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Large-time behavior in non-symmetric Fokker-Planck equations

Abstract. We consider three classes of linear non-symmetric Fokker-Planck
equations having a unique steady state and establish exponential convergence of
solutions towards the steady state with explicit (estimates of) decay rates. First,
“hypocoercive” Fokker-Planck equations are degenerate parabolic equations such
that the entropy method to study large-time behavior of solutions has to be mod-
ified. We review a recent modified entropy method (for non-symmetric Fokker-
Planck equations with drift terms that are linear in the position variable). Second,
kinetic Fokker-Planck equations with non-quadratic potentials are another ex-
ample of non-symmetric Fokker-Planck equations. Their drift term is nonlinear in
the position variable. In case of potentials with bounded second-order derivatives,
the modified entropy method allows to prove exponential convergence of solutions to
the steady state. In this application of the modified entropy method symmetric
positive definite matrices solving a matrix inequality are needed. We determine all
such matrices achieving the optimal decay rate in the modified entropy method. In
this way we prove the optimality of previous results. Third, we discuss the spectral
properties of Fokker-Planck operators perturbed with convolution operators. For
the corresponding Fokker-Planck equation we show existence and uniqueness of a
stationary solution. Then, exponential convergence of all solutions towards the
stationary solution is proven with a uniform rate.
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1 - Introduction

Fokker-Planck equations (FPEs) describe the deterministic evolution of the
probability density associated to many stochastic processes [35]. Hence, they con-
stitute an important class of models in applied mathematics and an interesting object
of study in the analysis of PDEs. This paper is concerned with the large time analysis
of FPEs. In particular we shall analyze non-symmetric equations (corresponding to
irreversible stochastic processes). We shall analyze the existence of unique (nor-
malized) steady states and, in particular, the convergence of the time dependent
solutions towards it. Here, the main emphasis will be put on the derivation of explicit
exponential decay rates (or, at least, estimates of it). Apart from an intrinsic
mathematical interest in such decay rates, they are even relevant for the modeling of
industrial processes, like the fiber lay-down processes in technical textile production
(cf. [27]).

For linear, symmetric FPEs the sharp exponential decay rate equals the spectral
gap of the generator of the evolution. But, apart from simple examples, exact values
or good estimates of this spectral gap are rarely available. Based on the work of
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Bakry and Emery on diffusion processes [9, 10], the entropy method for PDEs has
become an important tool to study the large time behavior of wide classes of para-
bolic equations [7, 2, 3]. The success of this approach is mainly due to its robustness to
nonlinear perturbations and extensions [16, 14]. More recently it was even gen-
eralized to degenerate parabolic equations [41, 17, 5].

In this paper we shall focus on the large-time behavior of three classes of linear,
non-symmetric FPEs: In §2 we shall consider non-symmetric FPEs with drift terms
that are linear in the position variable. The recent interest in these equations ori-
ginated actually in developing entropy methods for the subclass of degenerate dif-
fusions equations, or more precisely “hypocoercive” equations. But it turned out that
this method can be viewed more naturally for non-symmetric FPEs. The material of
this chapter will be based on the recently developed entropy method from [5]. We
shall present a review from an updated point of view and include several typical
examples to illustrate this new method.

In §3 we shall analyze kinetic FPEs with non-quadratic potentials. Again, they
are non-symmetric FPEs, but with a drift term that is nonlinear in the position
variable. This will illustrate that the entropy method from §2 can be applied also
beyond equations with linear drift, at least in perturbative settings. The material of
this chapter is an improvement of §7 in [5].

§4 will be concerned with FPEs with non-local perturbations. These perturba-
tions will again render the evolution generator non-symmetric in an appropriately
weighted L?—space. But, surprisingly, a wide class of non-local perturbations does
not modify the spectrum of the underlying (standard symmetric) FPE. Hence, we
shall use spectral methods for the large-time analysis of such models. The material of
this chapter is an extension of [37] to FPEs with diffusion and drift matrices that are
not the identity.

2 - Hypocoercive and non-symmetric Fokker-Planck equations

In this chapter we shall study the evolution of a function f(t,x); £ > 0, x € Rd,
under the linear FPE of the form
(2.1) of = Lf :=divIDVf + Cx f),

and subject to the initial condition f(f = 0) = fy. Without restriction of generality we
assume that

fo>0, /fodle.

R?
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We stipulate that solutions satisfy f(t,-) € Ll(Rd). Hence, the divergence form of
(2.1) implies [, f(t,x)dx =1 for all ¢ > 0. In (2.1), the diffusion matrix D € R*? is
symmetric and positive semi-definite, and C € R%? is the drift matrix. Both are
constant in space and time.

An important model of this class is the kinetic FPE from plasma physics
[35, 40]. The time evolution of the phase space probability density f(t,x,v) is
governed by:

(22) Of+v-Vof = V.V -V,f =vdiv,(of) +od,f; x,veR";t>0.

Here, the position-velocity vector (x, v) plays the role of x € Rd, d=2n,in(2.1).v,c
denote (positive) friction and diffusion parameters, respectively. V = V(x) is a given
confinement potential for the system. Next we rewrite (2.2) as

(23) ﬁ=®m{@ ﬁ>WJ+<W;:w”’

Here, the first matrix is a singular diffusion matrix, with the identity matrix
I € R™"; the second term is the drift. For a quadratic potential V, the kinetic FPE
(2.2) takes exactly the form of (2.1) and its analysis will be covered in §2. The case of
non-quadratic potentials is the subject of §3.

The goal of this chapter is first to identify (under appropriate assumptions on D
and C) the unique normalized steady state f..(x) of (2.1). Most of all, we shall then
study the convergence of f(t) to f, ast — oo with (possibly sharp) exponential rates.
In view of space limitations we shall mostly present only formal computations, which
hold rigorously for regular enough solutions. But, anyhow, parabolic and hypo-
coercive FPEs regularize instantaneously to C* (cf. Proposition 2.1 below). So,
regularity is actually not an issue, with the possible exemption at the initial time.

2.1 - Non-symmetric Fokker-Planck equations

In this section we introduce the notion of (non)symmetric FPEs and the relative
entropy, which will be our main tool to analyze the large-time behavior below. For
these definitions we first consider FPEs with x—dependent coefficients. A sym-
metric Fokker-Planck equation is defined to be of the form

(24) ouf = Luf = div(D@IVS +fVA@)),

with a diffusion matrix D that is locally uniformly positive definite on R? and sym-
metric. We assume that the sufficiently regular confinement potential A satisfies
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e 4 € LI(RY). Then f,, := e is the unique normalized steady state of (2.4). The
normalization [ f.(x)dx = 1isimposed here by changing the additive constant of A,

RY
which is not prescribed by (2.4). The non-degeneracy of the ground state of L; can
easily be seen from the following computation:

__ I 9\ £ du,
(2.5) (Lif,9)y 1R/d vT( foc)D(ac)V( foc) food

with (-,-),; denoting the inner product in the weighted L2-space H := L2(R?, f]1).
And the right hand side of (2.5), with ' = g, vanishes iff f /f., = const. The quadratic
form (2.5) also shows that the operator L; is symmetric in H (cf. §2 of [7] for more
details).

The key feature of a symmetric FPE is the gradient form of its drift vector field.
For d > 2 we shall now consider more general drift fields, which will make the
evolution generator non-symmetric in H. For regular diffusion matrices D(x), the
following equation is called a non-symmetric Fokker-Planck equation:

(2.6) Of = Lof = div(D(x)[Vf +f{VA(x) + F(ac)}]) )
Here we assume that the additional vector field F' satisfies
2.7 divID@)F (@) fro(@) =0, VaeR?,

such that ., = e is still the unique steady state of (2.6).

In typical applications, however, the FPE is given with just one drift vector field
that is not yet split into two summands (in contrast to (2.6)). In order to retrieve the
steady state, this field then needs to be decomposed into a gradient part and a di-
vergence free part (in the above sense). This task is a generalization of the
Helmholtz-Hodge decomposition (see §2 in [4] for a typical example). Such a de-
composition of the vector field readily yields the following decomposition of the
operator Lg into its symmetric part L in H and its anti-symmetric part Lg:
Lo = Ls + Lgs with

L,f = div(D@[Vf +VA@)) ,
Losf = div(D@F@) f) .

Due to (2.7) we have L f, = L4sfoo = 0.
Next we give a more compact form of L and L, which of course also holds for
Ly with F = 0.

Lemma2.1. Let D(x) > 0, assume condition (2.7), and let f», = e denote
the steady state of (2.6). The symmetric/anti-symmetric decomposition of Lg
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then satisfies:

(2.8) Lyf = div(foo D)V Jf) ,
29 Luuf = div(f RoW ).

where the matrices R(x) € R are skew-symmetric and satisfy on RY:
(2.10) VIRfy) =G .= (DF f,)".

Proof. (2.8) is trivial, so we only discuss (2.9). The divergence-free-condition
(2.7) on the vector field G implies that there exists a matrix function B(x) € R
with B(x) skew-symmetric and

(2.11) G'(x) = VIB@).

Let us briefly illustrate this statement: For d = 2, 3 (2.11) simplifies to the well
known representations of divergence free vector fields:

(0 —b) - s
B(x)—(b(x) 0), G=V'b, vi._< )

and, respectively,
0 —bs(x)  ba(w) b1 (x)
B(x) = bs(x) 0 —bi(x) |, G =curl| ba(x) | .
—ba(x)  bi(w) 0 bs(x)

In higher dimensions, (2.11) can be verified either with differential forms (cf. §6 in
[8], [15]) or by Fourier transformation.
Next we compute

— Fy e L\ _ orpyo S f
Lasf = dlv(GE) - dw((v B) E) = (VB = d1v<BV]§) ,
where we have used the skewness of B in the last two steps. Setting R := Bf !
yields (2.9). O

Note that L, in (2.9) is only a first order operator — due to the skew-
symmetry of R(x).

As mentioned above, the main goal of this chapter is to study the con-
vergence to the equilibrium for solutions to non-symmetric FPEs. To this end,
our main tool will be the relative entropy. We define (see §2.2 of [7] for more
details):
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Definition 2.1. (a) LetJ be either R or IR. A scalar function y € C(J) N C4(J)
satisfying the conditions

1
212) yQ) =0, w>0, ¥ >0, @V <=yy" onJ
2

is called entropy generator.

(b) Let fi e L"RY), fpe LL(RY) with [fidv= [frdz=1 and ?(m) elJ
a.e. (w.r.t. the measure f2(dx)). Then RY RY

(213) e, (filf2) = /V/(j%)fzdac > ()

R?
is called an admissible relative entropy of f; with respect to fo with generating
function .

In this definition, the term “admissible” refers to the applicability of the entropy
method under the assumptions (2.12). The most important examples are the loga-
rithmic entropy e;(fi | f2), generated by

wio)=clne—a+1,
and the power law entropies e, (f1 | f2) with 1 < p < 2, generated by

wp(a):ap—l—p(a—l).

Except for quadratic entropies e, we shall always use J = R*.

The above definition clearly shows that e, (f1 | f2) = 0iff f; = fo. In the subsequent
sections we shall hence try to prove that solutions f(f) to FPEs satisfy
e, (f(®)|fx) — 0 ast — oo. Such a convergence in relative entropy then also implies
L'—convergence, due to the Csiszdr-Kullback mequality:

Ifi = ol < ,,(1) ey(filf2).

This relative entropy (w.r.t. the steady state) is a Lyapunov functional for the
evolution. As proved in §2.4 of [7] we have:

Lemma 2.2. Let f(t) be a solution to the non-symmetric FPE (2.6) with the
divergence-free-condition (2.7). Then,

Fmnra- U)o

R?
(2.14) = —1,(f®|fx) <0,
where 1,,(f(#)|f~) denotes the Fisher information (of f(¢) w.r.t. foo).
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We remark that the right hand side of (2.14) is independent of the vector field F,
i.e. independent of L. So, for a fixed time ¢, the relative entropy and its entropy
dissipation coincide for a non-symmetric FPE and its corresponding symmetric
FPE.

2.2 - Hypocoercive Fokker-Planck equations

In this section we shall define hypocoercivity and give some typical examples. We
start with the standard FPE on R%:

(2.15) Of = div(Vf +af) =: Ls f
with the unique normalized steady state

212

(2.16) fool@) = @n) te T

As seen from (2.5), the operator Ls is symmetric on H := L*( fogl) and dissipative, i.e.
(Lsf, Yy <0 Vf € D(Ls). Also, —Ls is coercive in the sense that

(~Lsf )y > If17, Vfe{fet"

In other words, —Ls has a spectral gap of size 1 (since 0 and 1 are the lowest ei-
genvalues of —L3) and this spectral gap determines the sharp exponential decay of
solutions towards f..:

217)  [leb — fully < e o —fcllw. Vo € H with /fodmzl; £>0.

R?

Equilibration occurs here as a balance between diffusion and drift in (2.15).
Next we consider the FPEs from (2.1):

af = div(DVf + Ca f) = Lf .

For a singular diffusion matrix D this equation is degenerate parabolic, and the
operator L is not coercive in L2(f_!), where the steady state f., will be specified in
§2.3 below. This non-coercivity can be seen easily from (2.8), when choosing
f@) = ¢ xf(x) with a vector ¢ € ker D.

In spite of this lack of coercivity, such degenerate FPEs will frequently still
exhibit an exponential convergence to equilibrium. This motivated C. Villani to coin
the term hypocoercivity in [41]. The following definition is very general, but after-
wards we shall only be concerned with FPEs of type (2.1).

Definition 2.2. Let H be a Hilbert space. Consider a linear operator L on H
generating a Cp-semigroup (e“!);-. Also, consider a (smaller) Hilbert space H that
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is contmuously and densely embedded in the orthogonal complement of
=kerL C H (.e. H— K7b). Then, —L is called hypocoercive on H if there exist
constants ¢ >1and 4 > 0 such that

(2.18) le"fllz <ceIfllz, VfeH; t=0.

In many applications to FPEs, H is a weighted L2—space, and H a weighted H'—
space. In (2.18) we shall typically have a leading multiplicative constant ¢ > 1, while
this constant is 1 in the symmetric, non-degenerate case of (2.17).

Next we shall give some typical examples of such hypocoercive equations in order
to explain the convergence mechanism.

Example 2.1. The kinetic FPE (2.2) is non-symmetric. With a sufficiently
growing confinement potential V(x) it is hypocoercive, and its steady state is

Folt,) = ce s [FHV6]

with some normalization constant ¢ > 0. O

Example 2.2. Next we consider the following degenerate 2D equation of form
2.1):

(2.19) 8tf:div[((l) O)Vf ( _0w>acf} — Luf .

For any parameter w € R, one easily verifies that the standard Gaussian (2.16) is still
a steady state of (2.19), and for @ # 0 it is the unique normalized steady state f... For
o = 0 we have drift and diffusion in the x; —direction (as in the standard FPE). Butin
the xg—direction there is no equilibration.

The term with w in (2.19) constitutes the rotational part of the drift matrix C and
the anti-symmetric part of the operator Ls. Heuristically speaking, it mixes the
diffusive x;—direction with the non-diffusive xp—direction. Hence, for fast enough
rotations, the sharp decay rate of solutions to (2.19) is the average of the decay rates
in the x;— and xy—directions. More precisely, the drift matrix C has the following
lower bound on the real parts of its eigenvalues:

(2.20) w:=min{Re() | 1 € a(C)} = % for |w| > % .

As we shall show in Section 2.4 below, this lower bound determines the sharp decay

1
rate 5 towards f... For slower rotations, however, the decay rate approaches zero

1 1
5 Vi~

since min{Re(1) |4 € 6(C)} =
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Aswe shall see in the decay analysis below, the decay behavior can be understood
quite well by considering the drift characteristics corresponding to (2.19). They
satisfy the ODE—system «; = —Cux. Along a characteristic, |2(f)|® is monotonically
non-increasing, and at points with x; # 0it is even strictly monotonically decreasing.
However, when crossing the xz—axis, the characteristic is tangent to the level curves
of |9c|2 (cf. Figure 2.1). As we shall see below, this implies that the relative entropy
(e.g. e2(f(?)| foo) ) may have a vanishing time derivative at certain points in time.

We now indicate a possibility to obtain a strictly (and uniformly in time) decaying
Lyapunov functional for the evolution of (2.19). At the level of drift characteristics it
is advantageous to consider (instead of |x()|) the “distorted” vector norm
V/ {(x(@t), Px(t)) with some appropriate symmetric, positive definite matrix P. This P-
norm will allow to realize the optimal decay of x(t) with the rate i defined in (2.20) —
uniformly in time (for details, see (2.51) below). This idea is the essence of the
strategy followed in [17] for hypocoercive equations.

; - i Y Drift characteristic ‘ Level curve of P-norm

T T T T T T T T T
B A D AAA T s VI
T AT TT T T s S s SNy L
A A A i s s ;$¢;¢¢¢;
ol A AT T e Y N Q"d ¢ ]
AT T ST 5 VANV
AAAA A 7ol N VAV VIV
. i N vl v &
> 0 M “a AL L
/o B N/ v v «
7\ 2 . ’/I I Z v [
Ve A e e e AN SN AN
: 2 ’ : : viv v ¥ v o«
PR : : viv v v oo
! T\ 1 S : iy v oy v v
Y 7\7\ ............. : - KVKK(Z[[{ ......
PN TR T e C e i e e
?TT;TWNRN;&$FKK;KL/;KZ¢KZK;
3k TTT?/YRRNS‘G‘&kKKKK%KZM n
| | | | 1 | | 1 |
-4 -3 -2 -1 0 1 2 3 4
X

Fig. 2.1. Drift characteristic for the 2D Fokker-Planck equation (2.19) with
D = diag(1, 0), C=[1 —1; 1 0]: The blue spiral is tangent to the level curves of |x| (black
circles) when crossing the xs—axis. The red ellipse is a level curve for the “distorted” vector
norm +/(x(t), Px(t)). For this example the optimal metric is given by P=[2 —1; -1 2],
cf. Lemma 2.6 for the algorithm how to compute P. In the labeling of the two axes « means «;
and y means x,. (colors only online)
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Fig. 2.2. (a) Left: Drift characteristics and flow vector field for the 2D FPE (2.1) with
D = diag(1, 0), C=[1 0; 1 1]. (b) Right: Level curves of the quadratic potential appearing
in the steady state, i.e. A(x) = —Inf.. ().

To sum up, the essence of this example is a degenerate diffusion and a rotation
that mixes the directions. O

Example 2.3. Here we consider (2.1) again on R?, with the diffusion matrix
D = diag(1, 0) and the drift matrix C =[1 0; 1 1]. Note that C is a (trans-
posed) Jordan block. Hence, the drift characteristics (solving x; = — Cx) are
here degenerate spirals (cf. Figure 2.2a). The crucial aspect of this example is
that the asymptotic direction of these characteristics (close to  =0) is not
aligned with the diffusive x;—direction. This again allows for equilibration as
t — oo.

One easily verifies that the steady state is given by the non-isotropic Gaussian

foo(x) _ Cef(ac§+2x1xz+2x§) 7

with a normalization constant c. The contour lines of the steady state potential are
graphed in Figure 2.2b. Here, the “sharp” decay rate is given by 1 — & (where
min{Re(1)| 1 € ¢(C)} =1). O

2.3 - Steady states and normalized Fokker-Planck equations

In the above examples we saw that, to enable convergence to an equilibrium, the
drift matrix C has to mix the diffusive and non-diffusive directions of the linear FPE
(2.1) (provided D is singular). Now we give conditions on D and C such that (2.1) has a
unique steady state:
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Definition 2.3. The operator L from (2.1) is said to fulfill condition (A) if:
(A1) No (nontrivial) subspace of ker D is invariant under cr.

(A2) The matrix C is positively stable (i.e. all eigenvalues have real part greater
than zero).

Condition (Al) is equivalent to the hypoellipticity of 9; — L (cf. §1 of [24]).
Moreover, it implies regularization and strict positivity of the solution to (2.1):

Proposition 2.1. Let condition (Al) from Definition 2.3 hold, and let
fo € LY(RY).

a) Then the unique solution of (2.1) satisfies f € C*(R" x RY).

b) If fy > 0, we have f(t,x) > 0 Vt >0, x € R%

Proof. Forpart(a)seepage 148 of [24]. Part (b) follows from the strict positivity of
the Green’s function pertaining to (2.1) (see Lemma 2.5 and Theorem 2.7 in [5]). O

Condition (A2) means that there is a confinement potential that prevents the
solution to run off to co. Without it, there would be no steady state. Indeed,
Theorems 2.1 and 2.3 will show that condition (A) is both sufficient and necessary for
the existence of a unique normalized steady state and exponential convergence of
solutions towards the steady state. So, for equations of type (2.1), hypoellipticity and
confinement are equivalent to hypocoercivity.

In the following lemma we give three equivalent characterizations of the hy-
poellipticity of L that will be used for the regularization of the propagators e, ¢ > 0
(see Theorem 2.8 below, and §2 of [31]).

Lemma 2.3. The following three statements are equivalent, where we use
k:=rankD € {1,...,d}:

(1) No non-trivial subspace of ker D is invariant under cr.
(i) There exist constants T € {0,...,d — k} and x > 0 such that

(2.21) > /DY > .
=0
(iii) There exists a constant v € {0,...,d —k} such that
(2.22) rank[D?, CD?, ..., C'D*] = d.

Proof. For the equivalence of (i) and (i) we refer to Lemma 2.3 of [5]. For
(iii)=>(ii) let
E := [D}, CD:, ..., C'D] € RV
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Then,

R SEE"=)"¢/DC"Y >0
7=0

has rank d and (2.21) follows.
For (ii)=>(iii) assume we had rank ET < d. Then, 30 # v € R? with ETv = 0.
Hence, E E"v = 0 would contradict (2.21). O

If 7 is the minimal constant for which (2.21) (or, equivalently, (2.22)) holds, then L
fulfills Hérmander’s finite rank bracket condition of order 7 (see [24], Theorem 1.1).
For the explicit decomposition of the generator from (2.1) in the Hérmander form
—L = A*A + B we refer to Proposition 5 in [41].

As an illustration we consider the following two hypocoercive examples of (2.1),
where d =4, k = 2:

Example 24. Let

1 000 1 0 1 0
01 00 0 1 01
Di=19 000 =121 0 0 o0
0 00O 0 -1 0 0
Here, rank[D%l, ClDé] =4 and hence t = 1. O
Example 2.5. Let
1 0 00 1 0 0 o0
D, — 0100 Co e 0 1 1 0
“loo ool |0 1 1
00 00 0O 0 -1 0
Here, rank[Dé, CzDi] =3, but rank[D%Z, CgD%Z, CgDé] = 4. Hence 7 = 2. O

In many works on hypocoercive equations [17, 12], a more restrictive assumption
(than condition (A)) is made, namely: “No subspace of ker D should be mapped into
ker D by C*”, which corresponds to the requirement r = 1. Let as reconsider the two
previous examples under this aspect. In Example 2.4, ClT maps the non-diffusive
directions from ker D; into the diffusive directions from (ker D;)*. But in Example
2.5, C2T maps the non-diffusive direction (0, 0, 0, 1)” € ker D, still onto the non-dif-
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fusive direction (0, 0, 1, 0)! € ker D,. Butin a second step, we have C2T 0, 0,1, 07 =
0, 1,0, —l)T, which has a nontrivial component in the diffusive subspace (ker Do) .

Next we discuss the existence of a steady state to (2.1) (for the proof cf. §1 of [31]
or Th. 3.1 in [5]):

Theorem 2.1. There exists a unique steady state f, € LY(RY) of 2.1) ful-
filling [ fooda = 1 iff condition (A) holds.
d

R
Moreover, this steady state is of the (non-isotropic) Gaussian form

acTK’lac)

(2.23) Frol@) = cx exp ( —

where K is the unique, symmetric, and positive definite solution to the continuous
Lyapunov equation cf. [25]

(2.24) 2D = CK + KC,

and cg = (Zn)*{?l(det K)*% 18 the normalization constant.

With the steady state at hand, we now give the decomposition of the operator L
from (2.1):

Lemma2.4. Let L satisfy condition (A). Then, its symmetric/anti- symmetric
decomposition satisfies:

(2.25) Lyf = div (mev fi) ,
(2.26) Lasf = div (wav fi) :

with R := %(CK —KCh) #0.

Proof. Toreduce this result to Lemma 2.1, we first compare (2.1) to (2.6): The
drift vector field Cex of (2.1) corresponds to D{VA + F'}. Hence, we have with (2.24)
and VA = K 1o

DF(x) = Cx — DVA() = [C — Lk + KCHK ']z
2
(2.27) .
=5 (CK - KCHK 'x.
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To verify the divergence-free-condition (2.7) we compute

div(DF () foo (%))
= %Tr([CK —KCTIK™Hf — %(K%)T [CK - KCTIK'¢f. =0,
due to the skew-symmetry of CK — KCT.
Next we verify the condition (2.10):

(VI Rf)" = —RVf = %(CK — KC"K 'wf = DF(@)fs (@),

where we used (2.27) in the last step. The claims (2.25), (2.26) then follow from
Lemma 2.1.

Finally we prove that R # 0. Otherwise (2.24) would imply D = KC”, and hence
ker D = ker C7, which would contradict condition (A). O

The result R # 0 shows that hypocoercive FPEs of form (2.1) are always non-
symmetrie.

Next we shall bring the hypocoercive FPEs (2.1) to a normalized form, which will
simplify our computations below. With its steady state given in (2.23) we introduce,
as a first step, the coordinate transformation y := vK e € R%. With g(y) ==
f (\/Ky), this transforms (2.1) to

g = div,(DV,g + Cyg) ,

with D= VK 'DVK ' and C = vK 'CVK. A simple computation, using (2.24)
shows that

D:Csa

where (NZS = %((NE + CT) denotes the symmetrie part of C. Clearly, the transformed
steady state reads g..(y) = ce /2, with some normalization constant ¢ > 0. As a
second step we rotate the coordinate system to diagonalize the diffusion matrix: For
an orthogonal matrix U € R4 let D :=U'DU = diag(dy, ..., di, 0, ..., 0), where
k =rankD. We set z := UTy and /(z) := g(Uz), which satisfies

(2.28) Oh = div.(DV.h + Czh).

The symmetric part of the new drift matrix, C= UTEU, again satisfies D= 68.
Since the matrices C and C are similar, we have ¢(C) = a(e), which will be the
quantity that determines the decay rate of a hypocoercive FPE. We also note that
hoo(2) = c e~ /2 with some normalization constant c.

We remark that the above Examples 2.2, 2.4, and 2.5 are already of this nor-
malized form, but Example 2.3 is not. The above normalization brings Example 2.3 to
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the form

8th=divz[<§ 8>vzh+(_21 é)zh}

1
Scaling time by a factor 5 shows that this equals the FPE in Example 2.2 with the

rotation parameter o = — > which is a limiting case in (2.20).

For the rest of this chapter we shall always assume that the FPEs are normalized
as in (2.28). So, the matrices in (2.1) will satisfy D = C, with D being diagonal, which
implies K = 1.

2.4 - Modified entropy method

To start with, let us very briefly review the standard entropy method for FPEs
(cf. [10, 7] for symmetric FPEs and [2, 13] for non-symmetric FPEs): In a first step
one establishes a differential inequality between the Fisher information (2.14) of a
solution f(¢) and its time derivative, which yields exponential decay of the Fisher
information. We give the result for symmetric FPEs:

Lemma 2.5. Let f(t) be the solution to (2.4) with a constant diffusion matrixc
D. Let the coefficients of this FPE satisfy the following Bakry—Emery condition for
some A1 > 0:
PA
ox?
Also, let the initial condition satisfy 1,(fo|foo) < 0o. Then, the Fisher information
decays exponentially:

(2.30) I(fD|fs) < e 2L (fol frr), t>0.

(2.29) @ >4D', veeR?

Proof. After a lengthy computation the time derivative of the Fisher in-
formation can be written as follows (for scalar diffusions D(x) cf. Lemma 2.13 in [7],
and for the generalization to non-symmetric FPEs (2.6) c¢f. Lemma 2.3 in [2]). Using

the notation u := Vi we have:

fo
d i f A
L) = -2 / W (E) W'D Dufde — 2 / Tr(XY) foodee
2.31) & &
<24 / W' (Jf) wWIDufode = —21 I,(f(¢)) .

R?
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In the last estimate we used the Bakry—Emery condition (2.29) and Tr(XY) > 0.
Here, the two matrices X, Y € R®*? are defined as follows:

1"

v y" f(x) d
2.32 X(x) := LA R
(2.32) @) (l//” %l//”’) (foo(x)> 20, veeRs,

1
since detX = §'/’” !V — " ¥ > 0 for admissible relative entropies (cf. (2.12)).

Tr[(D2)*] w’D2D
(2.33) Yy - (THLPE)T wDEDu) o g
w'D%Dy  (u'Du)?

due to the Cauchy-Schwarz inequality. The differential inequality (2.31) for 1,,(f(?))
implies (2.30), and it can be written equivalently as e”(t) > —241¢/(t) (with

In the second step of the entropy method one proves the exponential decay of the
relative entropy (2.13) of f(t) w.r.t. f,.. To this end one integrates (2.31) from ¢ to oo,
which yields the entropy inequality

(2.34) %ew(f(t)\foo) < 2o, (fOIf), Vi=0.

Hence, the relative entropy decays exponentially:
(2.35) e, (f)|fx) < e Ple,(fol fr), VE>0.

Next we illustrate how the situation changes from a symmetric FPE to a non-
symmetric or even hypocoercive FPE. In a symmetric FPE with D > 0, the relative
entropy is a convex function of time, and the entropy dissipation satisfies
e, (f1f) < 0 for all probability densities f # f.. (cf. Figure 2.3). For a hypocoercive
FPE with a singular diffusion matrix D, however, e(t) is not convex. In fact, it decays
in a “wavy” fashion, and it may have horizontal tangents at equally spaced points in
time (cf. Figure 2.4). This oscillatory behavior is also known from space-in-
homogeneous kinetic equations (cf. §3.7 of [40]; and [19] for a numerical study on the
Boltzmann equation).

So we observe that the entropy dissipation e, (f]f~) may vanish for certain
probability densities f # f... This can also be seen from the form of the Fisher in-
formation in (2.14): choose f(x) = (1 + ¢ - x)f,(x) with a vector ¢ € ker D. Hence, an
entropy inequality of the form (2.34) cannot hold for degenerate, hypocoercive
FPEs! We also see: While the Fisher information I,,(f(¢)|fx) is a Lyapunov func-
tional for symmetric FPEs, its non-monotonicity in the hypocoercive case makes it
“useless” there. As a remedy, we present now a modified entropy method for FPEs
of the form (2.1), normalized as introduced in §2.3.
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Fig. 2.3. Prototypical behavior of the logarithmic relative entropy e;(f(¢)|fx) (solid red
curve), its first (dotted black), and second time derivative (dashed blue) for a non-degenerate,
symmetric FPE: The inequalities ¢/ < — 21e, ¢’ > —21¢’ can be obtained. (colors only online)

Since the above problems stem from the singularity of D, we now define a

modified entropy dissipation functional:
f FA\T f
"
— S g g >
(2.36) S,(f) : /w (foc) (vfoo) P(me)foodac_o,
R?

where the positive definite matrix P € R%* still has to be determined. Note that the
only difference to the Fisher information is the replacement of the matrix D there by
P here. This auxiliary functional will take over the role of I,, in the first step of the
entropy method. So, our goal is to derive a differential inequality between S,,(f(¢))

and %SV,( f @) for a “good” choice of P > 0. Then, once exponential decay of S, (f(¢))

is obtained, the trivial estimate P > ¢pD (with some cp > 0) implies
S, (f@®) > cpl, (f(D)|fx),

and also exponential decay of 1,,(f(?)) follows.
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;
;

e') — —e"(]

Fig. 2.4. Prototypical behavior of the logarithmic relative entropy e;(f(?)|fx) (solid red
curve), its first (dotted black), and second time derivative (dashed blue) for the degenerate,
hypocoercive FPE from Example 2.2 with D = diag(1, 0), C =[1 — 1; 1 0] : The inequalities
¢ < —2le, ¢’ > —2)¢ are wrong, in general. (colors only online)

The key question for using the modified entropy dissipation functional S, (f) is
how to choose the matrix P for a given, normalized FPE. To determine P we shall
need the following algebraic result:

Lemma 2.6. For any fized matric Q € R™Y, let 11 := min{Re{1}|2 is an ei-
genvalue of Q}. Let {1,,|1 < m < myg} be all the eigenvalues of Q with Re{l,,} = 1
only counting their geometric multiplicity.

@ If all Ay, m € {1,...,mp}, are non—defectivel, then there exists a symmetric,
positive definite matriz P € R with
(2.37) PQ+Q'P >24P.

! An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic
multiplicity.
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(i) If A 1s defective for at least one m € {1,...,mg}, then for any & > 0 there
exists a symmetric, positive definite matric P = P(e) € R qwith

(2.38) PQ+Q"P > 2(u—oP.

Proof. Here we only give the proof for the case that Q is not defective (and
hence diagonalizable) and refer to Lemma 4.3 in [5] for the general case. Let
wy, . .., wy denote the eigenvectors of Q’. Then one can choose P as a weighted sum
of the following rank 1 matrices:

d
(2.39) P:=> bwow

J=1

withb; € ;7 =1,...,d. As {u;};,

4 1s a basis of 4, P is positive definite. If any
wj is complex, its complex conjugate W] is also an eigenvector of Q”, since Q is real.
By taking the same coefficient b; for both, we obtain a real matrix P. Apart from this
restriction, the choice of b; > 0 is arbitrary. For P from (2.39), we have

d d
PQ+Q"P = b0+ ipw @ > 21 bjw; W = 2uP.
j=1 j=1
O

We remark that P is, in general, not unique, not even up to a multiplicative
constant. But this will be irrelevant for the decay rate of FPEs.

Applying this lemma to Q := C now yields exponential decay of the functional
S, (f®)), defined with the matrix P from the above lemma:

Proposition 2.2. Assume condition (A). Let y generate an admissible
entropy, let f be the solution to (2.1) with an initial state satisfying S,(fy) < oo,
and let u := min{Re{A}|1 is an eigenvalue of C} (which is positive by condition
(A)). Let {An|1 <m < myg} be the eigenvalues of C with Re{i,} = 1, and let P be
defined as in Lemma 2.6.

@) If all Ay, 1 < m < my, are non-defective, then
Sy(f®) < Sy(fo)e ™, t>0.
(i) If Ay, is defective for at least one m € {1,...,my}, then
S,(f(t),e) < S,(fo,e)e ", £ >0,

for any e € (0,). Here, S, (f,e) denotes the modified entropy dissipation
Sfunctional (2.36) with the matrixz P = P(e).
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Proof. Inatedious computation the time derivative of the functional S(w(f(t))

f

can be written as follows (cf. Proposition 4.5 in [5]). Using the notation v := V f_ we
have: o

d 7
&Sw(f(t)) = —Z/v/ (]{;) u! [PC + C"Pluf.dx
e

(2.40) -2 / Tr(XYp) fooda
R?
i

<% / W' ( f—) WIPufood = —2ic S, (f(1)),

R¢
where k := ufor case (i), and k := u — ¢ for the defective case (ii). In the last estimate
we used the matrix inequality (2.37) in case (i) and (2.38) for case (ii). This inequality
replaces the Bakry-Emery condition (2.29) used in the standard entropy method
(compare to the estimate (2.31)). In (2.40) we also used Tr(XYp) > 0, where the
matrix X is defined in (2.32), and the matrix Yp € R?*2 is now defined as follows:

) (Tr(D%P%) u"D 2Py

>0, VieeR?.
u'D %Py (uTPu)(uTDu)> -

The positivity of Yp follows from the Cauchy-Schwarz inequality using
@D g—ZPu)z = Tr(vVPu®u")VD vD gi; VP)?. Note that, for P := D, the matrix

Y p would simplify to Y from Lemma 2.5.
The differential inequality (2.40) for S,,(f(¢)) then yields the claimed exponential
decay of S, (f(®). O

This concludes the first step of the modified entropy method. In the second step
we want to prove exponential decay of the relative entropy e, (f(?)|fsx). In the
standard entropy method this is achieved by integrating the differential inequality
(2.31) for 1,,(f(®)) in time, since €'(t) = —1,,(f(?)). But here, this is not possible, since
S, (f®)) is not the time derivative of e(?). Instead, we shall use convex Sobolev in-
equalities (cf. §3 of [7]; [39]), which give a simple relation between these two func-
tionals. In fact, the functional S, (f) controls the relative entropy e, (f|fx):

Lemma 2.7. Let P be some fixed positive definite matrix. Then, the following
convex Sobolev inequality holds Vg € Li(Rd) with [gde =1:

R?
(2.41) ey(g]fx) < 2—} Sy(9),
\P



22 FRANZ ACHLEITNER, ANTON ARNOLD and DOMINIK STURZER [22]

where both sides may be infinite. The constant Ap > 0 is the smallest eigenvalue
of P, i.e.

(2.42) P>ipl>0.

Proof. As an auxiliary problem we consider the following symmetric non-de-

generate FPE for g = g(t,x) on L2(f_}):
_ 9
(2.43) org = div (£ PV foo> ,
o2

with f,, = (2m) %=+ This is motivated by the fact that S, (g) is the true Fisher in-
formation for the evolution under (2.43). Obviously, we have ¢, = f.. We also note
that (2.42) is the (standard) Bakry-Emery condition for (2.43), since its steady state
potential is A(x) = |oc|2 /2 (cf. (2.29)).

Hence, the entropy method implies exponential decay of g(t) to g, with rate 21p
(cf. (2.35)). Moreover, the entropy inequality (2.34) is already the claimed result. O

Combining this lemma with Proposition 2.2 readily yields exponential decay of
the relative entropy, provided that S, (fy) < oo:

Theorem 2.2. Assume condition (A). Let y generate an admissible entropy,
let f be the solution to (2.1) with an witial state satisfying S,(fo) < oo, and let
= min{Re{1}|1 is an eigenvalue of C}. Let {In|1 <m < my} be the eigenva-
lues of C with Re{l,,} = i, and let P be defined as in Lemma 2.6.

() If all A, 1 < m < my, are non-defective, then

(2.44) e, (FOLfo) < oS, (fi)e 2, 10,
2p

(i) If A is defective for at least one m € {1,...,my}, then
1 ;
(2.45) emmws%&%mwm,ua

for any & € (0, n). Here, S,(f,e) denotes the modified entropy dissipation
functional (2.36) with the matrix P = P(e).

We remark that the multiplicative constant in (2.45) is e-dependent, with
Sy (fo, &) = oo ase \ 0. In (2.44) the exponential decay rate is indeed sharp (cf. §6 of
[5]). Also, it is independent of the normalizing transformation in §2.3, since the drift
matrices C and C are similar. But compared to the standard entropy method, the above
result is not yet fully satisfactory: In the decay estimate (2.35) the initial condition is
only required to have finite relative entropy. By contrast, Theorem 2.2 requires the
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initial state to satisfy S, (fo) < oo, and this functional is closely related to a weighted
H'—norm. This “deficiency” of Theorem 2.2 can be lifted by exploiting the hypoelliptic
regularization of (2.1), cf. also Proposition 2.1(a). The following result is a generalization
of Theorems A.12, A.15in [41] (expressed for quadratic and logarithmic entropies) to all
admissible w-entropies. For its proof we refer to Theorem 4.8 in [5].

Lemma 2.8. Let condition (A) hold, f eLi(]Rd) with  [fode=1 and

RY
e, (fo| foo) < o0. Let f(¢) be the solution of (2.1) with initial condition fo, and let T be the
minimal constant such that (2.21) (or, equivalently, (2.22)) holds. Then there exists a
positive constant ¢, > 0 such that

(2.46) S, (f®) < et ® e, (folfu),  Vte(0,1].
With this ingredient we are ready to state our final result:

Theorem 2.3. Assume condition (A). Let w generate an admissible relative
entropy and let f be the solution to (2.1) with initial state fy € Li(Rd) such that
e, (fo|foo) < o0. Let i := min{Re{A}|1 is an eigenvalue of C}. Let{/,|1 <m < my}
be the eigenvalues of C with 1 = Re{l,,}, and let

e(t) = el//(f(t)|f00)

Then:
Q) If all 2y, 1 < m < my, are non-defective, then there is a constant ¢ > 1 such
that
(2.47) et) <ce e, (folfn), VE>0.

(i) If A, is defective for at least one m € {1,...,mg}, then, for all ¢ € (0, 1), there
s ¢, > 1 such that

(2.48) e(t) < c.e 2 Ve, (folfo),  Vt>0.

Proof. LetP be defined asin Lemma 2.6. Fix some ¢ > 0, and let x := xin case
(i), and  := i — ¢in case (ii). Using the convex Sobolev inequality (2.41), Proposition
2.2, and Lemma 2.8, we compute for ¢ > o:

1 1 —2K(t—0)

(2.49)

ok Cr —2xt
<e Y e(0)e =",

For ¢ < 6, the monotonicity of e(t) (cf. (2.14)) implies
(2.50) e(t) < e(0).
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2k

Writing ¢, := e*“max{1, } and combining (2.49), (2.50) yields

Cr
2 /,LP 521+1
e(t) < cse(0)e 2 Vt>0.
O
We remark that the exponential decay rate 2« is sharp here, but the multi-
plicative constant ¢ will in general not be sharp.
To close this section we shall now briefly illustrate the mechanism of the pre-

sented modified entropy method. To this end we return to Example 2.2 and the
“distorted” vector norm

jxlp =/ (x, P),

with P > 0, that was already used in Figure 2.1. The drift characteristics x(f) cor-
responding to (2.19) satisfy x; = —Cax. For the decay of this P-norm along a char-
acteristic we obtain

(2.51) % x5 = —22"PCx = —2T (PC + C"P)x < —2ulx[3,

where we used in the last step the matrix estimate (2.37) for Q := C and the notation
u:=min{Re{4}|1 is an eigenvalue of C}. So, y is the spectral gap of C, i.e. the
distance of o(C) from the imaginary axis, and it determines the best possible decay of
x(t). Due to (2.51), |x|p realizes this optimal decay uniformly in time.

The matrix P determining this “distorted” vector norm is defined via (2.37), and
hence it is the same matrix as in the definition of the modified entropy dissipation
functional S, (f). O

2.5 - Entropy methods for non-degenerate Fokker-Planck equations

We remark that the new entropy method from §2.4 is not restricted to de-
generate FPEs. For non-degenerate FPEs it is in fact a generalization of the
standard entropy method: For a symmetric FPE with constant diffusion and drift
matrices, the normalization of §2.3 yields D = C; and D is symmetric positive
definite. Applying Lemma 2.6(1) to Q := C with x := 7,,;,(C) admits the choice
P :=D. Hence, S,(f) = I1,(f|fx) and the method of §2.4 reduces to the standard
entropy method.

For non-symmetric FPEs, however, the standard and modified entropy methods
differ. For regular diffusion matrices D > 0, both methods are applicable and yield
exponential decay of the solution towards equilibrium. So it is natural to compare
their performances: For applying the standard entropy method to (2.1) in normal-
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ized form (i.e. with A(x) = |ac|2 /2) we consider the corresponding Bakry—Emery
condition (2.29):

I>/pD !,
i.e. Ap > 0 is the smallest eigenvalue of D. Then, §2.4 in [7] (or the analogue of

the convex Sobolev inequality (2.34)) implies exponential decay of the relative
entropy:

(2.52) e, (f®)|f) < e e, (folfx), t>0.

Note that the multiplicative constant in this estimate is 1.
For the modified entropy method, Theorem 2.2 yields the decay estimate

(253) e, (FOIf) < is,,( fe ¥t >0

in the non-defective case (i), with 4 := min{Re{A}|1 is an eigenvalue of C}. For the
comparison of the two obtained decay rates we have the following result:

Proposition 2.3. Let the coefficients of a non-degenerate, normalized FPE
satisfy condition (A). With u defined above, let {1,|1 < m < my} be the eigenvalues
of C with = Re{Ay}. Then:

@) If all Ay, 1 < m < my, are non-defective, then
(2.54) 0<ip<u.
(i) If A, is defective for at least one m € {1,...,my}, then
(2.55) 0<ip<u.
Proof. For case (ii), let 2 with Re{1} = ube a defective eigenvalue. Let p € o
with |p| = 1be a corresponding eigenvector, and g € 4 a corresponding generalized
eigenvector. W.l.o.g. we assume that (g, p) = 0, and q satisfies (\I — C)q = p.

Next we consider a family of generalized eigenvectors, g5 := q + dp, 6 € R, which
also satisfy (AI — C)gs = p. We compute

g5 (C + CNygs = G5 Ggs — p) + Gg} — p")gs = 2Re{A} |gs|* — 26
Using D = C; and |q(;|2 = |q|2 + 6 we obtain for the Rayleigh quotient of D:

™D 0
/p < %—Z{S =U-Ts 5
1951 lg”+ 0
and (2.55) follows for any ¢ > 0.
For case (i) we only need to replace gs by p in the above computation. O
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For the non-defective case (i), the inequality (2.54) will in general not be strict, as
can be verified on the following simple example:

1/5 0 0
cC=|0 1/4 -4/,
0 4 1

1 . . 11
with the eigenvalues 3 gi 1v1015/8, and D = C; = dlag(g, e 1).

So, the exponential decay rate from the new entropy method is always at least as
good as the rate from the standard entropy method, but often better. The first rate
21p from (2.52) gives an estimate for the local decay rate of the relative entropy. It
reflects the (in absolute value) smallest slope of the relative entropy at any ¢ > 0.

More precisely, it is, pointwise in time, a lower bound for the local decay rate,
/

5 (t)) . For non-symmetric FPEs with linear drift it is well known (cf. §2.4, §3.5

in [7]) that this rate is optimal (as a pointwise estimate). In Figure 2.5 the initial

ie.

w1
(e}

S(t)
e(® - e(0exp(-1/2) = — 5y
P

Fig. 2.5. Entropy decay for the non-degenerate, non-symmetric Fokker-Planck equation
(2.1) with D = diag(1/4, 1), C=1[1/4 —4; 4 1]. Solid red curve: decay of the logarithmic
entropy e;(t); dotted blue: The estimate of the local decay rate from the standard entropy
method is tangent at ¢ = 0; dashed black: estimate of the global decay rate from the
hypocoercive entropy method. (colors only online)
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condition is chosen such that the function on the r.h.s. of (2.52) is indeed tangent to
e(t)att =0.

By contrast, the estimate (2.53) describes the global decay. Hence, its multi-
plicative constant has to be larger than 1 for non-symmetric FPEs. In some ex-
amples, the r.h.s. of (2.53) is even the perfect envelope of e(t), see Figure 2.5.

Example 2.6 We consider the non-degenerate, non-symmetric Fokker-Planck
equation (2.1) with

D = diag(1/4, 1), 0(144 ‘14>,

1
which is normalized. Here we have 1p = 1 and u = g, and the local and global decay
estimates are shown in Figure 2.5. O

So far, we only discussed the modified entropy method for FPEs with constant
diffusion and drift matrices. Its generalization to some cases of non-symmetric
FPEs with non-constant coefficients is the topic of the subsequent chapter.

3 - Kinetic Fokker-Planck equation with non-quadratic potentials

In this chapter we shall illustrate how the modified entropy method from $2.4 can
be extended to kinetic Fokker-Planck equations (2.2) with non-quadratic potentials
V = V(x) (i.e. adrift term that is nonlinear in the position variable). A motivation for
the following analysis is its possible application to a future study of Fokker-Planck-
Poisson equations with a quadratic confinement potential and the self-consistent
potential acting as a perturbation. Refer to [7, §4.2], for the large time analysis of a
non-degenerate drift-diffusion Poisson model.

Several proofs of the entropy— and L?—decay of this equation have already been
obtained in the last few years: In [16], algebraic decay was proved for potentials that
are asymptotically quadratic (as |x| — oo) and for initial conditions that are bounded
below and above by Gaussians. The authors used logarithmic Sobolev inequalities
and entropy methods. In [22], exponential decay was obtained also for faster growing
potentials and more general initial conditions. That proof is based on hypoellipticity
techniques. In [17] exponential decay in L? was proved, allowing for potentials with
linear or super-linear growth. This chapter will now provide an alternative proof of
exponential entropy decay for (2.2) with a certain class of non-quadratic potentials
and for all admissible relative entropies e,.
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The kinetic Fokker-Planck equation (2.2) has a unique normalized steady
state

2
[l

(3.1) Joole,v) = eXp{—g {V(m) +%} } , x,veR",

for potentials V(x) with limy, .., V(x) = oo sufficiently fast such that f € LY(R™™),
see [40]. An additive normalization constant is included in V.
We rewrite (2.2) again in the form (2.3), such that

(3.2) O f = Lf = dive[DV:f + G,

where ¢ := (x, v)! € R?, d = 2n, Dis a block diagonal diffusion matrix and G a drift
vector field given by

0 0 —v
D= (0 al> and  G(x,v) = (VxV—i-\fv)’
respectively.

The positivity of solutions of (2.2) with non-negative initial datum can be proved
using the sharp maximum principle [23]; see also [5, Proposition 7.1].
We introduce the modified entropy dissipation functional S, (f) as in (2.36),

su0= [v (L) (VE) P(v L) feas

Rd

with a positive definite and {-independent matrix P € R%? to be chosen later. The
time derivative of S, (f(?)) is estimated as in the proof of Proposition 2.2—apart from
not normalizing the equation—and it satisfies

83 gsuo<- [v(L)ro-wZZrr Lo .

oo

RY

f 0

where u = I

, B : ——[V(ac)+| of ]andR_—<
to §2.4 we deflne the matrlx

0 I
(3.4) Q) = (D - R)azE ( 2V )
02 \-Zl@ i
ox

_OI> € R™? In analogy

If we can find an x—independent, symmetric, positive definite matrix P > 0 and a
constant x > 0, such that

(3.5) QP +PQ (x) —2«kP >0 VxeR",
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then the right-hand-side of (3.3) can be estimated as

(3.6) %S,,,( @) < —2 / W”( é) uTPu oo dE = — 218, (f(D)).

R?

If additionally « > 0, this would imply exponential decay of S,,(f(?)).

3.1 - Potential V(x) with bounded second order derivatives

In this section we prove in Theorem 3.2 the exponential convergence of solutions
of (2.2) to the steady state via the modified entropy method.

To keep the presentation simple, we shall consider from now on only the 1D case,
ie. x, v € R (d = 2). Furthermore, we shall consider non-quadratic potentials V(x)
with bounded second order derivatives satisfying

(3.7 dy; <7, suchthat y, <V"(x) <y, VxeR.

To apply the modified entropy method, we need to find a symmetric, positive
definite matrix P and x > 0 such that (3.5) is satisfied. We define

0 1
Q, = (—y v> such that Qx) = Qy]y:V,,(x).
Then, for potentials V satisfying (3.7) with y; = inf,cr V" (x) and y, = sup i V" (@),
condition (3.5) is equivalent to

(3.8) QP +PQ —2P >0 Vyely,nl

Next we collect the conditions on x and on the coefficients of the matrix P: A
symmetric matrix P € R**% is positive definite iff its first diagonal element and its
determinant are positive. Condition (3.5) is linear in P, therefore, we con-
sider—without loss of generality—matrices

1
(3.9) P= < p12> € R¥*  with det(P) = p — p%, > 0.
P12 P22

For given 0 < v and y; < y,, we want to determine x > 0 and symmetric, positive

definite matrices P such that (3.8) holds. The matrix

2 (p12 — - -2
QP +PQ) —2«P = ( (P12 — x) P+ (v =212 + P22 )

-4+ (v =21)p12 +p22 2 (—yp12 + (v — K)p22)

is again real symmetric. Hence it is positive semi-definite iff its diagonal elements
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and its determinant are non-negative, i.e. p12 — x > 0, —yp12 + (v — K)p22 > 0, and
0 <d(x, 7) == det(Q,P + PQ! — 2«P)

(3.10) 2
=4(p12 — x)(=yp1z + (v — K)p22) — (=7 + (v — 2K)p12 + P22)

for all y € [yy, 72]. We summarize the conditions on the parameters (pi2, poz, 1)

(C1) det(P) =po2 —p}, >0 & p2>ph >0,
(C2) k>0,

(C3) prz > x(>0),

(C4) d(x, y) > 0forall y € [y1,72],

(C5) —yp1z + (v —1)pez > 0 for all y € [y, 5]

Remark 3.1. Condition (C3) and a strict inequality in Condition (C4) imply
Condition (C5). Let, for some fixed (pi2, p22, k), the Conditions (C3)—(C4) hold for a
y-interval with interior 7. Then (C4) holds on I” with strict inequality; hence also
(C5) holds on I'. By continuity (C4)—(C5) then also hold on I". Thus (except for the
case of I" being the empty set) Condition (C5) follows from Conditions (C3)—(C4).

Definition 3.1. A pair (pi2,p22) € RJ x RT is admissible, if there exist
ko > 0 and y, € R such that (C1)—(C5) hold with x = ko and y; = y, = .

Lemma 3.1. If (p12,p22) is admissible for some ko >0 and y, € R, then
(p12, P22) 1s admissible also for all i« € [0, xy] and given y,.

Proof. The Conditions (C1)-(C3) continue to hold for all x € [0, xp] and given
70- The admissible parameters (pig,ps2) define a symmetric positive definite
matrix P satisfying Q, P + PQ] > 2iP. Dueto P > 0,Q, P + PQ), > 2iP > 2P
forall x € [0, xp]. Hence also Condition (C4) is satisfied for all k € [0, xp] and given y,,.
Since pgp > 0, Condition (C5) carries over to x € [0, ko] O

We rewrite J(x, y) with respect to powers of y as

(3.11) (i, p) = =7 — (4pFy — 2vp12 — 2pa)y — (k)
with
(3.12) c(r0) 1= 4rc(v — )(P22 — Piy) + (VP12 — p2)® = dic(v — Koy + 12,

with o := (pa2 — p3,) > 0 due to Condition (C1), and o := (vp12 — p22)2 > (. The
function c(x) satisfies c¢(0) = c¢(v) = az > 0, hence, c¢(x) is non-negative for all x € [0, v]

and monotonically increasing for all x € {0, %}
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Lemma 3.2. Admissible pairs (piz, p2e) exist only for k € [Oé].

Proof. Assume (pi2, p2e)is admissible for some r > % Then y can be increased

until d(xo, 7,) = 0. Due to Lemma 3.1, 0 > ((%5(;«7 7))]

K=Ky
Moreover,
0 dc v
0> (%5(& 7)) ]K:KO = —@(Ko) = 8oy (o — E)
and oy > 0 imply xop — % < 0, contradicting our initial assumption. O

Remark 3.2. 0J(k, y) describes a parabola (as the function (3.11) of y) and
o(x, y)\y:() = —c(k) < 0 for x € [0, v]. Therefore, each y-interval with o(x, y) > 0 is
either included in Ry or in R . But, in the latter case, V"(x) < 0 for all x € R, which
would not give an integrable steady state. Hence, only y > 0 is relevant.

Next we establish an important condition: /7, — /77 < V.

Proposition 3.1. Let 0 <y, <y, be given. If and only if they satisfy the
condition /75 — /71 <V, then there exists an admissible pair (piz, pe2) satisfying
Conditions (C1)—(C5) for some iy > 0 and for all y € [y, yo].

The proof is deferred to Section 3.2.

Theorem 3.1.  Suppose0 < vand0 < y; <y, satisfy \/vz — /71 < v. Thenthe
following (p12,pa2) € Ra’ x R* are all admissible pairs for kya: € [0,%], the max-
1mal possible value of i, and for all y € [yy, y2):

1
_ 2 _
2\/\/ 4y, and
Vot 1, 2
(12, P22) = (§+§\/v =31 = a5 (07 2y by =3y — )

with t € [ — 1, 1] satisfy the conditions (C1)-(C5) .

(B1) If 3y, + 75 < V2 then Kpar =

Do <

v Y2 — N1 v Y2+ 1
B2) If 3y, + 7, > V2 then Kpyge = = — P12 = — and Pas =
f 3y1+ 72 w=357 57 Gt 2 P12 B P22 D)

satisfy the conditions (C1)-(C5) .
The proof is deferred to Section 3.3.

Remark 3.3. The expressions for x,.., pi2 and pge are continuous at the

interface 3y, + 7, = 2.
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VB = v+ T
V2
v V2 =1
31+ =12
14
2
7 Nan

= v

2

Fig. 3.1. A visualization of the (y;,7,) subset such that for a given 0 < v there exist

parameters (p11, pi2, P2, k) € RT x Ry x R* x [0,%] satisfying conditions (C1)-(C5) accord-
ing to Theorem 3.1.

Following Theorem 3.1, we obtain for given v > 0 and 0 < y; <y, < (v + \/ﬁ)z
that a symmetric positive definite matrix P and x = x4, > 0 exist such that (3.5)
holds. Hence, the modified entropy method yields the following theorem.

Theorem 3.2. Let y generate an admissible entropy and let f be the solution
to the kinetic Fokker-Planck equation (2.2) with a potential V(x) satisfying (3.7)
and an initial state fo satisfying S,(fo) < oo. Under the assumptions of
Theorem 3.1 we then have:

(3.13) e, (fD|fx) < ¢Sy (f)e 2t >0,

for some constant ¢ > 0 independent of fy and Kpq, given in Theorem 3.1.
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Proof. We already noticed that, following Theorem 3.1, we obtain for given
v>0and 0 <y <y <(v+ \/ﬂ)z a symmetric positive definite matrix P and
K = Kmae > 0 such that (3.5) holds. Consequently, inequality (3.6) follows and im-
plies the exponential decay of the modified entropy dissipation functional

(3.14) S, (f®) < S, (fe ™, t>0.
Moreover, due to Lemma 2.7, the convex Sobolev inequality
1 . .
olf) < 58,0, ¥ e LLR" with / gdé =1
d

R

holds, where 1p > 0 is the smallest eigenvalue of P. Thus (3.13) follows from
(3.14). O

In a previous work [5, §7] the authors considered potentials of the form
2 ~
(3.15) V() = o % + V@) with V"]~ < oo, and wp 0.

Following the proof of Lemma 2.6, a matrix P, corresponding to the potential term
2

x
? 5> can be constructed as

(2 ! ) if 402 <12,

VR — 202
(3.16) P—
(% 2;))2> if 403 > 12,
0
and
_ e a2 i
(3.17) oy v 2 —da, if 40} <7,
v, if 408 > 2.

Proposition 3.2 ([5, Proposition 7.3]) Let 402 #V* and let V from (3.15)
satisfy ||T7” e < \/V? — 40|k with 1o defined in (3.17). Then the modified
entropy dissipation S, (f (@) with the matric P chosen in (3.16) satisfies

V" 00

—2| ko— = t
S,(f®) < S,(fo)e ( V“z"‘“’g‘) fort>0.

Theorem 3.3 ([5, Theorem 7.4]) Let y generate an admissible entropy and
let f be the solution to the kinetic Fokker-Planck equation (2.2) with an initial
state fo satisfying S,(fo) < oo. Under the assumptions of Proposition 3.2 we
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then have:
s (,m_uf’”\_\mg)t
(3.18) e, (f®|f) <cSy(fo)e VIRl s,

for some constant ¢ > 0 independent of fo.

The defective case 4w% — 12 is omitted in [5]; but it is noted that a matrix P = P(¢)
could easily be constructed from the proof of Lemma 2.6 (ii).

To compare the decay rates in Theorem 3.2 and Theorem 3.3, we have to relate the
parameters in Theorem 3.3 with the parameters y; and y, in Theorem 3.2. Moreover,
in Theorem 3.3, the parameter wy has to be chosen as to optimize the decay rate.

Proposition 3.3. If 0 <vand V(x) with 0 < y; :=inf V' <sup V" =: y, are

. - V" — @l
given, then the largest rate k := sup,, Ko — —F—=

to Kpax tn Theorem 3.1. V2 — 40%|

i Proposition 3.2 is equal

Proof. For given 0 <v and y; < V”(x) < 75, we need to decompose V" as
V" = w} + V" such as to maximize the function

WV oy — Al = ol — o)

12— 4| 2 —daf)

k(o) = ro(ewp) —

with ro(wg) given in (8.17). After distinguishing several cases, one obtains that
K(wy) = Kpae for

V2
_ —V1+§ for v* <3y, + 7y,

_l’_
B2 for 3y + 9y < 12

(=) ]

O
72
Incase y; = 75, the admissible potentialsin §3.1 are V(x) = 9, 5 + c1x + cg for any

constants ¢y, ca € R. Consider thelimit y; — 7y, in Theorem 3.1: we recoverin the limit
91 — 75 the decay rate and matrix P from [5, §7] by choosing © = 0 in the case (B1).

3.2 - Proof of Proposition 3.1

Lemma 3.3. Let (p12,p22) be admissible for some kg > 0 and yy > 0. Then
(p12, P22) 1s also admissible for iy and exactly for y € [y1, y.] with

(3.19) Vo = —2p%, 4+ vp12 + P22 F \/( — 2p%, + P12 + P22)® — clio) > 0.
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Proof. Conditions (C1)-(C3) and d(xo, y,) > 0 hold, since (piz,p2e) is ad-
missible. Consequently, the equation Jd(xp, y) = 0 has (one or two) real solutions
1 <y, satisfying 0 < y, € [y;, yo] and Condition (C4) holds for all y € [y;, 75]. Due to
Remark 3.2, 0 < y; < y5. Moreover, d(kg, y) > 0 for y € (y1,7,) and Condition (C3)
holds. Hence, Condition (C5) follows for all y € (y,75), and for all y € [y;, 5] by
continuity, see Remark 3.1. O

Remark 3.4. Due to (8.12), Lemma 3.2 and Lemma 3.3, the possible y-in-
terval decreases strictly monotonically with x (as expected from Q,P + PQ;T > 2xP).
For any fixed v, p12, p22, the largest possible y-interval is obtained for x = 0, i.e. with
0(0) = a3 = (vp12 — p2)* > 0.

Proof of Proposition 3.1. Following Lemma 3.3 and Remark 3.4, we
seek the largest y-interval [y;,95] (Which maximizes y, —y; for fixed pig,po2)
and consequently set x =0. The expressions for y; <y, in (3.19) and k=0
yield
71t

—2p%2 + Vp12 + P2 = 5

2\/( — 2p2, + vpr2 +p2) —c0) =y, — 71,

or, equivalently with o; = poe — p%z and og := p12(v — P12),

+
a1 + 03 = (P22 — Ply) + P12(v — p12)) = A 5 2 . P,

a1 o3 = (paz — P2)(P12(v — p12)) = (Vz_

Combining the last two equations, we derive

~a5 (B — o3) + 1 =0

. . o 1 1 2
which has two real solutions as . = 52 +5v B — 4, = 1 (V72 £v71) .2We recall

og = p12(v — p12), which has real solutions pje if and only if og gvz. Due to
0 <y; < 79, this restriction is equivalent to

(320) 21 /OCS,ﬂ: = \/%j: \/ﬂ S V.

For 0 <y, <7, Condition (3.20) with “4+” is more restrictive than with “-”.
Therefore, we consider in the sequel o3 _ = Z(\/% — /717 in accordance with the
key assumption in Proposition 3.1.
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ntie ‘2*‘72 and o3 =

Condition (C1) is equivalent to oy > 0. Due to oy + a3 =

1 1 .
oy = Z(\/%— Vi we deduce oy = Z(\/E—i- V2 >0 since 0<yp <.
Condition (C2) is satisfied due to our choice x = 0. Next, p12(v — p12) = a3 _ has two
real solutions 0 < pia_ < pi2+ <v with pi2_ + pi12+ = v; hence, Condition (C3)
holds. Due to our construction starting from (3.19), Condition (C4) holds. Finally,
Condition (C5) follows again from Conditions (C3)—(C4) and Remark 3.1. O

3.3 - Proof of Theorem 3.1
Lemma 3.4. Let (p12, pe2) be admissible for some iy > 0. Then p12 < v — K.

Proof. By Lemma 3.3, y;, > 0. Hence, the discriminant in (3.19) satisfies

0<(- 21)%2 +vp12 + Z?zz)z — (vp12 — pzz)z — 4o (v — k)
= 4o [p12(v — p12) — Ko (v — Kp)]

which is equivalent to ry < p12 < v — K since oy > 0. O

Remark 3.5. The maximal value of x given by Lemma 3.2, i.e. x = %, is
2
possible, but only for quadratic potentials: It implies p12 = X, V=71 ="VY2 = P22 > v
2 4
(due to (C1)).

Lemma3.5. Fory,y;, s given asin Theorem 3.1, let 1,4, denote the maximal
decay rate and let P denote the set of admissible pairs (p1z, pe2) € R(J{ x RY (w.rt. the
whole interval [y, s]). Then,

(a) P 1is convex and compact; and P lies in the interior of the set defined by the
mequalities (C1) and (C3);

(b) P is a finite, possibly one-pointed, line segment with pi2 € [Pz, Pis)-

Proof. (a) The convexity is clear from (3.8).

(C3) and Lemma 3.4 imply the boundedness of p;2. (3.10) yields an upper bound
for pge (by considering the balance of p%z and the linear terms in pg2). For 0 < y; < ys,
no points of P can lie on the curve ps; = p%z (cf. (C1)), since otherwise we would
obtain: o(xc, y) = —(y + pfz — vplg)z, and (C4) would only be true for a single value of
7. Hence, the strict inequality (C1) also holds for accumulation points of P (for (C2)—
(C5) this is trivial). This implies that the bounded set P is closed. Hence, P is com-
pact.
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By the same argument we have for all (p12, pe2) € P:
(3.21) P12 > K,

since otherwise d(x, y) = —(y — (v — 2K — pzz)z. Hence, P = P lies in the interior
of the set defined by the inequalities (C1) and (C3).

(b) For each fixed (p12, p22) € P, we have
(3.22) 5(Kmaxa 71) =0 or 5(Kmama VZ) =0

(or both): Otherwise, due to Remark 3.4 and (3.21), %, could be increased slightly,
which contradicts maximality of ... For fixed pi2, assume now that 7?| o
{p > 0] (p12,p) € P} is not one point, but rather a closed interval (due to the con-
vexity of P). Then, one of the equations in (3.22) holds for more than two values of pgs.
But this is impossible, since J(x, y) = 0 is a quadratic equation for pgs (cf. (3.8)).
Hence, 77] . consists only of one point and P is a line segment. O

By Lemma 3.5, P is uniquely determined by its endpoints.

Lemma 3.6. Let y,y,7, be given as in Lemma 3.5. For an endpoint
(ﬁ127ﬁ22) S P we ha?)e 5(Kmax7 yl) - 5(’(7;1(1907 ]/2) - 0

Proof. W.lo.g. we now assume that o(rxpqy, ;1) = 0 and o(kmae, 72) > 0. So
the inequalities (C4) for y = y, and (C3) hold strictly, as well as (C5) for y = y, (due to
Remark 3.1). Hence, (C1)—(C5) also hold for y =y, and all (pi2,ps2) in a small
neighborhood of (p;9, Dos).

Finally we consider, for pio fixed, d(xcpmqz, 1) = 0 as a quadratic equation for pgo.
The discriminant for its real solvability reads

[p12v — 2k(v — &) + 9 TP + [ — 31 + (v = 20p12l + 4(p12 — k)7 P12 -

For y; > 0 this is positive due to (3.21), and for y; =0 since K<%. Hence,

O(Kmaw, 1) = 0 is also solvable for pgs, if p12 lies in a small neighborhood of P;s.
Thus, p;, is not an endpoint of the line segment P. O

Proof of Theorem 3.1.

Step 1: For given 0 <y; <7, we shall first find admissible endpoints
(p12,p22) € P such that (C1)-(C5) hold exactly for all y € [y, 75] with the maximal
K€ [07%]. The expressions for y; < 9, in (3.19) yield
1+ 72

2 b)

\/( — 2%, + vp1z + Pa2)’ — (i) = szﬁ ;

—2p%, + VP12 + pa2 =
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or, equivalently with o; = poe — p%z and o3 := p12(v — p12),

_|_
(3.23) o1 + o3 = (paz — Phy) + (P12(v — P12)) = 3’12_3)2 =:fs,

_ 2
(3.24) o fog —r (v —1)] = (%) =:f1>0.

For the line o3 = 5 — o1 to intersect the hyperbola oz = % +x (v—1r) at some
1
a1 > 0, we require that 0 < xk (v — x) < f,, see also Figure 3.2.

The solutions of (3.23)—(3.24) read

01
(3.25) tye = W - VB — 1 0 =107 — 48, .

We seek the maximum x € [0, %] such that a3+ € R (for x = 0 this always holds by

the proof of Proposition 3.1). This maximal value is either obtained as x = % or when

as

A

a3 = — + [
Bs 3 3

aq
\w - ﬁl
Q3 =
231
AN
’B'A az=pr—a

Fig. 3.2. For the line a3 = 5 — o to intersect the hyperbola ag = b + 5 at some o > 0,
we require that 0 < Sy < fs. %
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the discriminant of (3.25) is zero. The latter case implies
(=10 = 2V/fy — fr = .

This is solvable (for x) in R iff | /7; < %, yielding x = % —
for the solvability of (3.23)—(3.24) in R, we obtain

2
L_Vle [0 4

1 ’E]' Hence,

V2 v
— Z—Vl for\/ﬂgé7

vV
for\/ﬂ>§.

Using x in (3.25) yields one or two values for ag > 0. Next, we need to check the
solvability of ag = p12(v — p12): To obtain p;2 € R, we must have

Kmaw < K 1=

DN <= DN =

(3.26) ay <L

Since a3 with the negative sign gives the weaker constraint, we shall use only a3 _ in
the sequel. Now, we have to distinguish between three cases:
ﬂz‘i’k\(\/*;{\) :3))1 + 79

(A1) /17 g% and 3y; + 7, < v*: The unique o3 _(x) = 1
satisfies condition (3.26). Hence, (3.23)—(3.24) yield the two endpoints for

(p12, p22) given in (B1).

(A2) /7 < %and 3y; + 75 > v*: Here o3 _ (%) violates condition (3.26). Hence, 14,
has to be chosen smaller than . Since a3 _(x) is monotonically increasing,
the obvious choice o3 := ; alzso yields the maximal vglue oi /z;: Equations
(3.23)-(3.24) give oy = fy — VZ and hence x (v — k) = VZ W o
solution r,,q, € [O,%] in case (B2).

with the

(A3) 71 > %: Using % = % yields from (3.25)

B VP 1 V2
03— =§2+§—§ (ﬁz—z)z—‘lﬁl > 0.

But one easily checks that it violates again condition (3.26). As in case (A2),
2

one chooses og ::VZ and the expressions for (pig, pe2, Kmae) in case (B2)
follow.

Finally, Conditions (C1)-(C5) are easily verified for each subcase.

Step 2: The whole interval of solutions in (B1) is obtained due to the con-
vexity of P. O
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4 - Fokker-Planck equations with non-local perturbations

4.1 - Introduction

In this chapter we investigate properties of the following class of perturbed
Fokker-Planck equations

(4.1a) £ =V - (DVf +Cxf) + 6f = Lf + 6f,
(4.1.D) £t =0,% = p(x).

Thereby f = f(t,x),and¢ > 0 andx € R", withn € N. The matrices D~1C,D € R"*"
are symmetric and positive definite, hence L is a symmetric Fokker-Planck operator

1
in L2(R"; exp (éxTD*ICx)), in fact it is a special case of (2.4). The perturbation is

given by a convolution @f = & x f with respect to x. The convolution kernel 9 is as-
sumed to be t-independent, and massless, i.e. J“]Rn I(x) dx = 0. To keep the solution f
real valued we shall consider here only real valued kernels &, but the analysis would
be equally valid for complex <'s. Further, technical assumptions are specified in the
beginning of Section 4.4.

The aim of this chapter is to make a spectral analysis of the perturbed Fokker-
Planck operator in an appropriate weighted L2-space, and to show the existence of a
unique (up to normalization) stationary solution. Furthermore, the exponential de-
cay of any solution of (4.1) to the stationary solution is proven.

The following analysis is structured as follows. After notational preliminaries in
Section 4.2 we investigate in Section 4.3 the unperturbed Fokker-Planck operator in
several functional spaces. First, we recall some of its properties in the L?-space
weighted with the reciprocal of the zero eigenfunction (this weight grows super-ex-
ponentially), in which the Fokker-Planck operator is self-adjoint. Then, a spectral
analysis in a larger, exponentially weighted space is given for this operator. Finally, in
Section 4.4 we consider the influence of the perturbation @ on the spectral properties
of the unperturbed Fokker-Planck operator in the exponentially weighted space.

Equation (4.1) is a toy model for the Wigner-Fokker-Planck equation, see [6].
Other examples for equations of this form can be found in [20] and [29]. The following
analysis of (4.1) is a generalization of the results published in [37], where only the
case C = D = I'was considered. In this chapter we use a similar approach for proving
the desired results. However, several proofs and technicalities differ from [37].

4.2 - Preliminaries

We use the convention N = {1,2,...}, and we write Ny := N U {0}. Given a
complex number z € C the complex conjugate is denoted by z. For n € I\ the ele-
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ments of C" are denoted by bold lowercase letters. Given some vector z € C", the
i-th component is denoted by z;, and we write z = [z1, . .., 2,17 as a column vector.
For a multiindex k € N7 we use the notation z* := 21 ... 2% Given a real number
s > 0 we define

§* =[5, ..., s

Fori € {1,...,n}thei-thunitvectorin C" is denoted by e;. For every 1 < p < cowe
define the corresponding p-norm on C" by

n 1
= (Y ll), 1<p <o,
=1

|z| ., := max |z;].
1<i<n

—n
-

With respect to the norm | - |, the open ball in C" with radius » > 0 and centera € C"
is defined by

Bl(a)={z € C":|z—al, <r}.

Its complement in C" is denoted by Bl (a)’ := C" \ Bl(a). Whenever we work in R"
instead of C" we use the same notation. Matrices are denoted by bold capital letters.
For a matrix M € C"*" and a real number s > 0 we define sM := exp (MlIn s), using
the matrix exponential.

On a domain Q C R" we call a real-valued function w € L{¥ (Q) aweight function

1
if ” € L (Q). The corresponding weighted L2-space L?(Q;w) is the set of all mea-

loc

surable functions f: 2 — C such that the norm
fllaw = ([ P00 dx)
Q

is finite, and the corresponding inner product is denoted by (-, ) q.,,-

Also, we introduce weighted Sobolev spaces. For two weight functions wy and w;
the space H(Q;wy, w;) consists of all functions f € L3(Q;w,) whose distributional
first order derivatives satisfy Of /0x; € LA(Q;wy) for all 1 <j < n. We equip the
space H'(Q; wy, w;) with the norm

2 2 1
1 2w = (1 ey + 1V Nl )%

which makes it a Hilbert space, see Theorem 1.11in [28]. If Q@ = R" we shall omit the
symbol @ in these notations. We call two sets of weight functions equivalent if the
corresponding weighted spaces are the same. In the case where the weight functions
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are equivalent to the constant function, we omit the weight function in the notation,
e.g. L2(2;1) = L*(Q).
For functions f € L'(R") we define the Fourier transform of f as

FIFIO =£©) = /f(x)e_ix‘édx.

R"

We use the same notation for the natural extension of the Fourier transform to
tempered distributions f € .(R"). With this scaling we may identify £(0) with the
mass (or mean) of f. For a tempered distribution f € ./(R") and a multiindex
k € N§ we define

as a distributional derivative.

Furthermore, we present some definitions and properties concerning linear
operators and their spectrum. Let X, X be Hilbert spaces. If X is continuously and
densely embedded in X we write X— X, and X<—<— X indicates that the embedding
is compact. Given a subset Y C X, the closure of Y in X is denoted by either Y or
clyY. Z(X) denotes the set of all closed operators A in X with dense domain D(A).
The set of all bounded operators A: X — Xis #(X, X);if X = X we just write . Z(X).
Thereby || - || ;) denotes the operator norm. For an operator A € ' (X) its range is
ranA and its null space is ker A. Note that there always holds ker A C D(A). A
closed, linear subspace Y C X is said to be invariant under A € 2 (X) (or A-in-
variant) iff D(A) N Y isdensein Y andranA|y C Y, seee.g. [1]. Forany { € Clying
in the resolvent set p(A), we denote the resolvent by R4({) := (( — A)~L. The com-
plement of p(A) is the spectrum o(A), and ¢,(4) is the point spectrum. For an iso-
lated subset ¢’ C g(A) the corresponding spectral projection P4, is defined via the
line integral

1
(42) Payi=ge f RaAQ L,
I

where I' is a closed Jordan curve with counter-clockwise orientation, strictly se-
parating ¢’ from o(A) \ ¢, with ¢’ in the inside of I" and ¢(4) \ ¢’ on the outside. The
following results can be found in [26, Section I11.6.4] and [38, Section V.9]: The
spectral projection is a bounded projection operator, decomposing X into two A-
invariant subspaces, namely ranPy , and ker Py . This property is referred to as the
reduction of A by P4 ». A remarkable property of this decomposition is the fact that
(Al anp !
with the situation where ¢’ = {1} is an isolated point of the spectrum.

)= 0" and 6(A|yqp, ,) = 0(A)\d’. Most of the time we will be concerned
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A final remark concerns constants occurring in estimates: Throughout this
chapter, C denotes some positive constant, not necessarily always the same.
Dependence on certain parameters will be indicated in brackets, e.g. C(f) for de-
pendence on ¢.

4.3 - Analysis of the Fokker-Planck operator

In this section we investigate the (unperturbed) Fokker-Planck equation
(4.3) fi =V - DVf + Cxf).

Indeed we can find coordinates that simplify this equation. To this end we proceed
similarly to the “normalization” of the Fokker-Planck operator after Theorem 2.1.
Since D is symmetric and positive definite we may introduce the coordinate trans-
formationy = vD 71x. With ¢(y) := f(x) equation (4.3) transforms to

(4.4) gt = Vy - (Vyg + Cyg),

with C = vD _1C\/ﬁ. Since C is symmetric and positive definite, we may express
the variable y in terms of an eigenfunction basis of C. Applying this change of
coordinates to (4.4) yields an equation of the same form, but now the matrix C is
diagonal (compare to the situation in (2.28)).

Therefore, without loss of generality we shall always assume that D =1, and C
is diagonal in the following, i.e. C = diag(cy,...,c,) with the entries 0 <¢; <
cg < -+ < ¢, We introduce c¢:=[cy,... ,cn]T. The unperturbed Fokker-Planck
operator L is then

L =4+x"CV + TrC.

Note that the perturbation © in (4.1) still is a convolution in the new coordinates.
One can check that

u:=-exp(— %XTCX)

is a steady state of (4.3), i.e. a zero eigenfunction of L. The natural (self-adjoint)
setting for L is the space H := L*(1/w), with the inner product denoted by (-, ).
There, L is properly defined as the closure of L\Cgc(Rn). This procedure also yields
the domain D(L). The behavior of L in H is well studied (cf. [31, 11, 21, 35]), we list
its main properties in the following theorem. For the case C =1 an analogous
result has been published in [37]. A complete proof of the following theorem can be
found in [36].
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Theorem 4.1. The Fokker-Planck operator L in H has the following prop-
erties:

@) The operator L = clHL|Cgc on the domain D(L) is self-adjoint and has a
compact resolvent.

(ii) The spectrum consists entirely of isolated eigenvalues and it is given by
olL)={-c-k:ke N}

1/2

(ili) The zero eigenspace is spanned by py(x) := det(C/(2r))"* exp (— %XTCX),

and for every k € N{ the function py(x) == V¥uy(x) is an eigenfunction to the
etgenvalue —c - k.

(iv) For every { € a(L) we have ker({ — L) = span{yy, : { = —c¢ - k}.
(V) The family of eigenfunctions {y, : k € Ny} is an orthogonal basis of H.
(vi) L generates a Cy-semigroup of contractions (et >0 0 H, and

HetL|Hk||ﬁ(H) =e "l k€ Ny,
where ¢, is the smallest entry of ¢, and Hy, = span{y : k|, <k —1}".
The following result is useful in the subsequent analysis:

Lemma 4.1. For every k € N the eigenfunction 1y is of the form
(4.5) ,Uk(X) = ,U()(X) HP?(%),
=1

where p]l.cf () is a polynomial of order k;.

Proof. We prove this by induction. For k = 0 the statement clearly holds true.
Let it now hold true for some k € N, and we deduce the validity for k + e, for any
¢ e {1,...,n}. According to the property sy = V¥u, and the induction hypothesis
we have

e 00 = 0, (1o [ [ )

=1
= (ﬂo(x) H p]]-cj (xj)) (- c;ac[plzf () + p’gf(acg)’).
i#t
We define the new polynomial pf ™ (x;) := —c,aepf () + (pf(20)) and it is obviously

of order k, + 1, since ¢, > 0. This proves (4.5). O
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For the subspaces Hy, k € Ny, which were introduced in Theorem 4.1 (vi) we find
the following characterization:

Lemma 4.2. Let k € Ny. There holds f € Hy, iff

(4.6) / fxkdx =0, Vk|, <k-1.

R"

Proof. For this we will rely on the representation (4.5) for the z4.. The result is
then shown by induction. Clearly, we have Hy, = H and for k = 1 we obtain

leﬂgz{feH; /f(x)dx:o}.

R"

Let us assume now that (4.6) holds for some k € Ny. According to (4.5) we have

R" =1

For f € Hj, and |k|; = k we get due to the induction hypothesis

0= /f(X)Hp;j(xj)dXZak /f(x)xkdx,

J=1

R" R™

where ay # 0 is the leading coefficient of the polynomial in the integral. All other
parts of the first integral vanish due to the induction assumption (4.6). Since this
holds for all |k|; = k this proves the desired condition for f € Hy,;. O

For every k € Njj we define the projection operator I7y, i corresponding to 14 by
the orthogonal projection

U
Iy = <'aﬂk>H—k2'
Itz
With this, the spectral projection corresponding to an eigenvalue { = —c - kis given

by the orthogonal sum
M= My

ke\%’

—ck=({
So far we have discussed the operator L in H. However, for investigating the
perturbed Fokker-Planck operator L + @ the space H is not convenient. This can be

illustrated in the one-dimensional case with &f := f(x + o) — f(x — «), for any o > 0.
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There one can explicitly show that the zero eigenfunction of L + @ does not lie in H,
for more details see [36]. Thus we are forced to investigate L + @ in a weighted L2-
space with a weight which grows more slowly than 1/, as [x|; — oco. It turns out that

(4.7) o(x) :="Y _ cosh fu;
=1

is a convenient weight function. Thereby > 0 is an arbitrary constant which is not
yet specified. Note that this differs slightly from the weight function chosen in [37].
However, this choice is more practical for the subsequent analysis. In the following
we analyze L + @ in the weighted space H := L?*(w). The natural norm and the inner
product in H are denoted by || - ||, and (-, -),,, respectively.

The space H possesses a useful characterization via the Fourier transform.

Proposition 4.1. There holds f € H iff its Fourier transform f possesses an
analytic continuation (still denoted by f ) tothe open set Qg0 :={z € C" : |Imz|, < $/2},
with the property

(4.8) sup If ¢ +ib)|[ 2y < 00

\b\1<;f/2
In this case we have:
(i) For every b € R" with |b|; < /2 there holds
(4.9) fE+ib) = FIf®expb-01Q&, &eR"

(i) For every b € R" with |b|; = /2 we define f(é +ib) := FLf(x) exp (b - X)](&),
which lies in L2(R™). With this there holds b f( - +ib) € C(Bllg (0); LA(R™)).

/2

See Theorem IX.13 in [34] for a very similar result. For a detailed proof see [36].
Often we shall use the following norm, which is equivalent to || - ||, due to the
Plancherel theorem:

2

e+ (i)

L2(R"

(4.10) A2 = ; Hf('“ge”)

L2RY
A useful property of H is the validity of the following Poincaré inequality:

Lemma 4.3. There exists a constant C, > 0 such that for every f € H'(w, »)
there holds

(4.11) 1f 1l < Coll VF Il
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Proof. For this we use the norm ||| - |||,,. We compute

A2 = 33 (15157 (e + 150 e

j=1 (=
+ H (51 ) (5 is e/) HLZ(R" >
BN ol ile
(H (52 ‘H*)f( 5 )HLZ(R")
/3 p 2
+| (@ §)f(5 1§e3> ||L2(R”))
Y AT Y 2 P B 2
=z (§> ; <Hf(§ + 15‘”) 2y + Hf(é - 1§ef) HLZ(W))
_(PNE e
= (5) e,
This proves the Poincaré inequality with the constant C, = % O
Using the above properties of H we can investigate L in H. The following theorem

is the main result of this section and describes the (unperturbed) Fokker-Planck
operator in H:

[

Theorem 4.2. Let w(X) be the weight function defined in (4.7) for any f > 0,
and H = L?(w) is the corresponding weighted space. Then the Fokker-Planck op-
erator L|CSC(RM) ts closable in H, we write L := CIHL|CSC(TR“)' In 'H the operator L has
the following properties:

(i) The resolvent of L is compact, and o(L) consists entirely of isolated eigen-
values.

(ii) The spectrum of L is given by
o(L)={—-c-k:ke N},
where ¢ 1s the column vector containing the diagonal entries of C.
(iii) For every A € a(L) the corresponding eigenspace of L is given by
span{yy : ke Nj A —c-k =1},
where the etgenfunctions ty, were introduced in Theorem 4.1.

(iv) For every k € Ny the following is a closed subspace of H:

o= {f e /f(x)xkdx =0, ke Ng with [k, <k-1}.
]Rn
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Hy is L-invariant, and o(L|y, ) = {—c -k : [K|; > k}. There holds the identity
H = Hy, @ span{y, : k|, <k -1}

() L generates a Cy-semigroup of bounded operators (e'*);~o on H. For every
k € Ny there exists a constant Cj, such that

(4.12) €% 3y, | sy < Cre™™, VE>0.

The rest of this section is dedicated to proving Theorem 4.2. The proof is
structured into several lemmata and propositions. To this end we begin by showing
that the Fokker-Planck operator can be defined as a closed operator in H and we
characterize its domain. The first preparatory result is the following lemma, which is
also essential for showing the compactness of the resolvent of the Fokker-Planck
operator in H.

Lemma 4.4. Let Rel> %(1 + A+ TrC), and f,g € CCR™ such that
(€ — L)f =g. Then there exists a constant C > 0, independent of f, g, such that

(4.13) 11l + [IVfll,, < Cligll,,
Thereby w(x) := (1 + |X|g)0(X).

Proof. For f =0, g =0 (4.13) holds trivially. For f # 0 we apply (-,f), to
(( — L) = g, and compute

Re / gfwdx= Re / (& — V- (Vf + Cxf))fwdx
R" R"

= Re( / |/|?wdx + Re / (Vf 4+ Cx f) - (wVf +fVw)dx
(4.14) o «
= ||Vf|\i + 5 / |f?@Relw — dw — Tr C 4+ x"CVw) dx

R"

2 1 2

—I9f1E 5 [ Ifvax

R
Thereby we temporarily define v(x) :=2Re{w — 4w — @ Tr C + x"CVw. We ob-
serve that 4w = f%w and x"CVw = 1, cx;sinh fr; > 0 for all x € R". So if
Rel > %(1 + ﬁz + Tr C), the function v(x) is a weight function with v(x) > w(x) on
R". Next we apply the Cauchy-Schwarz inequality to the left hand side of (4.14),
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which yields

1
19712+ 112 < 11l

We now use the Poincaré inequality on the first term and v(x) > w(x) on the second
term, and divide by ||f]],,:

IVFlle + A1 < Cligll,-
1
Finally we observe that for any fixed Re{ > é(l + ﬁz + Tr C) there is a constant
C > 0 such that v(x) > Cw(x) for all x € R". This concludes the proof. O

Before we properly define the Fokker-Planck operator as a closed operator in H,
we need the lemma below. It determines all formal eigenfunction of the Fokker-
Planck operator, i.e. the eigenfunctions of the distributional Fokker-Planck op-
erator ¥ in H. Thereby, we define the distributional Fokker-Planck operator as
L := A+ x"CV + TrC in the sense of tempered distributions. € is then a well-de-
fined linear map from H into.””, defined on the whole space H. As a consequence of
the following lemma it will be straightforward to determine the spectrum of the
Fokker-Planck operator in H.

Lemma 4.5. The distributional Fokker-Planck operator  satisfies the
eigenvalue equation Xf =(f for some (€ C and some feH\{0} f
(e {—c-k:k e Ny} Forsuch values of {, there holds f € span{zy, : —¢ -k = (}.

Proof. Since all the functions gy, are eigenfunctions of L and lie in H it is clear
that they are also eigenfunctions of ¥. In order to show that they already span all
eigenspaces we consider the Fourier transform of ({ — L)f = 0 for any { € C, which
reads

(4.15) C+ &b +ECvf =o.

Now we are looking for f € H and { € C satisfying this (eigenvalue) equation. This
means that we are interested in solutions f which are analytic in Q5. Expecting f to
be generated from y, by repeated differentiation (see Theorem 4.1 (iii)), we make
the ansatz f = Pltg, With p analytic in Qg/5. This is admissible (and not restrictive)
since iy is nonzero and analytic in 5/,. We know that ji, satisfies the zero eigenvalue
equation |é|§ ito +E'CVjiy = 0, so after inserting f= Pl in (4.15) we obtain the
following equation for p:

(4.16) &'evp = - .

To solve this first order PDE we consider its characteristics: We introduce the
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(unique) solution &) of the ordinary differential equation &E=C¢ with
&) = &) € C". Tt is verified by application of the chain rule that for any such curve
and any differentiable function p we have

d
3 PE®) = &B" CVpEw).
In particular, any solution of (4.16) fulfills the ordinary differential equation

d
&p(é(t)) = —(pE®)

along these curves, and it follows p(&(f)) = p(éo)e“ft. Using the fact that &(f) = etcéo
and introducing s = e’ (with s € R") we obtain &(t) = s, (see Section 4.2 con-
cerning the notation), and consequently we obtain

(4.17) p(sC&) = p(&ys .

Now p needs to be analytic in Qg/. So (4.17) implies that Re{ < 0 is necessary,
otherwise p would have a singularity at the origin & = 0 (corresponding to s\ 0),
which is a contradiction. By induction we deduce from (4.16) that for all k € INj

&'CV(V¥p) = ~C +¢- RV

Since all derivatives V¥p need to be analytic in Qg5 as well, the above argument
proves that either Re { < —c - k for all k € INjj (which is impossible since C > 0) or
VEp =0in 2y /2 for some k € INy. So p has to be a polynomial, and we make the ansatz

P& =Y pd,

Jn
keNj

where pj = 0 for almost all k € Njj. We now insert this in (4.16) and obtain

D (e kpd =0 prés.

an N
keN! keN!

This holds true iff { = —c - k for all k € Nfj for which py # 0. This proves the first
statement of the lemma.
From the above analysis we conclude

FO = (Y ped)in(®.

N
kel 0

ck=—(

Now recall from Theorem 4.1 (iii) that jy = i‘k‘lék,&o holds for all k € N§. Hence,
f € span{yy, : —c -k = {}. So we conclude that the eigenspaces of ¥ in H are pre-
cisely spanned by the z,. O

Now we can properly define the Fokker-Planck operator in the space H.
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Lemma 4.6. The operator L|Cgc is closable in 'H, and L = clHL|CgC. The do-
main is D(L) = {f € H : &f € H}, and for f € D(L) we have Lf = &f.

The following proof is based on the proof of Lemma 2.6 in [37].

Proof. According to (4.14) we have that (L — §)|Cgc is dissipative in H if
1
Re( > §(1 + /32 + Tr C). This implies (cf. [33, Theorem 1.4.5 (¢)]) that (I, — C)\Cgc and
consequently also L|Cg< is closable in H.

Now we define £ := ClHL|cgw The domain D(L) consists of all f € H for which
there exists some g € H and a sequence (f;,),ex, C Ci°(R") such that

{ 1}13/}010 Hf% _wa = 07

(4.18) )
Jim [1Zf, —g]l, = 0.

This also implies that (({ — L)f,),ex, is a Cauchy sequence in ‘H. Thus, according
to (4.13) (Vfunen, is a Cauchy sequence in H. So altogether, (f,),ecx, is a Cauchy
sequence in the Hilbert space H'(w, w). But since we already know that f,, — f in A,
this implies that even f € H'(w,w). Next we temporarily introduce the weight
m2(X) := w(x/2) and the corresponding weighted space Hs := L2(wg). Due to the
previous results (x'CVf;, + Tr Cfinen, 1s a Cauchy sequence in Hz. According to
(4.18), (Lfu)yex, is also a Cauchy sequence in Hsp. Altogether, this implies that
(4fwnen, 1s a Cauchy sequence in Hsy. Applying the Fourier transform and the norm
(4.10) we have that, for every ¢ € {1,...,n}, the two sequences

((esifei(estbe)),

are Cauchy sequences in L2(R"). But we also know that fn( - 41 geg) converges to

f( - +i ge[) in L2(R"). Thus it is clear that 4f € Hs, and Af,, — Af in Hs and also
Lf, — ¥f in Hs. According to (4.18) ¥f = g in Hg, and since g € H, we conclude that
Lf,, — 2f in H. This proves the inclusion D(L) C {f € H : &f € H}.

Finally we prove that this inclusion indeed is an equality. First we note that
D) c D(L) since L = CIHL|CS< and H—H. So we have the inclusion L C £ for the
graphs. Let us then take { > 0 so large that the estimate (4.13) holds. As we have
mentioned in the beginning of the proof the operator (£ — g)‘cgc is (uniformly) dis-
sipative in H, and from Theorem 1.4.5 in [33] it follows that the closure, £ — {, is also
(uniformly) dissipative. In particular it is injective and thus invertible. So ({ — L)t
exists. Now according to Theorem 4.1 (— L:D(L) — H is a bijection, so
ran({ — £) O H, which is dense in H. Due to this and the estimate (4.13) (¢ — £) ' is
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a densely defined bounded operator in H. But by definition ({ — £)~! is already
closed, so ran({ — £) = 'H and { € p(£) (and thus p(L) # 0).

For the proof by contradiction we take now this { € p(£), and assume there
exists some f* € H\ D(L) such that f* € H. Hence also ({— Q)f* € H. Since
{ € p(L) we have ({ — ﬁ)’l(é — Q)f* € D(L). Since D(L) is a linear space we have
ff=C- L) - Qf —f* € H\ D(L) with ((—)f*=0. But according to
Lemma 4.5 we know that { € p(£) cannot be an eigenvalue of € in H. So f* =0,
contradicting f* € H \ D(L). Hence we conclude D(L) = {f € H : ¥f € H}. O

Lemma 4.7. Forany { € p(L) the resolvent ({ — £)is compact in H.

Proof. Wefix{ > 0, and first show the result for this given . Choosing { large
enough we can apply Lemma 4.4 which proves that (( — £)~! is an element of
A(H,H (w, )). Note that this requires the density of CgO(R") in H, which is assured
by Lemma A.2 in the Appendix.

Now we shall show that H!(w, ») is compactly embedded in H. By the definition
of @ (in Lemma 4.4) it is clear that for all n € N there holds

okx) 1

su = ,
\x\zfn wx) 14mn

which tends to zero as n — oo. Thus we can apply Lemma A.1 in the appendix,
which proves the compact embedding H'(w,w)—<—H. Hence, the resolvent
(¢ — £)"': H — H is compact. Finally we remark that, according to Theorem I11.6.29
in [26], the compactness of ({ — £)7! follows for all other e p(L). O

Corollary 4.1. The spectrum o(L) consists entirely of eigenvalues, and
olL)y={—c-k:keNj}. The eigenspace corresponding to the -eigenvalue
{ € a(L) is given by span{y, : { = —c - k}.

Proof. We apply Theorem II1.6.29 in [26] which states that ¢(£) consists en-
tirely of eigenvalues, and the corresponding eigenspaces are finite-dimensional.
According to Lemma 4.6 the eigenfunctions of £ in D(L) are precisely the (formal)
eigenfunctions of ¥ in H. With this, Lemma 4.5 concludes the proof. O

We introduce the closed subspaces H;, C H for every k € Ny, which we define as
Hy, := cly H},, where the subspaces Hj, were specified in Theorem 4.1. The following
lemma gives a characterization of the spaces Hj, compare Lemma 4.2 for an ana-
logous result in H.
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Lemma 4.8. Forevery k € Ny there holds

(4.19) M, = {f EH: /f(x)xkdx =0, Vke NI with |k, <k-— 1}.
JR?I

Proof. We start from the characterization of the H, in Lemma 4.2. Our plan is
to apply Lemma A.5 in the appendix. For every k € IN{j we define the functional

e H — Cifis / FOxkdx.
RIL
We first prove the continuity of the 7. For k € N{ and f € H we have
k
X

] / f(x)xkdxjg / | f(x)w(x)l/2|~‘7’dx

, ox)'"?
R" R"
xZK N\
<l ([ o)
:RN,

Since w grows exponentially in every direction it is clear that the last integral on
the right hand side is finite for every k € Nj. Thus the 7, are bounded linear
functionals in H. Next we shall verify that the family {5, : k € N{} is linearly
independent. If the family would be linearly dependent, there would exist a
polynomial p(x) # 0 such that

/ FOOpEdx =0, Vf €M,

R"

But this implies p = 0, since Ci°(R") C H.
Now we have verified the assumptions of Lemma A.5. Since

He= () kerny,
Ik, <k—1

we conclude that

Hy = clyH}, = ﬂ kery,.
k|, <k-1

The intersection on the right is exactly the set (4.19). O

Corollary 4.2. Fork € Ny there holds the identity

(4.20) He={f € H:V5(0)=0, V|k|, <k-1}.
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Proof. This follows immediately from the fact that for f € H and k € INj

/ x*f(x) dx = FIx*f)]1(0) = i*1 VEF(0).

R"

We use this in (4.19) and the result follows. O

At every 1 € o(L) the resolvent map {—R,({) has an isolated singularity. We
denote the corresponding spectral projection of £ by 11, ;, which satisfies (4.2). In
particular there holds 17, ; = cly 11y, ;, as we will see in the following.

Proposition 4.2. For every k € Ny we have the following facts:

(i) The space H can be written as the following direct sum: H = H;®
span{yy : k|, <k —1}.

(i) Both spaces Hy, and span{yy : |k|; <k — 1} are closed in H and L-invariant.
In particular 0(1.3|Hk) ={-c-k:|k|; >k}

Proof. Step 1 (decomposition of Hy): In H there holds for any fixed k € IN

(4.21) Hj; = span{y, : |k|; <k -1},
and for every A € o(L) we have for the corresponding spectral projection
(4.22a) ranfl, ; = span{yy : —¢ -k =1},
(4.22b) ker/T,; = span{sy : —c -k # 2}.
For a given k € N we define the set
op={-c-k: |kl <k-1} C Ry,

which is the set of all eigenvalues which “contribute” to H ,ﬁ (note that there may be
k € Nj such that —c - k € gy, but |k|; > k). From (4.22a) we conclude that

\Jrantr,, > Hy .

A€oy,
Taking the orthogonal complement of this relation yields:

(4.23) () kerlI,,; C Hy.

AEay,
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Next we investigate which eigenfunctions z4 need to be added to the left hand side of
(4.23) such that the corresponding span equals H}. First we observe that, according
to (4.22), there holds 1y, € ( N iea, kerIl;, i)l iff 1y € ranlly, ; for some 1 € gy. Thisis
also equivalent to the condition —c - k € g;. To complement the left hand side of
(4.23), we also require 4 € Hy, which gives the constraint |k|, > k, see (4.21). Hence,
we conclude that

(4.24) Hy = ( ﬂ kerﬂm) @, span{yy, : —c-k € g, A K|y > k}.

AEay,

Step 2 (decomposition of H): For { € p(£)we have R, ({) C R({) (in the sense of
graphs), and as a consequence the spectral projection for A€ o(L£) satisfies
Iy, C I ;, see (4.2). Furthermore, both /7y, ; and 11 ; are bounded projections in
H and H, respectively. Due to Lemma A.6 in the appendix there holds

(4.25) kerIl;; =clykerll;; and ranll;; =clyranlly,.

Since the projections are bounded we have H = kerll,, @ ranll, ;, and both com-
ponents of the direct sum are closed subspaces of H, see Section I11.3.4 in [26].

Step 3 (decomposition of Hy): Due to the arguments of Step 2 we obtain, by
applying the closure in H to (4.24):

(4.26) Hi = ([ kerfle,;) @ span{uy : —¢ -k € o A K|y > k).

A.EO'](

Notice that gy, is finite. The sum is still a direct sum, since every y, in the “span-term”
of the right hand side lies in the range of some /7. ; with 1 € oy,
Altogether this implies that 7}, is a closed subspace of H such that

H = Hy, d span{yy : k|; <k —1},

and the two components are closed and disjoint subspaces of H.

Step 4 (L-invariance, J(E\Hk)): The L-invariance of the finite dimensional com-

bination of eigenfunctions span{zy, : |k|; < k — 1} is evident. For every /4 € a(£) also
the corresponding kernel ker/I - ; is L-invariant. Therefore the expression (4.26) has
to be L-invariant, since it is just a (finite) direct sum of L-invariant spaces.
Concerning the spectrum of £ in Hy, we recall that o(L|,, m,,) = (L) \ {/}. Thus,
we obtain from (4.26) that o(L|;,) = {—c¢ -k : [k[; > k}. d

After having established the subspaces Hj, we now turn to the semigroup which is
generated by L.
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Lemma 4.9. The Fokker-Planck operator L generates a Cy-semigroup of
bounded operators in H, which is denoted by (etﬁ)tzo.

Proof. From (4.14) in the proof of Lemma4.4 we find that for
(= %(1 + /32 + Tr C) the operator (£ — C)|Cgc<ﬁn) and thus £ — { is dissipative. So we

may apply the Lumer-Phillips Theorem (cf. Theorem 1.4.3 in [33]) which proves that
L — { generates a Cy-semigroup of contractions, thus £ generates a Cy-semigroup of
bounded operators in H. O

According to equation (1.2) in [30] the semigroup operators e'* for ¢ > 0 are given
by

etTrC

1
(4.27) (e“f)(x) = 7 / exp ( — ZyTley) fEe°x—y)dy,

(4n)"detQ, 4

where Q; = (2C)~1(e#C — I). We can equivalently use the following representation in
Fourier space, which is useful for the subsequent analysis.

Lemma 4.10. Forf € Handt > 0there holds
(4.28) FIe“F1©) = exp (- RO A — e 20)g) - fe7C0).

Proof. Ift =0 the identity (4.28) is obviously fulfilled, so we assume ¢ > 0 in
the following. For f € H, (4.27) is well defined, and we can write it as

(@)x) = @m)~"*(detQ) %™ (g + (e x),

where ¢(x) = exp( — iXTQ{ x). Using the fact that Q; is diagonal we immediately

obtain that &(é) = (det 47th)1/ Zexp (— &T'Q,&). With this we can write the Fourier
transform of (4.27) as

Fler1&) = (4m) "2det Q, /%™ C / (@ *f)ECx)exp (—ix - &) dx

R"

= (4n) "*det Qt_l/z}'[gﬁ * f1(e~C¢)
= exp (- EMEOTNI - e #0))e) fle o).

So (4.27) and (4.28) are equivalent for all f € H. O
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In the next step we investigate the long-time behavior of (e?*);~( on the subspaces
‘Hy. In the subspaces H, the analogue of this analysis was presented in Theorem 4.1(vi).
Its proof was elementary since the eigenfunctions {z : k € Njj } form an orthogonal
basis of H. But in H the orthogonality of the eigenfunctions is lost, which hence
requires more technical estimates of the semigroup. For the rest of this chapter they
will be mostly based on the representation (4.28) of (etﬁ)tzo.

Proposition 4.3. For every k € Ny there exists a constant Cy, > 0 such that
there holds

(4.29) 1€l | sy < Cre™, Wt >0,
where cy is the smallest entry of c.

Proof. We fix k € N and take any f € Hj,. Our aim is to estimate |||e*f]||,,.

Step 1 (pointwise estimates of f ): f is analytic on Qg/2, and since f € H;, we get

due to (4.20) that (&) = O(|¢ |]2”) as |€]; — 0. More precisely, its Taylor expansion with
remainder in Lagrange form reads for all & € Qg/5:

@ = Z %ék(vgf)(lcé), for some x € [0,1].

ke[ =k

Lemma A.4 provides a uniform bound of |V]§§ f | on Qg 5, for 0 < p < B. Hence
(4.30) f@<C lzls [[Ifll,  V2€Qpp.

For estimating the semigroup (4.28) in the norm ||| - |||, we shall need the fol-
lowing estimate for each £ € {1,...,n}: For ¢ > 1 we have

Z .= eitc<éii§e(j) GQﬂ//Za VEGRTL,
with f/ = e~ < f. Hence, (4.30) yields for all & € R":

(431) (e (exibe))| < cleo(exile) [ i,

—keqt E k
< CettlexiCe IfIll,

Step 2 (semigroup estimate): For estimating (4.28) we compute with (4.31) for
any £ € {1,...,n} and for ¢t > 1:
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H]—'[ewf] (5 + igeg)

;(R’;’) - / o - (¢ iigef)T[@C)‘l(I )

)] (s

<C / exp (- €A - e #O) | f (e (Ciigef))\zdé
R"
f(e*tc (éiigez»‘zd?ﬁ

Sc/e*\i\g}'o
2\ 2k B e
<c(5) e maip? [ e

][ n
R™

2k
,

—c'(5)" eI,

where yc := (1 — e 24) /.
Summing (4.32) overall ¢ € {1, ...,n} we conclude: There exists some C > 0 such
that for all £ > 1 there holds

(4.33) 1le“AIll, < Ce ™ llIflll,, ¥ € He.

But since (ew)tzo are bounded operators on H, uniformly for 0<t<1
(cf. Lemma 4.9) the above estimate (4.33) holds true for all ¢ > 0 with an appro-
priately large constant C' > 0. O

With this proposition we conclude the proof of Theorem 4.2.

4.4 - The perturbed Fokker-Planck operator

Having defined the extension of the Fokker-Planck operator £ in H we now turn
to the investigation of the properties of the perturbed operator £ + 6. Note that our
x-coordinates are such that D = I, and C is diagonal, see the discussion in the be-
ginning of Section 4.3. We make the following assumptions on ©:

(C) Conditions on @: We assume that Of := J «x f for all f € H, for some function
d: R" — R. Thereby the convolution kernel 4 has the following properties:

(i) The Fourier transform 8 can be extended to an analytic function in Qg5 (also
denoted by ), and & € L>(Qg)2).

(ii) There holds 9(0) = 0, i.e. 9is massless.
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(iii) The function
1
§|—>/§;9(5Tsc)ds
0

is analytic in Qg /5, and its real part lies in L>(€g2).

Lemma 4.11. Under the assumptions (C) the operator O has the following
properties 1n H:

(i) @ € B(H).
(ii) For every k € N there holds ©: Hj, — Hj1.

Proof. We start by proving (i). Due to (C)(i) we have for every f € H that
F1Of] = Jf is analytic in Qg5, and since f satisfies (4.8) we find
sup || 9 (- +ib)||gny < 00

[bly <p/2
beR™

So, according to Proposition 4.1, ® maps H into H. It remains to show it is bounded.
To this end we use the norm ||| - |||, see (4.10). We start with the following com-
putation, where ¢ € {1,...,n}:

07 BONE . Y7 N
/ &) (e i5er)| de= lim, / @) +ibeo)|*dg
R™ R"
< 181 0,0, lm, [ |7 xiben g
R”

= 18l eiay [ |F(ei5er)[as

R™

Thereby we have used (ii) in Proposition 4.1. Note that K f is the Fourier-transform
of an element of H, and thus we may evaluate it at the boundary of €4/, in the sense of
L2-functions. We can repeat this estimate for every ¢ € {1,...,n} and conclude from
(4.10) that © is bounded in H with a norm proportional to ||f9\| L(2y2)"

Next we show (ii). According to (4.20) f lies in H;, iff f has a zero of order greater
or equal to k at the origin. Now due to (C)(ii) 9 f has a zero of order greater or equal
to k+ 1 at the origin. Since @ maps H into H (due to Result (i)) this shows that
O:Hyi — Hyi1. O

Corollary 4.3. If O satisfies (C) then for every k € Ny the space Hy, is
mvariant under L + 6.
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Proof. This is a direct consequence of Proposition 4.2 and Lemma 4.11 (ii)
above. O

Throughout the rest of this section we always assume that @ is such that the
conditions (C) are satisfied in H for some f > 0. Now we fix this f and consider
H with the corresponding weight function w(x) = Y7 ; cosh ffx;. In the following
we discuss properties of £ + @ in H, which then lead to the final theorem.

Lemma 4.12. The spectrum o(L + O) consists entirely of isolated eigenvalues.

Proof. According to Theorem 4.2, £ generates a Cy-semigroup of bounded
operators in H and has a compact resolvent. Due to Lemma 4.11 (i), © is a bounded
operator. Thus we can apply Proposition I11.1.12 in [18], which proves that B, ¢({)is
compact for every { € p(L + 0).

It now remains to apply Theorem II1.6.29 in [26], which proves that o(L + ©)
consists entirely of isolated eigenvalues. O

In order to characterize the spectrum of £ + @ and the corresponding semigroup
we introduce the operator ¥: H — H:f—f * y. Thereby y is defined by

1
Ww(€) = exp ( / ég(éTsC)ds).
0

As we shall see below, ¥ provides a similarity transformation between the resolvents
of £ and £ + 6.

Lemma 4.13. ¥ satisfies the following properties in H:
(i) For every k € Ny the operator ¥ is a bijection from Hy, to Hj.

(ii) Both ¥ and its inverse ¥~ are bounded. Thereby ¥~ 'f = F *l[f/a]/] for all
feH

Proof. For the moment we define the operator ¥f := F ‘l[f/ ylforall f € H,
and show in the following that it is the inverse of ¥. To begin with we note that, due to
the condition (C)(iii), both y and 1/y are analytic and uniformly bounded in Qg /5.
Thus it follows analogously to the proof of Lemma 4.11 (i) that both ¥ and ¥ are
bounded operators in H.

Since y» and 1/i both do not have any zeros in £, it follows from the char-
acterization (4.20) of the space Hj, that ¥ and ¥ map H;, into itself for every k € Ny.
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Finally we observe that for every f € ‘H there holds Y¥f = $Y¥f = f, which fi-
nally proves that ¥ = ¥ L. O

Proposition 4.4. There holds

() o(L + 0) = a(L).

(i) For every k € N the function fi := ¥y, is an eigenfunction of L + O to the
eigenvalue —c - k. Furthermore, for every { € o(L + 0)

ker({ — (£ + 0)) = span{fi, : —¢-k ={}.
(i) The eigenfunctions fi satisfy fi = V¥fo for all k € N{.

Proof. Due to Lemma 4.12 we know that the spectrum of £ + O consists en-
tirely of eigenvalues. So, in order to determine the spectrum we look for { € C and
non-trivial solutions f € H of ({ — £ — @)f = 0. After applying the Fourier trans-
form this equation reads

CH+ [Epf + eV, f = 9f.

We now make the (non-restrictive) ansatzf = . Note that due to (C)(iii) and y # 0
in Qg /5, the requirement f° € ‘H implies that p is analytic in Q5. A short calculation
shows that 8 = éTCngl]/. Using this, we obtain the following equation for p:

&+ e +E"Cvp = 0.
We find that this is exactly equation (4.15). In the proof of Lemma 4.5 we have shown
that 0 Zp € H is a solution iff (€ {—c-k:k e Nj}. And for a fixed (e C,
p € span{yy : —¢-k=(}. O

Note that f5(0) = (0)/1y(0) = 1, hence fo has mass one.

Proposition 4.5. L+ @ generates a Cy-semigroup of bounded operators,
(e"EFO)q. For every k € Ny the space Hy, is invariant under the semigroup, and
there exists some Cy, > 0 such that

A otk
I sy < Cre™™, ¥Vt > 0.

Het(EJr@) |’H
k

Proof. According to Proposition 4.4 the eigenfunctions of £ and £ + © are
related by fii = ¥y, for every k € INjj. So we find for every (¢ o(£) and k € N that
the resolvents satisfy

1 1
R:Ou, = mﬂk =y mfk =¥ 'Rr 0OV 1y,
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Since span{zy, : k € Nj} C H is dense and all operators in the above formula are
bounded, we conclude the following operator equality in H:

(4.34) YR(O¥P ' =R o).

Take any k € Ny. According to Corollary 4.3 and Lemma 4.13 the identity (4.34)
holds also in Hy, and R, ,(0) is a bounded operator in H;. Now we apply the Hille-
Yosida Theorem to the decay estimate for (etﬁ)tzo stated in Theorem 4.2 (v). It shows
that for all m € Ny and Re { > —kc; there holds

Cr

1RO il sow < Re 3 ke

where Cj, > 0 is the same constant as in (4.12). Applying this resolvent estimate to
(4.34) yields for all m € Ny and Re { > —ke;:

Cel? 1l s )||lp71\| BH)
m . A N
1B+ [y, | s < Re Ck+ Tecy)” :

Applying the Hille-Yosida Theorem again implies that £ + @ generates a Cy-semi-
group of bounded operators, which satisfies the following estimate:

1€““H Oy sy < Cre™,

where 0 < G < CkHIPH.ﬁ(Hk)HlP71H.ﬁ(Hk)' O
We conclude this section by summarizing the main results.

Theorem 4.3. Under the conditions (C) on O, the perturbed Fokker-Planck
operator L + O has the following properties in H:
@) a(L+0)=0(L)={—c -k:ke N}, i.e. L+ O is an isospectral deforma-
tion of L.

(i) The functions fi := ¥ 1 are eigenfunctions of L + O for allk € IN. For every
A € a(L + 0) the corresponding eigenspace is given by

ker(A — (L + ©)) = span{ fx : —c -k = A}.

(iii) Foreveryk € Ny, the operator L + O generates a Cy-semigroup (€"“+9).q on
‘H;., and there exists some constant C;, > 0 such that

H(L+O) |H

M —tkCl
k||ﬁ(Hk)§Cke , Vt>0.

le

In particular, this theorem implies exponential convergence of the solutions of
the perturbed Fokker-Planck equation towards the stationary solution:
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Corollary 4.4. Let ¢ € H be given, and let f(t) := e/“+9¢ be the correspond-
g solution of (4.1). Set m := f p(x)dx € C. Then there exists a constant C > 0
such that R"

1£@®) — mfoll,, < Cllp — mfoll,e ™, Vt>0,

1.e. f(t) converges exponentially to mfy.

Proof. Sincefyisthe unique normalized zero eigenfunction of £ + @ we obtain:

F@®) —mfo = e"“TO(p — mfy).

Since ¢ — mfy has zero mean, it follows from Lemma 4.8 that it lies in H;. But
(e£19),.; decays exponentially on H; with rate —c;, see Theorem 4.3 (iii). So we get
for allt > 0:

1f® = mfoll,, = 1€“ @ — mfo)l,, < Cullp — mfo)], e

Remark 4.1. Note that £+ O is neither self-adjoint in H nor in . But the
fact that o(£L + @) C R and that £+ © is only a “deformation” of L, see (4.34),
suggests that £ + 0 is self-adjoint in an appropriate space. To verify this we in-
troduce the inner product

1 -
o = / P T,
R"

and the corresponding norm || - [|. The associated space £ is the set of all func-
tions such that | - ||, is finite. This is indeed a Hilbert space, and ¥ is an isometry
between H and $. Using (4.34) we see the self-adjointness of L + @ in H:

(L+0).9)g=(FoLo?'f g)y
= (L NP )y =W L )y

where we have used the self-adjointness of L in H. In $ the eigenfunctions fi of
L + O are orthogonal again (like the functions y in H). Altogether, we conclude that
L in H and L + O in © are isometrically equivalent via the map ¥. Hence, L + ©
inherits most properties of L. However, we point out that discovering the map ¥,
without the preceding analysis, is a non-trivial issue.

Furthermore, the Hilbert space © is difficult to be characterized explicitly. In
particular, it is usually not possible to describe $ as a weighted L?-space. A simple
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calculation shows that § = L?(v) for some weight function v only if for all f € CgO(R”)
there holds

) (),

But in general this function v will not be independent of f.

A - Results in functional analysis and deferred proofs

On Q = R" it is possible to find compact embeddings of weighted Sobolev spaces
into weighted L?-spaces if certain conditions on the weight functions are satisfied.
Here we need the following corollary from Theorem 2.4 in [32]:

Lemma A.1. Let v, w be two weight functions on Q = R". Assume further that

(A1) lim sup =0
"% xeB2(0) v(x)

Then there holds the compact embedding H (v, w)—— L*(w).
Lemma A.2. Letvbe a weight function on R". Then C°(R") is dense in LA(v).
The proof of the above lemma is straightforward, see [36] for more details.

Lemma A.3. There exists a constant C > 0 such that for every f € H we have
IVEF©O)] < C|f]l,, ke N
Proof. We have

|ka(0)| < HkaHLx(R") = H]:[ka(x)]HLoc(JR“) < ||ka(X)HL1(JR">

- / | F &))" - [xKox)~1/2|dx < ||f||w(/x2kw(x)‘1dx>l/2.

R" R"

Since w(x)! decays exponentially as [x|, — oo the last integral on the right hand
side is finite. d

Lemma A4. Forevery0 < f < pandk € N, there exists a positive constant
C such that

sup [V @)| < ClIfl,, U €M

ZGQﬂ//Z
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Proof. Due to Proposition 4.1, all functions f € H satisfy f (E+ib) =
FLf(x)eP*](&) for |b|, < /2. Hence,
(V)& + ib) = FI(— i) ®IE + ib) = FI(— ix)*f(x)e>*1(&)
follows for [b|; < /2 and k € . Then,

sup |V¥f(@)| < sup || FI(—ix) f(x)ebx](é)HLx({n
2€Q9 5 Ibl;<f'/2

< sup [|x¥f(x)e” M zaeny
b|,<f'/2

Xkeb~x
< s i
S I N gy 1 o

The norm || X2~ ||%, .., can be estimated as
r—* LA(RY)
2k ,2h-x 2k B |x| <2k (L x
xfe x4el Kl
/ dxg/ngSZ/de:Cz<oo,

o(x) o(X) o(x)
R™ R" R™

where C is finite due to 0 < / < B. Thus, the estimate SUPsco, , |ka(z)\ <C|fll,
for all f € H follows. O

Lemma Ab5. Let X — X be Hilbert spaces, and w, ...y, € B(X,C) be
linearly independent functionals. Then y; := y;ly € Z(X,C)forall0 <j <k —1,and

k-1

ﬂ kery; = cly ﬂ kery;.
7=0

This result coincides with Lemma C.2 in [37]. The proof can be found there.

Lemma A.6. Consider two Hilbert spaces X— X and a projection Py € .2(X),
such that Px := Py|y € .Z(X). Then ranPy = clyranPx and kerPy = clykerPy.

This result coincides with Lemma C.1 in [37].
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