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Complex singularities and PDEs

Abstract. In this paper we give a review on the computational methods used to
capture and characterize the complex singularities developed by some relevant
PDEs. We begin by reviewing the classical singularity tracking method and give an
example of application using the Burgers equation as a case study. This method is
based on the analysis of the Fourier spectrum of the solution and it allows to de-
termine and characterize the complex singularity closest to the real domain. We
then introduce other methods generally used to detect the hidden singularities. In
particular we show some applications of the Padé approximation, of the Kida
method, and of Borel-Polya method. We apply these techniques to the study of the
singularity formation of some nonlinear dispersive and dissipative one dimensional
PDE, of the 2D Prandtl equation and of the 2D Kadomtsev-Petviashvili equation.
Finally the complex singularity analysis is applied to viscous high Reynolds number
incompressible flows in the case of interaction with a rigid wall, and in the case of the
vortex layers.
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1 - Introduction

Many nonlinear partial differential equations (PDE) exhibit solutions that de-
velop finite time singularities. Besides the intrinsic mathematical interest, to ask
whether a PDE has a singular behavior is a crucial question because the occurrence
of the singularity signals the limit of applicability of a PDE as mathematical model
and often has physical significance. Therefore there is considerable interest in
methods that can give indications whether a singularity is forming, where it is
forming, and on its nature. In this review paper we shall focus on methods based on
analytic continuation in the complex domain of numerical solutions of PDEs derived
through spectral discretization.

The study in the complex plane of the analytic structure of the solutions of
nonlinear PDE has in fact revealed to be a powerful method for the understanding of
the process of singularity formation. The main idea behind the singularity tracking
method [69] is to consider the analytic continuation of a function in the independent
variable and to detect the width of the analyticity strip, i.e. the distance from the real
domain to the nearest complex singularity. The width of the analyticity strip can vary
with time and if a singularity reaches the real domain then the solution loses ana-
lyticity and becomes singular. The width of the analyticity strip can alternatively be
bounded away from zero, or tend to zero asymptotically with time, in which case the
solution develops increasingly small scales while remaining smooth.
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The numerical implementation of this ideas typically involves high resolution
(spectral) numerical computation of a time-evolution problem, while the location and
other properties of the nearest complex singularity are determined from asymptotic
behavior of the Fourier transform of the numerical solution. Indeed, the asymptotic
properties of the Fourier transform for an analytic function of a single variable with
isolated pole or branch point singularities at complex locations is determinate by the
Laplace asymptotic formula, see [14] or [37]: more details on this and on the de-
termination of the asymptotic behavior of the spectrum will be given in the next
Section.

During the last three decades these ideas have been used extensively, parti-
cularly in the analysis of the (possible) singular behavior of flows and of PDEs
arising in fluid dynamics. Examples include: the study of interface flow problems
and of the singularity formation for vortex sheet equation [51, 52, 8, 20, 44, 66, 1, 59];
the investigation of the complex singularity formation for incompressible Euler
flow; [11, 27, 58, 50, 16]; the analysis of the singularity formation for Prandtl solution
and its connection to the separation phenomena [19, 21, 29, 30, 31]; as well the ana-
lysis of the singularity formation for Camassa-Holm and Degasperi-Procesi equa-
tions [21, 18], nonlinear Schrodinger equation [61], KAV [41], and others [41, 42].

When a PDE develops a finite time singularity the tracking of complex singu-
larity gives valuable information on the time of blow up of the solution, on the spatial
location and the algebraic character of the singularity. However, the method, as
explained in [69] is able to characterize only the singularity closest to the real axis. In
some cases it is also important to analyze other singularities in the complex plain.
For example the analysis of the hidden complex singularities in [31] has revealed how
the separation phenomena for the Navier Stokes equations is not related to the
singularity of Prandtl equation.

To detect the hidden singularities one possibility is to use the Padé approximants.
The advantage of the Padé approximation method is that it allows one to continue the
function even beyond the radius of convergence (or strip of analyticity). Padé ap-
proximants also have been used in the analysis of complex singularities of various
ordinary and partial differential equations, see [19, 31, 35]. Unfortunately in-
formation on the nature of the complex singularities are not so easy to compute using
Padé approximants. For this reason, to detect the hidden complex singularities, new
techniques have been recently introduced. The filtered method was introduced by
Kida [40] while the method of Borel-Polya-Van der Hoeven has been proposed in
[57]. Both methods are useful when one deals with a finite number of distinct complex
singularities (poles or branches). We will discuss these methodologies in Section 3.

Another important implementation of the singularity tracking method is its ex-
tension to functions of several variables. If the singularity of a function of several
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variables occurs along a single variable, a simple way to analyze the complex sin-
gularities is the application of the method of singularity tracking to this variable, see
[29, 21]. In the more general case, it is possible to extend the singularity tracking
method and detect complex singularity surface for a function of several variables
from the full multidimensional Fourier transform. The main idea of this general-
ization consist to consider the analytic continuation in one variable and detect the
complex singularity surface as a function of the other real variables. This analysis is
based on the asymptotic properties of the multidimensional Fourier transform and
in particular on the fact that the parameters, which characterize the singularity, are
determined by the decay of the Fourier spectrum along or near a distinguished
direction in wavenumber, which is the direction with the lowest decay rate. For
example, one can see these applications in [11, 10, 67, 58, 31, 48].

The goal of the present paper is to give a brief review of some of the most recent
advances in the singularity tracking method and to present some applications of
interest in the field of fluid dynamics. Although most of the PDEs presented in this
paper develop singularity in finite time and the numerical scheme used to solve them
are suitable to capture these singularities, we mention that there is a very large
literature devoted to theoretical and numerical methods used to avoid singularity
formation. These methods depend on the nature of the PDE solved. For instance
regularizing agents such as viscosity or regularized kernels are used to continue the
vortex-sheet solution governed by the Birkhoff-Rott equation ([2, 15]) even beyond
the singularity formation. Moreover numerical scheme using the flux — limiter idea
proposed originally by Van Leer in [75] are suitable for shock wave capturing in
many hydrodynamies PDEs by limiting the solution gradients near shocks or dis-
continuities, and to produce high resolution schemes like the Monotonic Upstream-
Centered Scheme for Conservation Laws or the Total Variation Diminishing without
the spurious oscillations associated with some classical second order schemes (see
[76, 60, 36, 70, 56, 12]). The term slope — limiter is also used when limiting acts over
system states as velocity or pressure.

The plan of the paper is the following. In Section 2 we present the method and we
consider as an application, for the one dimensional case, the classical study of the
singularity formation for Burgers equation. In Section 3 we present the methods to
detect the hidden complex singularities: in Section 3.1 we discuss the Padé ap-
proximants theory, while the Kida method and the Borel-Polya-Van der Hoeven
method are introduced in Section 3.2 and 3.3 respectively. These techniques are
applied in Section 4 to several PDES. In Section 4.1 we investigate the complex
singularities for the Kortweg de Vries equation and how they are related to the rapid
oscillatory behavior of the solutions in the regime of small dispersion. In Section 4.2
we analyze the complex singularities of the wall shear of the Navier Stokes and
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Prandtl equations and their relation with the mechanisms of unsteady separation
phenomena. Finally in Section 5 we consider the singularity tracking method to
analyze the complex singularities manifold for solutions of two dimensional PDEs;
the applications presented are wall bounded flows at high Reynolds number and
flows with highly concentrated vorticity in the form of a vortex layer.

2 - Complex singularity tracking

The complex singularity tracking method is based on the relationship between
the asymptotic properties of the Fourier spectrum and the radius of analyticity of a
real function.

Suppose that u(z) is a real function analytic in the strip of the complex plane
{z € C : || < J}. We suppose that the singularity closest to the real axis has complex
location z* = x* + id, and that u(2) ~ (2 — z*)*. Using a steepest descent argument it
is possible to give the asymptotic (in k) behavior of the spectrum of u(z):

(2.1) iy, ~ Clle| T exp(—o|k|) exp (ika"),

where with 4, we have denoted the Fourier coefficients.

Estimating the rate of exponential decay of the spectrum of the function % one
gets the distance of the singularity from the real axis, the J in (2.1). If one estimates
the rate of algebraic decay (the « in (2.1)) one can characterize the singularity, and
moreover the oscillatory behavior of the spectrum (the x* in (2.1)) gives the location
of the singularity. If the spectrum of the function « has not exponential decay, this
means that the width of the strip of analyticity is zero and » has some kind of blow up.
The estimate o, o and x* of (2.1) requires the use some fitting techniques (least
square fitting for example), and in practical applications reveals to be a delicate
matter.

We consider now a one dimensional evolutionary PDE

(2.2) ug = F(u, Uy, Uy, ),

where u = u(x,t), © € [0,2x] is the spatial variable and ¢ > 0 the time variable, and
where with u; and uy, .., ... we denote the various partial derivatives of » with
respect to ¢ and « at different orders.

We discretize using Fourier-Galerkin spectral method and we transform the one
dimensional PDE in a system of N ODEs

2.3) M _ Gu@), k=-N,...,N,
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where & = (Uy) <y and N is the order of the numerical truncation of the discrete
Fourier series expansion

N

(2.4) un(@j,t) = Y () exp(ikay),
k=—N

with ¥; = 27j/N,j=1,...,N.

Giving the initial condition to system (2.3) and solving numerically the ODE
system (2.3) one can determine the time evolution of the Fourier spectrum uy(t).
Studying the asymptotic behavior of the spectrum for large k gives the time evo-
lution of the complex singularity, i.e. the path in the complex plane (6(¢), 2*(t)) and the
algebraic characterization a(t).

2.1 - Application to one-dimensional PDEs

Burgers equation is a good case study where to test the above ideas and in [69] the
authors studied the shock formation process for the following problem:

(2.5) w +un, =0, x € [0,2n],
with initial condition
(2.6) u(x, 0) = sin (x),
and periodic boundary conditions.
From the classical results on the existence of classical solutions for conservation

law (2.5) by the method of characteristie, the solution develops a singularity (a blow
up on u,) at time

1

2.7 b = = '
( ) — lnfxe[()vgﬂ] %@(96 y 0)

The dynamics of the k-th Fourier mode of « is described by the following ODE
dity,

2.8)

To solve the above ODE system one can compute efficiently the nonlinear term
through a pseudo spectral procedure, see e.g. [7, 13]; advancing in time can be
achieved, e.g., using a 4th order explicit Runge-Kutta method. The process of pro-
gressive steepening of the wave until the blow-up of the spatial derivative can be
observed in Fig. 1.

In Fig. 2 it is shown the behavior in time of the spectrum of the solution starting at
time ¢ = 0.6 up to singularity time tg = 1.
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Fig. 1. The behavior in time of the numerical solution of Burgers equation with initial
condition (2.6). At time {5 = 1 one can see a singularity as a blow up of the first derivative.
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Fig. 2. The behavior of the spectrum in time of the Burgers equation numerical solution
with initial datum (2.6), starting at time ¢ = 0.6 up to singularity time ¢ = 1.
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Fig. 3. The tracking singularity method applied to Burgers equation numerical solution
with initial datum (2.6). In the top, the behavior in time of the width of the analyticity strip J.
In the bottom, the behavior in time of the algebraic character «. The singularity time is tg = 1.
The singularity is of cubic—root type.

For symmetry reasons one has that a complex singularity comes with its complex
conjugate. Therefore the asymptotic formula (2.1) in this case becomes:

(2.9) i ~ Clk|"*exp(—d|k]) cos (k™).

In this case a simple least square fitting procedure applied to the numerical data of
the spectrum is able to give the values of the parameters J, x* and « of (2.9). The
results are shown in Fig. 3. The critical time g where d(ts) = 0 is the singularity time
ts = 1 and the singularity algebraic character a(tg) is of cubic—root type. One can also
notice from Fig. 4 that the location of the singularity is in «* = z.

The above numerical results are in perfect agreement with the findings of Fournier
and Frisch obtained in [26] using asymptotic analysis techniques in the study of the
Fourier-Lagrange modes. In fact they showed that the solution of the above problem
has two complex conjugate singularities of square—root type located in 7 + 15(t) which
collide, at time ¢t = tg = 1, at 2* = 7w and J = 0 to form a real cube-roots singularity.

Other fitting procedure can certainly be used, see [6] for a discussions on the
issues related to the fitting procedures. Here we mention that in [41] the fitting
procedure was based on the minimizing the L* norm

(2.10) A = |[log || — (C — (A + o) log |k — o).
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Fig. 4. The tracking singularity method applied to Burgers equation numerical solution
with initial datum (2.6). The behavior in k of the term cos(kx*) in formula (2.9), at the
singularity time tg = 1.

A different analysis of the singularity formation can be performed with the so
called sliding—fitting technique with length 3, see [11, 21, 58, 66] for details. This
procedure consists in searching the values of C, « and ¢ of the asymptotic formula
(2.1) locally to each k mode, using only the (k¥ — 1)-th, k—th and (k¥ + 1)-th modes of
the spectrum. The formulas are:

iﬂkflﬂkﬂ
!
(211) a(k) - kz )
tog ((k "k 1))
2.12) 5(k) = {lo ( L ) +alo (L)]
' — |8 ?:L;Hl g k+1/)|
2.13) log C(k) = log || + o) log (k) + kd(k).

These values depend on k, and the asymptotics can be computed with an extra-
polation process using the epsilon algorithm of Wynn, see [11, 58]. The results of
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the sliding fitting procedure with length 3, are shown in Fig. 5 for the Burgers
equation.

Another techniques is the Van der Hoeven asymptotic interpolation method,
recently discussed in [57]. An important feature of the asymptotic interpolation
method is that it uses the determination of subleading terms to improve the accuracy
on leading order terms. We now explain this method and we refer to [57, 31] for
applications of this technique.

Suppose the following asymptotic expansion on the spectrum holds:

" 1 _ Y _
(2.14) o~ C e ™ (14 2+ 21 24 0G7)).

We apply successively the following six transformations to identify the parameters
Ca o, 57 715 V2» YS:

e — SR(iy) = ) — —D@)) = 4P — 1Y) = )

(2.15) _ D(?:Lf)) _ ?:01(54) N D(ﬁ;;l)) _ af) _ D(?Z;f)) = @566),
0.5 v ' - - 0.12
.48¢
0.48 0.1\
0.46
0.081
0.44}
— 0-42 7 0.06 L
S =
3 w
04 [
0.38
0.02
0.36 L
N oo ____ -
0.34 0
0.32 ' : . : -0.02 ' . :
0 50 100 150 200 250 0 50 100 150 200
k k

Fig. 5. The sliding fitting procedure of length 3 for the Burgers equation with initial
datum (2.6). On the right (left) figure the a(k) (5(k)) behaviors w.r.t. k, starting at time ¢ = 0.8
up to singularity time tg = 1 with increments of 0.05 (the dashed lines correspond to the
singularity time).
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where

SR :

D:U,—- U,—U;;.

The last term ﬁ;cﬁ) = 3/(o + 1) is a constant which is easy to identify. Inverting the
chain (2.15), one can find the values of the parameters in (2.14). This is the sixth stage
procedure and in Table 1 we give the results for the Burgers equation. As explained
in [57], it is possible to consider other parameters in the asymptotic formula (2.14)
which can be identified using more stages.

The asymptotic interpolation method is best computed using high digit precision
computation. In [57] the authors perform a six stages procedure with 80-digit pre-
cision (and the 13-stage procedure with 120-digit precision) obtaining data with ac-
curacy of the order of 10~7. Here we have performed the six stage procedure in
double precision and we note that the coefficients C, o and J have accuracy of the
order of 10~4, while the coefficients y;, 7, and y; have worst accuracy.

Table 1. The results at different times for Burgers equation of the Van der Hoeven
asymptotic interpolation method applied to (2.14), using the six stage procedure (2.15).
t=0.38 t=10.85 t=109 t=0.95 t=ts=1
C| 0.70713615783 | 0.61442246421 | 0.51993097752 | 0.43513434016 | 0.47175434493
o | 0.49965144521 | 0.49948664577 | 0.49612632902 | 0.49624364601 | 0.33296382179
o | 0.09606920975 | 0.05363644145 | 0.01544724997 | 0.00331071154 | £0.00000355044
y1 | —1.47272447227 | —1.8634299638 | —2.4808780250 | —5.63365314047 | —0.66772591307
7o | 1.96722910228 | 6.19701488066 | 13.37505045755 | 89.95119911733 | —0.12956190944
V3| 13.10231991191 | 34.55734201601 | 58.35449497230 | 81.24726572859 |—83.44565528569

Formulas (2.11)-(2.13) for the sliding fitting, or the Van der Hoeven asymptotic
interpolation method, are useful when the spectrum does not have oscillatory be-
havior, like in the case of Burgers equation considered.
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In other case when x* # 7, one can fit L + 1 modes of the spectrum starting from
acertain iy, , i.e. the set {iy, ..., 4.1, }, using again a least square fitting method. This
way one determines certain J;,(k) and oy, (k) that, if relatively independent from L and
k (at least in the central part of the spectrum), give reliable information on the lo-
cation and on the nature of the singularity. This technique is applied in [18, 21] for the
investigation on the blow up for the Camassa-Holm and the b-family equations.

3 - Hidden complex singularities

As we have seen in the previous section, the method of complex singularity
tracking is useful to study the blow up phenomena of an evolutionary PDE. However
the method gives information only to the complex singularity closest to the real axis.
Often it is also important to analyze the other singularities in the complex plain. In
this section we present some techniques that can reveal the presence of complex
singularities that, being more distant from the real axis, are hidden by the main (the
closest to the real axis) complex singularity.

Application of the various methods presented here will be given in Section 4.

3.1 - Padé analysis

In this section we recall the Padé approximations.

Suppose there is a complex function f(z) expressed by a power series
f@) =37, fiz", the Padé approximant P, /M is a rational function approximating f,
such that

E'Lzo a2’

3.1 @~ == =PLm®),
(3.1) f 1+ Zjﬂil by L/M
with the property that
(32) f@) = Pryy(2) = 0@,

where L + 1 and M are the number of coefficients in the numerator and denominator
respectively.

The M unknown denominator coefficients b;,7 = 1..., M and the L + 1 unknown,
a;,t=0,...,L are determined uniquely by (3.2) equating coefficients of equal
powers of z between (>, fiz)(1 + Zﬁ‘i 1bj#) and ZiL:o a2, setting the coefficients
of order greater than L equal to zero, and by = 1 by definition. The following set of M
linear equations must be solved
bufr-m1 +by-1+ ... +bofr1 =0,

(3.3) :

bufr, +by-1fr1 + ...+ bofrim = 0.
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Then the L +1 unknown numerator coefficients a;,7=0,...,L follow from
(2o fith(A + Zi‘i L bi@)) = 3% @i’ by equating coefficients of equal powers of 2
less then or equal to L.

It is possible to use Padé approximants for Fourier series [4, 77]. Consider

N
(3.4) u@) ~ Y e’
k=—N

an approximate solution to a PDE at a specific time t. If we denote by z, = ¢ and
z_ = e, the Fourier series on the right may be expressed as the sum of two power
series in the complex variables z, and z_:

N N
(35) w@w) =Y gz + Y gz — .
k=0 k=0

Both power series on the right may now be converted to Padé approximants
(3.6) w(@) =~ Pryu(24) + Qrm(z-) — 1o,

withL+M+1=N.

The advantage of the Padé approximation method is that it allows one to
continue the function f even beyond the radius of convergence (or strip of ana-
lyticity), although convergence issues can arise near branch points or branch cuts.
The disadvantage of the Padé approximation method is that not all of the singu-
larities represented by a general Pr, /) are singularities of the function being
approximated.

In fact, there are several examples (see, for example, [4]) for which some defects
or spurious singularities can appear. However, these defects can in principle be
detected as the spurious singularities generally manifest as a pole very close to the
zeros of Pr,y. Moreover these spurious singularities have a transient nature as
they usually disappear by changing the degrees of the Padé approximation.
Anotherissueis represented by the fact that the linear system (3.3) is close to being
singular (ill-conditioned), particularly when one seeks a high degree Padé ap-
proximant. To overcome these problems one possibility is to compute function
values of Py, /y(z) for a given 2. This technique may be done efficiently using Wynn’s
epsilon algorithm, and we refer to [4] for the details. A different possibility instead
is to use high numerical precision computation: in this paper we shall focus on this
technique.

If the singularities are poles it is easy to locate and characterize the singularities.
If we have the explicit expression of Pz, (found by solving the linear system (3.3))
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one can simply compute the roots of the denominator of Py, 3. Moreover, the alge-
braic character of the poles is the algebraic multiplicity of the roots. On the other
hand, if one has computed numerically the values of Padé approximants on given
points z it is possible to find the poles searching the maximum of the following
function:

(3.7) @) = log [u(z)].

Instead, to compute the order of the pole, it is possible to use the argument prin-
ciple [77]:

1 ' (2) B
(3.8) o mdz = Z(u) — P(u),
C

where C is a closed curve (for computational reasons it is possible to choose C as the
circle centered in the poles location) and where Z(u) is the number of zeros and P(u)
is the number of poles (counting multiplicity) of « inside C. As it is known, if u is
analytic and nonzero at each point of a simple closed positively oriented contour C,
and inside C the only singularities of u are poles, if C is chosen very close to the poles
then Z(u) = 0 and P(u) determines the algebraic order of the pole singularity. If the
singularity is an algebraic branch points or other type of singularity like logarithmic
branch points or essential singularities, the singularity appears as a string of poles
and zeros located along the branch cut (see [4, 77]).

Padé approximants also have been used in the analysis of complex singularities of
various ordinary differential equations (see [19, 31, 35]). The theoretical and prac-
tical issues related to Padé-based methods are so numerous that it is impossible to
cite them all here, and the reader is referred to [4] and [35] for a good discussion of
this topic.

In the rest of this paper we shall see several instances where the Padé approx-
imants are an effective tool to detect singularities which are outside the strip of
analyticity of a Fourier series. Here we present as an example, the Padé approx-
imants of the solution of the inviscid Burgers equation (2.5) with initial datum (2.6).
We compute the coefficients of the Padé approximant Py, with M = L = 50, sol-
ving the algebraic system (3.3) and considering the Fourier coefficients of the nu-
merical solution of Burgers equation. In Fig. 6 it is shown the absolute value, at
different times, of the analytic continuation Pr,/y(z) in the complex plane of the
solution of Burgers equation. As we said in Section 2, the solution has two square root
singularities, placed symmetrically on the imaginary axis with respect to the origin.
These singularities move from infinity at the initial time toward the real axis, where
they meet at the singularity time ¢g = 1. The singularities of P7,y/(z) appears in
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Fig. 6. Inviscid branch point and branch cuts at different times for the inviscid Burgers
equation.

Fig. 6 as a string of poles located at the corresponding branch cut which is the
imaginary axis. The singularities approach the real axis according to the results of
the singularity tracking method in Fig. 3.

3.2 - Kida technique

The method introduced by Kida in [40] consists in filtering the function u(x) with
(3.9) (x| X, d) = u(x)Gx| X, d),

where G(x|X, d) is a Gaussian-type filtering function which as a peak in x = X with
standard deviation d:

(3.10) G(|X,d) =

L o] @@=
N & |
Taking the Fourier transform

(3.11) (k|X,d) = 2n / WGk — &|X, d)de,

—00



84 RUSSEL E. CAFLISCH, FRANCESCO GARGANO, MARCO SAMMARTINO and VINCENZO SCIACCA  [16]

with
- K*d?
(3.12) Gk|X,d) = exp {— e + ikX} )
and using the Laplace asymptotic formula (2.1) to the previous relation one has:
i 1, X =)
(3.13) b(k|X, d) ~ ZAjuc\ i1 exp [lkzj - 012]] ,
J

while the exponential decay is given by

2 _ 52
X —x)" =6

(3.14) Ak X, d) = —5k — =

where z; = @+ 10; are the complex singularities.

Note that 4;(k|X,d) is larger for x; closer to X or for smaller J; as long as
k < 8;/d2.

If one denotes by j = J the term which gives the maximum of 4;(k|X, d) over a
certain range of k, then the previous formula can be approximate by

(3.15) B(kIX, d) ~ Aglk| ™ " exp(—kdy),

which decrease exponentially in k. One can therefore estimate the J of the most
relevant singularities which exist within distance d from X, by estimating the ex-
ponential decay rate of the spectrum.

3.3 - Borel-Polya-Van der Hoeven method

In this section we review the Borel-Polya-Van der Hoeven method (BPH method
in the sequel) proposed in [57] to retrieve more information about the singularities
outside the width of the analyticity strip of the Burgers equation for different initial
conditions. This method is useful when one deals with a finite number of distinct
complex singularities (poles or branches).

In particular, given the inverse Taylor series f(z) = Z,ZCV:O fie/2"*! that has n
complex singularities ¢; = |cj|e’i3ff forj =1,2 ..., n,its Borel transform is given by
Ug() = Zszo kak /n!. Evaluating the modulus of the Borel series G(r) = |U, B(re’®)|
along the rays re’, one obtains, through a steepest descent argument, the following
asymptotic behavior

(3.16) G(r) = C(pr~@D+Dh@r  for 1 — 0.

The function /(¢) is called the indicatrix function of the Borel transform. To better
understand the role of the indicatrix function, we consider the set K = {cy, ..., ¢, } of
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all the singularities, and we define the supporting line of K as aline that has at least
one point in common with K and such that its points are in the same half space with
respect to the supporting line of K. The intersection of all these half spaces is the
convex hull of K, which in the case of separate poles or branches reduces to the
smallest convex polygon containing all the singularities as illustrated in Figure 7.
The supporting function k(¢) = h( — ¢) is the distance from the origin to the sup-
porting line normal to ¢. In [57], it has been shown that, in the case of isolated sin-
gularities, the indicatrix function is the piecewise cosine function

(3.17) @) = |cjlcos @ — ;) for ¢, <<,

where the angular intervals (¢;, ¢;,,) are depending on the complex positions of the
singularities (we refer to [57] for a deeper explanation on how the set ¢,
7 =1,2,...,n is determined). Therefore, through numerical interpolation we can
determine the parameters |¢;| and y; that give the locations of the complex singu-
larities c;. In practice, for each direction ¢ we need to determine the exponential rate
of (3.16) that allows for construction of the indicatrix function .. Moreover, an es-

Fig. 7. The convex hull of a discrete set of complex singularities is the smallest convex
polygon containing all the singularities c¢;. The supporting function k(¢) is the distance from
the origin to the supporting line, normal to the direction ¢, and touching a singularity.
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timate of oc(yj) in (3.16) returns the characterization of the singularity c;. The BPH

method can be easily applied to the Fourier series f(z) = Zi{g 12 fre* by in-
troducing the complex variables Z, = ¢, Z_ = e so that

K2 K/2 _ K/2 K/2
(3.18) u@) =Y ™+ e ™ = "w /28 +> w2

k=0 k=1 k=0 K=1

The advantage of this methodology in comparison to the singularity-tracking
method lies in the fact that it is possible to capture information on the singularities
located outside the radius of convergence of a Taylor series (or the strip of analyticity
of a Fourier series). However, there are some drawbacks. In particular, singularities
that are close to each other can be difficult to distinguish, mainly because a cosine
function relative to a singularity s; can be hidden by another cosine function relative
to a singularity sg, if sg is closer to the real domain than s;. Using high numerical
precision in conjunction with the asymptotic extrapolation method proposed in [73]
can only in part overcome this issue. Moreover, the computational cost is heavier in
comparison to the singularity-tracking method, as a numerical interpolation must be
performed in various directions containing all of the singularities.

4 - Applications
4.1 - Dispersion and dissipation

In this section we shall apply the techniques explained in the previous sections to
analyze the complex singularities of some nonlinear dissipative and nonlinear dis-
persive PDEs. Many nonlinear dispersive systems, in the regime of small dispersion,
exhibit rapid oscillations in their spatio-temporal dependence. Although a fascinat-
ing mathematical phenomenon, these oscillations are generally quite difficult to
describe and control and are an obstacle to the efficiency of numerical and analytical
methods. A complete rigorous description of these oscillatory behavior would ne-
cessitate multiple scale analysis (with the introduction of fast variable to resolve
the oscillatory structure) and an asymptotic matching procedure. However the
oscillatory structure has been successfully analyzed only in cases like the KdV
equation [25, 24, 45, 46, 47, 34] and the nonlinear Schrodinger equation [38, 39, 71].

The first examples we consider here is the viscous Burgers equation:

(4.1) Ut + Uty = Vilyy,
and the dispersive Burgers equation introduced in [63]:

(4.2) U + uthy = € exp (10)ugyy.
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Fig. 8. Inviscid branch points, branch cuts and viscous poles for the viscous Burgers

equation (4.1) with v > 0 and 0 < ¢ < tg.

In [64, 65, 63], the authors analyzed the pole dynamics of the above equations.
They showed the different behavior of the poles in presence of dissipation versus the
presence of dispersion. Their results are summarized in Figs. 8 and 9 and in Fig. 10.

Imz A
< ¢ O(v) for k~ 1
v>0 D
t>ts &
D
D
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the viscous solution < - >
------------------------------------ @@ e
—z, Zs Rex
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Inviscid branch point: g D | Turn-around of the poles
Viscous poles: o 5 on the immaginary axis
D
D

Fig. 9. Inviseid branch points, branch cuts and viscous poles for the viscous Burgers

equation (4.1) with v > 0 and ¢ > 5.
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for the dispersive Burgers equation (4.2) with v = e exp (i0).

[20]

Fig. 10. Inviscid branch point, branch cuts and viscous poles at the singularity time ¢ = ¢g

In the zero-dispersion (or zero-viscosity limit), the complex poles coalesce onto a

branch cut, and the zero-dispersion solution is described by branch-cut dynamics. As
shown in the previous section, the cube root singularity is known to be a generic

v =0.01
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U
t=0.8
0.5 J
0
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” 1 T T T
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Fig. 11. The evolution in time for the viscous Burgers equation (4.1) with v = 0.01.
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Fig. 12. The spectrum at different times for the viscous Burgers equation (4.1) with
v=0.01and v=0.1.

singularity for the inviscid Burgers equation. It is due to the coalescence of two
conjugate branch points of order two in the complex plane [63]. In the purely dis-
persive case, the solution of (4.2) or (4.3) develops rapid oscillations. These oscilla-
tions are caused by the presence of complex poles in the solution which have moved
close to the real axis. This result is important in providing a tangible cause for the
formation of the oscillations.

The above results can be recovered through the application of the techniques
presented in the previous Section. To (4.1) and to (4.2) we shall impose the initial
datum u(x,t = 0) = sina.

In Fig. 11 it is shown the evolution in time for the viscous Burgers equation (4.1)
with v = 0.01 and in Fig. 12 the behavior of its spectrum at different times and dif-
ferent viscosity.

In Fig. 18 it is shown the Padé approximants for the viscous Burgers equation
(4.1) with two different viscosity v = 0.01 and v = 0.1.

In Fig. 14 it is shown the evolution in time for the dispersive Burgers equation
(4.2) with € = 0.01 and § = /4 and in Fig. 15 the behavior of its spectrum at different
times and different dispersion value e = 0.1 and ¢ = 0.01.
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Fig. 13. Viscous poles at different times for the viscous Burgers equation (4.1) with v = 0.1
and v = 0.01. The Padé analysis results.
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Fig. 14. The evolution in time for the dispersive Burgers equation (4.2) with ¢ = 0.01 and
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Fig. 15. The spectrum at different times for the dispersive Burgers equation (4.2) with
€=0.01 and e = 0.1 and 0 = =/4.

In Fig. 16 it is shown the Padé approximants for the dispersive Burgers equation
(4.2) with e = 0.01 and € = 0.1, and 0 = n/4.
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Fig. 16. Complex poles at different times for the dispersive Burgers equation (4.2) with
v = eexp (i0). The Padé analysis results.
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One can notice an agreement between the results of [63] sketched in Figs. 8,9 and
10 and our analysis based on the Padé approximants, reported in Fig. 13 for the
viscous case and in Fig. 16 for the dispersive cases.

We now pass to the analysis of the KdV equation:

(4.3) Ut + Uy + quxm =0

which is considered to be the canonical example of dispersive equation. To the above
equation we shall impose the initial datum u(x,f = 0) = sinx. We shall see that the
solution presents a series of complex singularities. Moreover, in the zero dispersion
limit, the singularities approache the real axis and tend to coalesce. The dynamics of
the KdV complex singularities seems therefore to be analogous to what we have seen
for the dispersive Burgers equation.

In Fig. 17 it is shown the evolution in time for the KdV equation (4.3) with e = 0.01
and in Fig. 18 the behavior of its spectrum at different times and different dispersion
value e = 0.1 and ¢ = 0.01.

In Fig. 19 it is shown the Padé approximants for the KdV equation (4.3) with
e =10.01 and e =0.1.

We perform an analysis of the hidden singularities for the KdV equation applying
the BPH and Kida methods. In Figs. 20 and 21 it is shown the indicatrix function

e=0.01

Fig. 17. The evolution in time for the dispersive KdV equation (4.3) with ¢ = 0.01.
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Fig. 18. The spectrum at different times for the dispersive KdV equation (4.3) with

e=0.01l and e =0.1.

e =0.01
0 W O
.
0.1 €y . ¢
t=20.9
0
-0.1 0® "\,
< -
24 26 28 3 32 34 36
Ué hd
0.1 “90. R
t =1tg =dos %0,
0
— L]
0.05 Y ..
-0.1 eesa L
0 ? o
24 26 28 3 32 34 36
0.2
t=1.201]"° e, .
A XTI TR
0
.,.‘.0001--.,,_.
_0_1,s°"
-02

24 26 28 3 32 34 36

Rex

Fig. 19. Poles at different times for the dispersive KdV equation (4.3) with ¢ = 0.01 and
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Fig. 20. The indicatrix (3.17) for the dispersive KdV equation (4.3) with e = 0.1 at time 1.2.
Dotted lines represent the local fitted cosine functions.

given by (3.17) for the dispersive KdV equation (4.3) with ¢ = 0.1 at time, respec-
tively, t = 1.2 and ¢ = 1.5. It is also shown the results of the fitting of the piecewise
cosine function which gives the location of the singularities. The results are in
agreement with the Padé approximant analysis of Fig. 19.
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h(®) 0744 os(8 - 2.85)
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¢

Fig. 21. The indicatrix (3.17) for the dispersive KdV equation (4.3) with ¢ = 0.1 at time 1.5.
Dotted lines represent the local fitted cosine functions.




[27] COMPLEX SINGULARITIES AND PDES 95

Fig. 22. The Kida filtered spectrum ((3.13) and (3.15)) for the dispersive KdV equation
(4.3) with ¢ = 0.1 at time 1.2.

We perform also an analysis using the Kida technique, with d = 0.2 in the
Gaussian (3.10). In Fig. 22 it is shown the filtered spectrum (3.13) at different loca-
tions of x. One can notice that at the singularity locations x = 1.53, = 2.15 and
x = 2.81 the respective filtered spectrum has a linear behavior as predicted by
formulas (3.15).

The fitting results at time 1.2 of the Kida filtered spectrum (3.15) for the KdV
equation with e = 0.1 at the singularity location & = 1.53, x = 2.15 and x = 2.81 are
shown in Table 2. The singularities are complex poles and the respective distances
from the real axis are in agreement with the Padé approximant results shown in
Fig. 19. The fitting to determine the algebraic characters o of the singularities are
performed in the range 1 < k < 5, while the fitting to calculate the distances ¢ form
the real axis of the singularities are performed in the range 1 < k < 80.

Table 2. The fitting results at time 1.2 of the Kida filtered spectrum ((3.13) and (3.15))
forthe KAV equation with ¢ = 0.1 at the singularity location x = 1.53, x = 2.15 and x = 2.81.

x =153 x =215 x =281
a+1 0.081 0.098 0.039
0 0.56 0.45 0.34
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4.2 - Singularity formation for Prandtl equation

In this section we apply the complex singularity tracking method to investigate the
singularity formation for 2D Prandtl equations, and its link with the separation phe-
nomena occurring when an incompressible viscous flow interacts with a rigid boundary.

Prandtl equations are used to describe the boundary layer flow in the zero
viscosity limit. These equations are obtained by introducing the following scaling
into the Navier-Stokes equations and taking the limit as Re — oo (see [62]):

(4.4) y=Re Y, v=Re 12V,
where ¥ is the normal coordinate, v is the normal component of the velocity, and ¥

and V are the rescaled coordinate and normal velocity. The equations obtained at
first order of the asymptotic expansion are:

ou  Ou ou AU, *u
ou oV
(4.6) 9% + e 0,
with initial and boundary conditions given by
(4.7) ww,Y,0) = U,
(4.8) w(x,0,t) = V(x,0,t) =0, wu@,Y — o0o,t) = Uy,

where U (x) is the inviscid Euler solution at the boundary.

We consider here the classical case of an impulsively started circular cylinder
immersed in an uniform background flow. In this case the inviscid Euler solution at
the boundary is U, (x) = 2sin x and the streamwise coordinate x is measured along
the cylinder surface from the front stagnation point, and the normal coordinate y is
measured from the cylinder surface (see [74]).

The occurrence of a singularity in Prandtl’s solution was first proved numerically
by van Dommelen & Shen in [74] by using a numerical lagrangian method. For that
reason, in the sequel, we call the singularity in Prandtl solution also as the VDS (van
Dommelen & Shen) singularity. The work of van Dommelen & Shen was improved
by Cowley in [19] where it was investigated the singularity formation for the dis-
placement thickness f,5 and the normal velocity at infinity V, using power time
series expansion and approximating them with a special case of Padé approximants.
Singularity formation was also analyzed in [29] through the singularity-tracking
method applied on the streamwise velocity component « of Prandtl equation, and it
was found that for the initial condition U, (x)/2 = sinw, a cubic-root singularity
forms at 2t; ~ 3 with the blow up of 0,u at (x5, Ys) ~ (1.94,7).

The physical effects of the singularity formation in Prandtl solution are shown in
Fig. 23 where the evolution of the vorticity up to the singularity time ¢, = 1.5 for the
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t=04 t=1 t=1.5

Fig. 23. The evolution of the vorticity of Prandtl’s equation for the van Dommelen and
Shen initial datum U,, = 2sin (x) at different times. It is visible the formation of a shock at
x ~ 1.94 at the singularity time t; = 1.5.

VDS initial datum U, (x) = 2 sin x is shown. At time ¢, it is visible the singularity at
the streamwise location & ~ 1.94 where the vorticity is ejected in the outer flow from
within the boundary layer (separation).

In this section we investigate the singularity formation for Prandtl wall shear
= Oyujy—o, in order also to compare the results with the singularity analysis
performed on the Navier-Stokes wall shear at different Re numbers (Section 4.3).
These results are originally presented in [31].

P

w

0w /100 !

Fig. 24. Prandtl wall shear < at the singularity time ¢; = 1.5 and its rescaled second
derivative which shows a singularity at x; ~ 1.94.
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Fig. 25. On the left the Fourier spectrum 7% of Prandtl’s wall shear at various times. On
the right, the Fourier spectrum of zf for Prandtl’s wall shear at f, = 1.5 in log-log

w

coordinates: the rate of algebraic decay behaves like o ~ 7/6.

In Fig. 24 it is shown Prandtl wall shear at the singularity time ¢; = 1.5 and its
(rescaled) second derivative: a strong eruptive behavior is visible in the second de-
rivative at the streamwise location x; ~ 1.94. In Fig. 25 on the left it is shown the
evolution of the spectrum 7% of the Prandtl wall shear. At the singularity time ¢ the
spectrum loses the exponential decay and the rate of its algebraic decays at ¢, gives
the algebraic character of the singularity o ~ 7/6, revealing a blow-up in the second
derivative of the wall shear as already shown in Fig. 24.

3.5
S(z) 1

2.5F q

0.5f

R(z)

99 1.95 2 2.05 21 2.15 22
Fig. 26. The time evolution in the complex plane (R(x), 3(x)) of the complex singularity of
P

P from time 0.1 up to time 1.5. At t, = 1.5, the singularity of £ hits the real axis at x ~ 1.94.

w w
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Fig. 27. The indicatrix function /(x) in (3.16) at t; = 1.5 on the left: & behaves like a cosine
centered at x; ~ 1.94. On the right, the rate of algebraic decay evaluated from equation (3.16)
at t; = 1.5. In &, = 1.94, where the singularity forms, this decay behaves like o ~ 7/6.

In Fig. 25 on the right it is shown the Fourier spectrum of 7 at time ¢, in log-log
coordinates where a slope of 7/6 + 1 is visible.

We apply the BPH method to Prandtl’s wall shear to track the complex singu-
larity in the complex plane, and in Fig. 26 it is shown the time evolution of the sin-
gularity of <£, from ¢ = 0.1 to ¢; = 1.5 with a time step of 0.05. After a transient time

in which the singularity is characterized by a movement parallel to the imaginary

0.1

0.05

2.4 2.6

Fig. 28. The contour levels of the modulus of the Padé approximant Py 250 of £ att = 1.495.



100  RUSSEL E. CAFLISCH, FRANCESCO GARGANO, MARCO SAMMARTINO and VINCENZO SCIACCA  [32]

axis, the singularity moves toward the position x; = 1.94, hitting the real axis at time
ts =~ 1.5. At this time the Fourier spectrum loses exponential decay and the indicatrix
function k in (3.16) behaves like a cosine function of amplitude 1 centered in
xs ~ 1.94, as it is visible in Fig. 27 on the left. In Fig. 27 on the right, the rate of
algebraic decay o« (x) from (3.16) is shown at ¢ = t; showing that a(x = 1.94) ~ 7/6.

We conclude this analysis evaluating the modulus of the Padé approximant
Paso 250 of P at time ¢ close to t; = 1.5. In Fig. 28 one can see the algebraic branch cut,
which is visible as a series of poles and zeros along a cut parallel to the imaginary axis
and located at x, ~ 1.94.

4.3 - Singularity analysis for Navier Stokes solutions

In [54, 55, 30, 31] it was shown that the wall shear T{XS of Navier-Stokes solution is
a relevant indicator of the onset of the various viscous-inviscid interactions char-
acterizing the separation process in Navier-Stokes solutions. In fact, after the for-
mation of the back-flow, the first relevant interaction visible in Navier-Stokes so-
lutions, i.e. the so called large-scale interaction, leads to the disagreement between
the Navier-Stokes and Prandtl wall shear. The subsequent small-scale interaction,

observable only for moderate-high Re numbers, characterizes the typical turbulent

NS
W

In [31] it was found a relationship between these interactions and the presence of
complex singularities in 7\5. We present in this section the results due to the sin-

chaotic regime of the high Re number flow with high gradients formation in

gularity analysis of the wall shear rﬁ,’s for the impulsively started disk case, allowing
also a direct comparison with the Prandtl case.

The Navier-Stokes equations in the vorticity-streamfunction formulation for the
impulsively started disk read as:

' ot ral or Re\r2pg> ror or2)’
(4.10) 10 1oy Py _
2902  ror Or? ’

oy 10y

4.11 it e
@an "o T v
(4.12) u=v=0, r=1,
(4.13) o — 0, r — 00,
(4.14) w(@,r,t=0)=0,
(4.15) w(0,r,t=0) = (r - %) sin 6.
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Equation (4.9) is the vorticity-transport equation, equation (4.10) is the Poisson
equation for the streamfunction, and equations (4.11) relate the velocity components
to the streamfunction. (4.12) and (4.13) are the no-slip and impermeability conditions
on the circular cylinder and the irrotational condition at infinity, respectively. The
initial condition (4.14) expresses the irrotationality condition of the flow at the initial
time, (4.15) is the initial condition for the streamfunction. The walls shear is as
usually defined as 5 = —w,_;/ VRe. The problem is solved in the domain
[0, 7] x [1, 00), and only the upper part of the circular cylinder is considered owing to
symmetry. Details on the numerical scheme used can be found in [31].

In [31] it was shown that rlu\,’S has several singularities that can be divided into
three distinet groups. These three groups of singularities are visible in Fig. 29 in
which it is shown the modulus of the Padé approximant Psgy /3009 0of ™S for Re = 10°
att = 1.58: at this time the large and small scale interactions have already formed for
Re = 10° . The left group comprehends only a singularity. The middle group com-
prehends several complex singularities corresponding to the large-scale interaction.
The right group is visible only for moderate-high Re number, and consists of complex
singularities that correspond to the small-scale interaction.

b) ' '

3) o3

eim
0.2

0.1

-20 | L L 1
1.8 2 2.2 2.4 2.6

0

Fig. 29. a) The contour levels of the modulus of the Padé approximant Pggg/309 of ™8 for
Re = 10° at t = 1.58. Three distinct groups of complex singularities are present. Each group
correspond to a different viscous-inviscid interaction. b) The wall shear <S: a strong
correspondence between the high gradients in rf)j’s and the positions of the complex
singularities in a) is visible.
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Fig. 30. a) The time evolutions in the complex plane (%(0), 3()) of the complex singularities
sp of 7" for the various Reynolds numbers from time 0.1 up to time 1.5 with time step of 0.05.
At t; = 1.5 the singularity remains at a distance yp from the real axis which goes like
3.2 - Re~%? b) The distance yp is shown versus the Reynolds numbers in log-log coordinates.

The first singularity of z)\¥ in the left group as shown in Fig. 29a is comparable

with the singularity of Prandtl wall shear £ (hereafter we shall denote this singu-

larity as sp). The main similarity between sp and the singularity of £ lies in their

1.2

0‘55 (0)

0.8

0.4f 103 1
—5-104
—-10°

0 L 1 L L L
1.92 1.93 1.94 1.95 1.96 1.97 1.98
0

Fig. 81. The characterization of;¢ of the complex singularity sp of )} evaluated through
the BPH method. At ¢, = 1.5 in 6 ~ 1.94 we retrieve ok ~ 7/6 for all the Re considered.
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characterization. In fact, through the BPH method we have obtained that the al-
gebraic characterization of sp at the time t; = 1.5 is aﬁs ~ 7/6 for each Reynolds
number (see Fig. 31) which is the same characterization observed for rf, as shown in
the previous section. We stress that as compared to the Prandtl case, the char-
acterization of ok has been more difficult to evaluate. This was mainly due to the
presence of the various complex singularities of the other groups that affect the
indicatrix function leading to some difficulties in handling numerically the evaluation
of the algebraic decay rate. The second similarity between sp and the singularity of
P is given by the similar time evolution of their positions in the complex plane as
shown in Figure 30a (singularities are tracked from ¢ = 0.1 to t; = 1.5 with time step

a) b)

Yis
0.44 - Re™0138

13 8 10 12

Re

Fig. 32. a) The time evolution in the complex plane (R(6), 3(6)) of the complex singularity
sis of ™5 for Re =10 from time 0.1 up to time 3 with time step of 0.05, and for
Re =10%,5-10%,10° from time 0.1 up to time 1.5 with time step of 0.05. b) The distance
of s;; from the real domain versus the Reynolds number in log-log coordinates at the time at
which large-scale interaction begins. The singularity is at a distance y;; from the real axis that
goes like 0.44 - Re~ 0138,
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Fig. 33. The characterization oy of the complex singularity s;; of erS evaluated from the
BPH method. At t=105, o~ 05 for Re=10%10%10°, and s, is located at
(2.501,0.54), (2.40,0.37), (2.32,0.28), respectively.

0f 0.05, see also Fig. 26 for the time evolution of the Prandtl wall shear in the complex
plane). All singularities rapidly move toward the real axis slightly shifting upstream
on the circular cylinder. At time t; = 1.5, when singularity forms in Prandtl solution,
all the singularities have the real part of their position close to x; ~ 1.94, and the
imaginary part yp which follows the rule yp = CpRe*”, where ip ~ —0.25 and
Cp =~ 3.2 (see in Figure 30b, where yp is shown versus the Reynolds number in log-
log scale). While it is clearly expected that sp get closer to the real domain ad Re
increases, it was less predictable, mainly due to the influences of the other singu-
larities, that sp moves toward the position x; = 1.94 for all the Re.

The second group of complex singularities in 7\ is related to the large-scale in-
teraction developing in the separation process, and it exists for all the Reynolds number
considered. The presence of several singularities close to each other leads to numerical
difficulties in resolving all the singularity positions and characterizations. Only the
singularity closest to the real axis for all time (hereafter we shall call this singularity s;5)
can be well resolved. Also for s;; we have tracked in time the position in the complex
plane for all the Re (see Fig. 32). While the evolution of s; is quite similar for all
Re > 10%, a different behavior is observed for Re = 10? . In this case, in fact, s;; con-
tinues to shift downstream along the circular cylinder even after total detachment of
the boundary layer. For the other Re cases, instead, s;; changes its motion by shifting
upstream along the circular cylinder during the small-scale interaction phase. At the
time in which large scale interaction begins (from the analysis performed in [31] this
interaction forms at ¢ ~ 0.908,0.916,0.94, 0.952 for Re = 10%,10%,5 - 10%, 10°) the dis-
tance v/, from the real axis of the singularity s;; follows the rule y;;, = Cj,Re”, where
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Jis = —0.138 and Cj; ~ 0.447, as one can see in Figure 32b, where ¥ is shown versus
the Re number in log-log coordinates. By applying the BPH method, we have well
resolved the characterization of the singularity s;; in the range of time betweent = 0.95
and ¢t = 1.1 when the other complex singularities are still far enough away from the
singularity s;;. The charachterization is o} ~ 0.5 for all the Reynolds numbers con-
sidered as shown in Fig. 33, where the rate of algebraic decay oy, obtained from
equation (3.16), is shown at ¢ = 1.05 for the various Reynolds numbers.

The third group of singularities are related to the small-scale interaction, and as
for the second group of singularities we were able to well resolve only the primary
singularity of this group that is always closest to the real axis (hereafter this sin-

gularity is called sg). In Fig. 34a the time evolution of the position of sy in the

2) b _
t=0.1 " Re-10 ——0.41. Re™0%
——Re—5-10*
—o— Re — 10°
3(9) Re —10
1.5
1_ -
0.5r
Ok
23 10 11 12
Re

Fig. 34. a) The time evolution in the complex plane (5(0), 3(0)) of the complex singularity sss
of 28 for Re = 10* from time 0.1 up to time 2 with time step of 0.05 and for Re = 5 - 10*,10°
from time 0.1 up to time 1.5 with time step of 0.05. b) The distance ys of sss from the real domain
is shown versus the Reynolds number in log-log coordinates at the time in which the small-scale
interaction begins. The singularity is at a distance from the real axis that goes like 0.41 - Re=0%,
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complex plane for Re = 10* from time ¢ = 0.1 up to time ¢ = 2, and for Re = 5 - 10*
and Re = 10° for t = 0.1 up to ¢t = 1.5 with time step of 0.05. This evolution is not as
smooth as compared to that of sp and s, and in [31] the physical events affecting the
time evolution of s;; were explained. At the time at which small-scale interaction
begins (from the analysis performed in [31] this interaction forms at
t ~ 1.505,1.29,1.26 for Re = 10*,5 - 10*, 10%), it has been observed that the distance
Yss from the real axis of the singularity s, follows the rule ys = CyRe’, where
Ass &~ —0.25 and Cys = 0.41. This can be seen in Fig.34b, where ¥, is shown versus the
Reynolds number in log-log coordinates. The characterization of s;; was quite well
resolved at the time in which small scale interaction begins, and we have obtained the
value ojg ~ 0.5. This characterization is compatible with the kind of gradient that

forms in <8 as it clearly shows a growth in the first derivative.

5 - Complex singularity tracking method for multivariable function

In this section the singularity-tracking method is extended to a bi-variate func-
tion (see [50, 58] for details).
Given a periodic function that can be expressed as a Fourier series

u@y, @) = Y Uy,
k1k2

if one considers those modes (k1, k2) such that k; = kcos 6 and ks = k sin 0, where
k = |(k1, k2)|, then the asymptotic behavior of the Fourier coefficients in the Fourier
k-space with k¥ — oo have the following asymptotic behavior:

(5.1) Uy, = o~ O 0Ok k" O wheve  (ky, k) = k(cos 0, sin ).

The width of the analyticity strip ¢* is the minimum over all directions 6, i.e.
0" = ming 6(0).

A second way to extend the singularity tracking method to bi-variate functions is
to define the shell-summed Fourier amplitudes, are defined as

(52) AK = Z }uklkg |7
K<|(ky ko) | <K+1

which are a kind of discrete angle average of the Fourier coefficients. The asymptotic
behavior of these amplitudes is

(5.3) Ag ~ CK~ 1712 exp(—9g,K) when K — oo,

where Jg), gives the width of the analyticity strip, while the algebraic prefactor og;,
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gives information on the nature of the singularity. As pointed out in [58], using a
steepest descent argument, one can see that the two techniques are equivalent. In
fact, if one denotes with 6" the angle where 6(f) takes its minimum (i.e. 6* = (")),
one has that dg, = 6(0") and that ag, = a(0*) — 1/2.

An interesting situation is when the most singular direction coincides with one of
the coordinate axes, e.g. 6" = 0 (similar is the case when 0" = 7/2), which means that
(see (5.1)):

(5.4) Upyo =~ ey " 0Ok with g =0

In this case it is easy to see that, to evaluate the width of the strip of analyticity, one
can consider the variable xz as a parameter (when §° = 7/2 one can be consider
instead x; as a parameter) and adopt the following procedure. First take the Fourier
expansion relative to the variable x;:

uley,wz) =y g, (r2)e” " ;
k1

second, given that for fixed xy the function u(x,x2) is analytic in 1, use that the
spectrum has the asymptotic behavior:

(55) ukl(xZ) r~ kl—(ot(xz)+1)e—(5(x2)k1 :

third use the definition of uy,( to write:
(56) Upyo = /ukl (xz)eikgxg d-%‘z ~ /k;(“(x2)+1)67§(x2)k1eikzxz de ~e ming, O(2)ky ,

where, to get the last estimate, we have used a steepest descent argument.
Comparing (5.4) with (5.6) one finally derives that, when " = 0:

3(0%) = min 5(xz) .

The procedures needed to capture the asymptotic behavior of the spectrum re-
quire high numerical precision and in fact, in the calculations we shall present, we
have used a 32—digits precision (using the ARPREC package). For more details on
the method and on the various techniques introduced in the literature to fit the
spectrum, see [11, 27, 33, 50, 57, 66, 69].

5.1 - Prandtl equation

We apply the techniques of singularity tracking method for multivariable func-
tion, explained in the previous section, to analyze the singularity of the Prandtl so-
lution for the VDS initial datum U, = 2sin (x) (see Section 4.2).
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Fig. 35. The behavior in time of the shell summed Fourier amplitude up to the singularity time.
In Fig. 35 we show the shell-summed Fourier amplitudes, where it is evident the

loss in time of the exponential decay. Fitting these data using formula (5.3), we get
the evolution in time of the width of the analyticity strip, shown in Fig. 36(b), and the

0.5 T T

Y ag(t)
0.4r 1
0'?,3 1 .3|75 1 .4|25 15

) 0.6 T T
b
dsh, (t)
0.3r _
8.5 0i7 1‘ 1i2 15

t

Fig. 36. a) The behavior of the algebraic character of the singularity from the shell
summed Fourier amplitude of Prandt!l’s solution. The singularity is of cubic-root type. b) The
behavior in time of the width of the analyticity strip. The singularity time is ¢; ~ 1.5.
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Fig. 37. On the left the fitting of the exponential decay ¢ at different directions 6 of the bi-
dimensional Fourier spectrum of Prandtl’s solution at the singularity time t;. The most
singular direction is at # = 0. On the right, the estimates of the exponential decay ¢ of the
Fourier spectrum of Prandtl’s solution at time ¢;, in terms of the normal variable Y. The
location of the minimum, Y = 5, is the location of the singularity.

algebraic characterization of the singularity in Fig. 36(a). At the critical time t; = 1.5,
the solution loses analyticity as a cubic-root singularity. Analyzing the Fourier
spectrum of Prandtl solution « at the singularity time ¢, using formula (5.1), in Fig. 37
on the right we show the angular dependence of 6 where it is visible that the most
singular direction is at # = 0. As explained in the previous section, this result allows
to treat the normal variable Y as a parameter, and on the right of the same Figure we
show the dependence of 6 on Y at the singularity time ¢; using formula (5.5). Because
o(Y) attains its minimum at Y = 5, this implies that the singularity is located at
Y ~ 5 and we apply the singularity tracking method to the one dimensional function
u(x,5), whose evolution in time is shown in Fig. 40 where the shock at «* ~ 1.94 is
visible at time t,.

In Fig. 39 it is shown the behavior in time of the Fourier spectrum at the location
Y = 5 of w and in Fig. 38 one can see the results of the singularity tracking method at
the location Y = 5, showing again the formation of a cubic root singularity at time
ts = 1.5. What is important now is the determination of the real tangential location of
the singularity «*, which is founded with a study of the oscillatory behavior of the
spectrum depurated by the exponential and algebraic decay, using formula (2.1).



110  RUSSEL E. CAFLISCH, FRANCESCO GARGANO, MARCO SAMMARTINO and VINCENZO SCIACCA  [42]

3(t) — at) — (%)
0.045- 1 035_
0.04f
0.035 105l
0.03f 1 03r
0.025
0.02}
0.25} g 1.945¢
0.015
001}
0.005
02t
ol 1.04f
-0.005 s t : Lt . 't
1. 14 15 13 14 15 13 14 15
Y=5

Fig. 38. The results of the singularity tracking for the spectrum of the solution of
Prandtl’s equation at the location ¥ = 5.
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Fig. 39. On the left the spectrum of the solution of Prandtl’s equation at the location Y =5

from time ¢ = 1.2 up to the singularity time t; = 1.5 with increments of 0.05. On the right the

Fourier spectrum of Prandtl’s solution at the singularity time ¢; and Y = 5 in log-log coordinates.
It is visible the lose of the exponential decay while the rate of the algebraic decay is o ~ 0.33.
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0 1 2 m

Fig. 40. The solution of Prandtl’s equation at the location Y = 5 for van Dommelen and
Shen initial datum U,, = 2sin (x) at different times. It is visible the formation of a shock at
x =~ 1.94 at the singularity time ¢; = 1.5.

This complete the analysis of the singularity of Prandtl’s solution in the case of an
impulsively started disk. The details of these results are in [29, 21, 28].

5.2 - Navier-Stokes equation

In this section we present the results obtained by applying the singularity ana-
lysis for the 2D spectrum of the velocity component u(r, ) of the Navier-Stokes
solutions obtained from (4.11) for different Reynolds number (see [31] for more
details). To perform this analysis we have mapped the physical domain of the various
solutions to 4 =1[1,2] so that the points in 4 are the Gauss-Lobatto points

Navier-Stokes solution as

k=K/2 j=M

(5.7) w000~ Y > ug®e cos (),

k=—K /2 j=0

and the singularity-tracking method is applied on the Fourier coefficients ;.

The time evolution of the rate of exponential decay Jyg in (5.3) in shown in
Fig. 41a for various Reynolds numbers. The various time evolutions are similar in all
cases, and after the formation of a maximum value 5%5 in time, dyg decreases as the
gradients in the 6 direction become intense. For all the Reynolds numbers con-
sidered, dys has a local minimum dyjq in time after ¢, = 1.5, and after this event it
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Fig. 41. a) Time evolution of dyg for various Reynolds numbers. dy¢ has a minimum in
time which is of order O(1/Re) as shown in b) (at least for the Reynolds numbers for which
small-scale interaction forms).

then begins to increase again. It is worth noting that the minimum in time Jy; seems
to scale linearly with respect to 1/Re for the Reynolds numbers for which small-scale
interaction occurs (see also Fig. 41b). Regarding the evaluation of ayg we first ob-
serve that all of the spectra analyzed have several structures leading to several
difficulties in determining the correct value of this charachterization. At the onset of
large-scale interaction, when the spectrum is more easily handled, a fitting of the
Fourier amplitudes always gives results in the range 0.45 < oygs < 0.55 for all of the
Reynolds numbers considered, suggesting that the value oyg = 1/2 is the more
probable characterization. For instance, in Fig. 42 the behavior of the Fourier am-
plitudes Ag for Re = 10, is shown in log-log coordinates: the linear behavior of the
first range of Fourier amplitudes, whose slope returns the rate of algebraic decay,
compares with the straight line of slope —1, and this supports the prediction that
NS — 1 / 2.

A relevant feature of the small-scale interaction is the formation of a bulge in the
2D spectra of the solutions for the Reynolds numbers for which this interaction
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Re = 10°

y =-log(K)+c

3
log(K)

Fig. 42. The behavior for different times (in increments of 0.1) of the shell-summed
Fourier amplitudes Ax for Re = 10° in log-log coordinates. The first linear range of the
amplitudes seems to have a slope equal to —1.

forms. In Figs. 43-44 the spectra are shown at different times for Re = 1.5 - 10® and
10° with the most singular direction indicated by a straight line. For Re = 10° (also

Re=1.5-10°
t=1.25 t=15
200 0

h

0 100 200

t=175

100 200 k 300 0 100 200 300 k4EID

Fig. 43. The spectrum (in log-scale) of u for Re = 1.5 - 10% at various time.
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Fig. 44. The spectrum (in log-scale) of u for Re = 10° at various time. At ¢ ~ 1.35, a bulge
forms in the spectrum that becomes more pronounced as time passes due to the effect of the
small-scale interaction characterized by appearance of strong gradients of % in the variable 6.

for Re = 5-10%,10%,5 - 10* not shown here) we can observe that the bulge begins to
appear at the time in which small-scale interaction begins (¢ ~ 1.35), while for the
case Re = 1.5-10% the bulge never forms and the spectrum grows throughout a
wider range around the most singular direction. We can relate the presence of this
bulge to the effect of the small-scale interaction which reveals itself through the
formation of large gradients in the angular direction 0 in the solution, leading to the
excitement of the high wavenumber Fourier modes along the most singular direc-
tion. Moreover as time passes, the most singular direction approaches 8 = 0, which
confirms that the relevant gradients present in « are those relative to the coordinate
0. This result is also compatible with the result obtained for Prandtl’s solution for
which, at the singularity time, the most singular direction is §* = 0.

5.3 - KP equation

The KP equation can be put in the form:

(5.8) A+ 6udyu + 0y = — 10, 0yu
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Fig. 45. The behavior in time of the shell summed amplitude up to the singularity time.

with 4 = £1 (here we consider the case when 1 = 1 with defocusing effects) with
periodic boundary condition. The variable x and y are in [ — L,n, L,n] and
[ — Lyn, L,x], and we choose L, = L, = 5.
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Fig. 46. The behavior in time of the width of the analyticity strip. The singularity time is
T* =~ 0.2216. The singularity is of cubic-root type.
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Fig. 47. The most singular direction is § = 0. If one estimates the J in its dependence on
the y variable, one finds that the location of the singularity is at y ~ 0.

We consider the initial datum:
(5.9) u(x,y,0) = —d,sech’ (\/xz + y2),

in such a way that the Fourier mode at k, = 0 is null at the initial time and we can
treat the 9,1 as —i/k, with k, # 0.

The analysis of the singularity formation when ¢ = 0is very similar to the Prandtl
case.

In Fig. 45 we show the shell-summed amplitudes, where it is evident the loss of
exponential decay. Fitting these amplitudes we get the results shown in Fig. 46,
where one can see that, at the critical time 7* = 0.2216, the solution loses analyticity
as a cubic-root singularity hits the real axis. In Fig. 47 we show the angular de-
pendence of J and one can see that the most singular direction is § = 0. This result
allows to treat the normal variable as a parameter. At the bottom of the same Figure
we show the dependence of J on y, and one can see that 6(y) attains its minimum at
y=0.

In Fig. 48 we show the solution, at the singularity time, at the location y = 0
and in Fig. 49 it is shown the behavior in time of the spectrum at location y = 0. In
Fig. 50 one can see the results of the singularity tracking method for the initial
datum (5.9) at the location y = 0. The examination of the oscillatory behavior of
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Fig. 48. The solution of the KP equation, with ¢ = 0, at the location y = 0 for initial datum
given by (5.9).
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Fig. 49. The spectrum of the solution KP equation, with € = 0, at the location y = 0 for
initial datum given by (5.9).
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Fig. 50. The results of the singularity tracking at ¥ = 0. One can see that at ¢ ~ 0.2216 the
strip of analyticity shrinks to zero as the result of a cubic—root singularity hitting the real
axis. The location of the real coordinate of the singularity at the singularity time is
x* ~ —1.79.
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Fig. 51. The solution of the KP equation, with € = 0.1, at the location ¥ = 0 for initial
datum given by (5.9) at three different times.
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Fig. 52. The behavior in time of the width of the analyticity strip when ¢ = 0.1.

the spectrum, gives the real location of the singularity; in Fig. 50 one can see that
x* ~ —1.79.
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Fig. 53. The behavior of the J(y) and J(0) of the KP equation with e = 0.1 at different
times. The most singular direction is § = 0. If one estimates the ¢ in its dependence on the y
variable, one finds that the location of the complex singularity is at y ~ 0.
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Fig. 54. Poles at different times for the solution of the KP equation, with ¢ = 0.1, at the
location y = 0. The Padé analysis results.

We consider now the KP equation with ¢ = 0.1, and we want to analyze the be-
havior of the complex singularities. As previously observed for the KdV equations,
the solution of the KP equation with ¢ = 0.14 has a regions of rapid modulated os-
cillations in the vicinity of &* = —1.79, the shock position of the dispersionless KP
solution, as one can see in Fig. 51.

The analysis of the spectrum using the shell-summed amplitudes is given in
Fig. 52. The behavior in time of the dg;, width of the analyticity strip shows that when
e = 0.1 there is no formation of real singularity.

In Fig. 53 we show the angular dependence of J at different times and one can see
that the most singular direction is § = 0. This result allows to treat the normal
variable as a parameter. At the bottom of the same figure we show the dependence
of J on ¥, and one can see that d(y) attains its minimum at y = 0.

We compute the Padé approximants for the solution of the KP equation, with
e = 0.1, at the location = 0 for initial datum given by (5.9) at three different times
(see Fig. 54). We observe a behavior very similar to what observed for the dispersive
Burgers equation and the KdV equation. We conjecture that the region of modulated
oscillations in the vicinity of the shocks in the dispersionless solution of a nonlinear
dispersive equation can be explained with the presence of coalescing complex sin-
gularities located on a curve (maybe a straight line) which approaches the real axis.
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5.4 - Vortex layers

In this section we shall apply the singularity tracking method to analyze the
complex singularities for a viscous vortex layer whose solution is governed by the
Navier-Stokes equation. Vortex layers have been extensively studied from both a
theoretical and numerical point of view. Moore in [51] analyzed the effect of the
thickness on the motion of the layer in the case of a vorticity of constant strength; in
[49] the authors proved that the dynamics of a vortex layer of constant strength
converges to the dynamics of a vortex sheet when the thickness of the layer goes to
zero. In [9] the authors considered the case in which the vorticity is non uniform
and concentrated on a small layer, and they derived the equations ruling the flow
inside the layer, proving the well posedness of these equation. In the limit of the
thickness of the layer going to zero, the vortex layer motion can be viewed as a
regularization of the vortex-sheet motion. It is well known that a perturbed sheet
develops a mechanism similar to the Kelvin-Helmholtz instability, leading to the
ill posedness of the Birkhoff-Rott equation, which rules the vortex-sheet dy-
namics, and to a curvature singularity. This was firstly proved analytically by
Moore ([52, 53]) which performed a small amplitude perturbation on the Birkhoff-
Rott equation; his analysis indicated the presence of branch singularities of order
3/2 hitting the real axis in finite time. Moore’s results were supported by the
analysis presented in [5], by the rigorous results in [23, 8], and by direct numerical
simulations ([66, 44, 20]). Further, numerical solutions of models invoking reg-
ularization agents such as finite-sheet thickness ([51, 3]), blobs ([2]) or viscosity
([72, 15]), have been found to converge to the vortex-sheet solution at times before a
singularity forms in the vortex-sheet model, and allows to continue the vortex-
sheet solution after singularity time; however, the inclusion of viscous term in the
Birkhoff-Rott equation, which lead to Dhanak’s model ([22]) does not necessarily
prevent the singularity formation ([68]).

Here we perform the complex singularity analysis on a vortex layer of small
thickness, in which the regularizing effect of the viscosity is included. The singularity
formation is prevented, although some typical features like the roll-up of the vortex
layer in a cat’s eye type spiral are preserved.

We consider an incompressible 2D viscous flow in which the initial vorticity is
concentrated on a layer of thickness € = /v, being v the viscosity of the flow, and
outside the layer the flow is irrotational. Namely, the initial vorticity distribution can
be expressed as

w02, y) = / FE S — & ¢la) — mdédn,
D
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where (x,¢(x)) is the curve along which we build the layer, f.(x,y) is a regular
function having as support the layer, J is the Dirac function, and D = [0, 2x] x [0, 27]
is the periodic domain in which the problem is defined. We choose f. so that
im0 gy —o0 (€p) is finite, and with this condition in the inviseid limit € — 0 the ve-
locity across the vortex-sheet curve (x, ¢(x)) experiences a jump discontinuity.

The governing equations for the flow evolution are the NS equations, which read
in the vorticity-streamfunction formulation as:

(5.10) O + ud, + 3, = U, + Ty ),
(5.11) R + Ty = —o,
(5.12) w=0y, v=—0w,
(5.13) (0, 7,t = 0) = wo(x,y),
(5.14) $(x) = n — sin () /8,
(5.15) fi@,y) = —V2rexp (— (i /23)/e.

Equation (5.10) is the vorticity-transport equation, (5.11) is the Poisson equation
for the streamfunction, and equations (5.12) relate the velocity components to the
streamfunction. The initial condition is given by (5.13), (5.14) and (5.15), which ex-
press an highly concentrated negative vorticity on a small sinusoidal layer having
thickness of order /v along the y-direction. The problem is solved in D by imposing
periodic boundary conditions for both the tangential and normal variable, and a fully
spectral numerical scheme is used with a third order semi-implicit Runge-Kutta
scheme as temporal discretization.

5.4.1 - Roll-up process and small-scale phenomena

The dynamices of the vorticity, at different v, is shown in Figs. 55-57. In all cases
the typical roll-up into a spiral precess is visible, although we can observe two dif-
ferent regimes depending on the viscosity. For v = 1072 during the roll-up process
there is always a big core of negative vorticity with center in (x,n), while for
v = 103,104 a pair of negative vortex cores, connected by a thin braid of vorticity,
forms (these cores are visible in Fig. 56c and Fig. 57b). Notice that as v — 0, our
initial is datum is the same used by Moore [51] for which it is well known that a pair of
curvature singularities, symmetric with respect to 7, appears in the vortex sheet
curve (see also [20]). Here the regularizing effect of the viscous layer prevents the
pair of singularities to become real, but the two cores actually form where the cur-
vature singularities should be. As time passes each core rotates under the effect of
the velocity field induced by the other core, leading to their pairing (Fig. 56d and
Fig. 57d). For v = 10~ the flow evolution is even more chaotic with the formation of
several small vortical structures during the roll-up process. This different flow
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Fig. 55. The vorticity distribution at various time for v = 10~2. The roll up behavior typical

of the vortex sheet motion is visible.

evolution for the various viscosities reveals the presence of a small-scale regime for
moderate-low viscosity, similarly to what observed for a viscous boundary layer flow
(see previous section 5.2), where for moderate-high Re number a small-scale inter-
action develops . In a boundary layer flow, this interaction is characterized by the
same small-scale vortical structures formation observed in the roll-up process of the
vortex layer, although it is ruled by a different physical mechanism (the unsteady
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Fig. 56. The vorticity distribution at various time for v = 10~3. The roll up behavior typical
of the vortex sheet motion is visible. With respect to the case v = 1072 a pair of vorticity cores
forms which eventually collapse on each other forming a big core visible at time ¢ = 1.9.

separation process). In [17, 43, 30, 31, 32] it was also shown that the small-scale in-
teraction was characterized by the presence of several peaks in the time evolution of
the enstrophy and the palinstrophy of the flow, here defined as Q = ||co||ig(D) and
P =] ch||%2(D) respectively. We observe, for the vortex layer solution, the presence
of peaks for v = 1073, 10~* only in the time evolution of P, as one can see in Fig. 59,
while Q always decreases due to the fact that there is no vorticity production as one
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Fig. 57. The vorticity distribution at various time for v = 10~%. As observed for v = 103, a pair
of vorticity cores form, and during the roll-up process several other spiral vortexes form in cascade.

aQ
can see from the enstrophy equation on a periodic domain i —2vP. ! Tt is worth

noting that the first growth of the palinstrophy (after ¢ ~ 0.95 and ¢ ~ 0.7 for
v =103 and v = 10~* respectively) happens just after the formation of the pair of
vortex cores. For v = 1072 we have checked up to time ¢ = 30 that palinstrophy never

! For a boundary layer flow the enstrophy equation also contains a term depending on the
vorticity production which is able to increase in time the enstrophy.
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Fig. 58. Time evolution of the width of analyticity of the viscous vortex layer solutions for
different viscosities.
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Fig. 59. For v = 102,104 the palinstrophy increases in time due to the formation of a
pair of vorticity cores close to (r, ) (see Figs. 56-57). For v = 102 there is no peaks in the
palinstrophy, and during the roll-up process of the vortex layer the vorticity forms a big patch
centered in (r, 7) (see Fig. 55).
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increases, and the big core of negative vorticity never splits, which confirms that the
small-scale regime is not visible for high viscosity value.

54.2 - Singularity tracking for the vortex layer

We now look for complex singularities in the solution of the Navier-Stokes with
vortex layer initial datum. In particular we compute the shell-summed Fourier
amplitudes Ag of the streamfunction

Y@, y,0) =D Yy, O e
kl s ]Cz

and we apply the fitting procedures to obtain the rate of exponential decay Jg; and
the rate of algebraic decay og, from (5.3). The time evolution of 0, () is shown in
Figs. 58a-c. In all cases the dg,(¢) reaches a first minimum value at ¢,, ~ 1.7,1.1,0.85
for v =1072,10"3,10~%. Even if it is quite difficult to determine the physical coun-
terpart related to the formation of this minimum we have observed that at ¢,, the

20 T T T T T

-100- a

-1201 7

-140 b

-1601 a

-180, -05 0 0.5 1 15 2

S

Fig. 60. The cut of the vorticity for v=10"* at t=12 along the line
r(s) = tan (1.378)(s — 3.068) + 3.559. This line connects the centers of the two cores of
negative vorticity located at (3.068,3.559) and (3.227,2.737) (see Fig. 57c). Along r the
vorticity experiences an eruptive behavior, which is also suggested by the presence of a
3/2-singularity retrieved by singularity tracking method applied to the streamfunction y.
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upper and lower flow portions, originally separated by the thin layer, begin to pro-
trude into the other portion and to curl back on themselves forming the typical spiral
shape in the vorticity distribution.

Regarding the characterization of the singularity, which is obtained by de-
termining the rate of algebraic decay oy, of the shell-summed Fourier amplitudes,
we have obtained through a numerical fitting that o, ~ 3/2 for all v; this means that
the main complex singularity of the streamfunction is a 3 /2-singularity which reveals
an eruptive behavior of the streamfunction second derivatives. This is somewhat
expected, as the second derivatives of the streamfunction are related to the vorticity
which is highly concentrated and shows an eruptive behavior along the thin layer.
This can be seen, for instance, by looking in Fig. 60 at the cut of the vorticity along the
line connecting the two cores of vorticity at time ¢ = 1.2 for v = 10~* (we varies this
line 7(s) along the parameter s having origin in the center of the upper core located in
(3.068, 3.559).): the vorticity experiences an eruptive behavior in correspondence to
the thin vorticity filaments wrapping the two cores.
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