brium. This result encourages further parallel studies of kinetic and macroscopic
aspects of the multi-temperature mixtures.
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Although the hydrodynamic closure at the Euler level, obtained by particular
scaling (133), gave promising results, there are still open questions. Namely, it formally
matches the multi-temperature mixture model of ET, but its physical justification is
not inevitable. Formally, there is a way out of this problem if one takes the scaling:

N e gy L N©
E+;@%*EQM(£¢J{;) + ﬂz; @Q“ﬂ(fl’fﬁ)’

(B#2)

with k, > k,z. This scaling preserves the assumption that self-collision process is the
fastest one among all elastic collisions. The presence of non-dominating small
parameters in the collision operators will certainly influence the macroscopic source
terms, determining their order of magnitude. This study, which has to be adjoined
with a careful dimensional analysis and estimates of reference quantities, is still
work in progress.

7 - Final remarks

It is not possible to cover all important or interesting topics in the survey of this
kind. The choice of subjects always depends on personal preferences and research
interests. There are a lot of open problems in the domain covered by these lecture
notes. We would like to mention some of them at the end.

At the very beginning, we put extended thermodynamics in juxtaposition with
classical continuum modelling and kinetic theory of gases, and we saw the paradig-
matic model of 13 moments. On the other hand, in the multi-temperature modelling of
mixtures we made a closure at the Euler level. Is there a counterpart of 13 moments
model in the context of mixtures? So far the answer was given through the moments
method of kinetic theory [31], or in the single-temperature case [44]. Deeper analysis
within the context of extended thermodynamics has not been preformed, yet.

Another group of problems which remained out of the scope is concerned with the
chemically reacting mixtures. First, in the context of kinetic theory one has to take into
account operator of reactive (inelastic) collisions. Consequently, two kinds of processes
can beidentified: (a) processes driven by elastic scattering (slow chemical reaction) and
(b) processes driven by elastic scattering and chemical reaction (fast chemical reaction).
This distinction leads to the different hydrodynamic limits, as well. This group of
problems is still almost completely open in the context of extended thermodynamics.

Finally, the question of model equations and asymptotic analysis in the kinetic
theory of mixtures remained completely beyond the limits of these notes. Interested
reader could take [3] or [18] as good sources of information.
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